2nd International Conference Mechanics of Unsaturated Soils 7 th 9 th March 2007

Size: px
Start display at page:

Download "2nd International Conference Mechanics of Unsaturated Soils 7 th 9 th March 2007"

Transcription

1 2nd International Conference Determination of the Soil Water Retention Curve and the Unsaturated Hydraulic Conductivity from the Particle Size Distribution Alexander Scheuermann & Andreas Bieberstein

2 Motivation Pedotransfer functions basing on the particle size distribution Arya & Paris (1981) Haverkamp & Parlange (1986) Fredlund et al. (2002) Schick (2002) Aubertin et al. (2003)

3 Motivation Pedotransfer functions basing on the particle size distribution Arya & Paris (1981) Haverkamp & Parlange (1986) Fredlund et al. (2002) Schick (2002) Aubertin et al. (2003) Is it possible to calculate the SWRC from the particle size distribution without empirical input data?

4 Pore Constriction Distribution Schulze (1992) and Schuler (1997)

5 Pore Constriction Distribution Schulze (1992) and Schuler (1997)

6 Pore Constriction Distribution 20 % 20 % 20 % 20 % 20 % Schulze (1992) and Schuler (1997)

7 Pore Constriction Distribution Consideration of the relative density D

8 Pore Constriction Distribution Consideration of the relative density D

9 Pore Constriction Distribution Consideration of the relative density D D = n n max max n n min = F F PE,max PE,max F F PE PE,min D = 0 D = 1

10 Pore Constriction Distribution Consideration of the relative density D D = n n max max n n min = F F PE,max PE,max F F PE PE,min D = 0 D = 1

11 Pore Constriction Distribution Consideration of the relative density D D = 0 D = 0,2 D = 0,4 D = 0,6 D = 0,8 D = 1

12 Pore Constriction Distribution Difference in sizes pore constrictions Determination of a minimal and a maximal pore constriction Calculation of a mean pore constriction on the logarithmic scale total number Z k of calculations for k particle classes: Z k = k 4

13 Pore Constriction Distribution Schulze (1992) and Schuler (1997)

14 Pore Constriction Distribution Experimental investigations on the pore constriction distribution (Witt 1986)

15 Pore Constriction Distribution Schulze (1992) and Schuler (1997)

16 Soil Water Retention Curve porosity limits n max = 0,428 n min = 0,314 hydraulic conductivity k f = m/s

17 Soil Water Retention Curve Laplace s equation for the definition of the matric potential ψ m = matric potential [N/m 2 ] σ wa = surface tension [N/m] r = radius of the pore constriction [m] δ = contact angle ψ m = σ 2 wa cos r ( δ ) r max r min

18 Soil Water Retention Curve Laplace s equation for the definition of the matric potential ψ m = matric potential [N/m 2 ] σ wa = surface tension [N/m] r = radius of the pore constriction [m] δ = contact angle ψ m = σ 2 wa cos r ( δ ) r min r max

19 Soil Water Retention Curve Laplace s equation for the definition of the matric potential ψ m = matric potential [N/m 2 ] σ wa = surface tension [N/m] r = radius of the pore constriction [m] δ = contact angle ψ m = σ 2 wa cos r ( δ ) r min r max

20 Soil Water Retention Curve Laplace s equation for the definition of the matric potential ψ m = matric potential [N/m 2 ] σ wa = surface tension [N/m] r = radius of the pore constriction [m] δ = contact angle ψ m = σ 2 wa cos r ( δ ) r min

21 Soil Water Retention Curve Definitions for the residual water content water will be stored in the contact zones of the particles after drainage of the pore with the smaller pore constriction radius of a particle constellation (upper boundary) with the smallest pore constriction radius for all particle constellations (lower boundary)

22 Soil Water Retention Curve Definitions for the residual water content water will be stored in the contact zones of the particles after drainage of the pore with the smaller pore constriction radius of a particle constellation (upper boundary) with the smallest pore constriction radius for all particle constellations (lower boundary) assumption of a matric potential at which residual water content will be reached (e.g. basing on the definition of the field capacity) assumption of a residual water content (e.g. by measurement)

23 Soil Water Retention Curve Comparison with experimental result (axis translation technique with hanging water column)

24 Hydraulic conductivity Basic assumptions for the determination of the hydraulic conductivity on the micro-scale (Childs & Collis George 1950) pore size distribution is calculable from the SWRC for individual pore fragments the flow law of Hagen-Poiseuille applies since the pore radius is included in Hagen-Poiseuille s law with the power of four the resistance against water flow for a sequence of two pores is dominated by the smaller pore the total hydraulic conductivity is defined by sequences of pores in series

25 Hydraulic conductivity Equation of Hagen-Poiseuille for laminar flow in capillaries p 1 Q = f HP l η Q = discharge p = pressure difference at the ends of the capillary l = length of the capillary η = dynamic viscosity f HP = form factor (for circular cross section r 4 π / ) ( ) 8

26 Hydraulic conductivity Equation of Hagen-Poiseuille for laminar flow in capillaries p 1 Q = f HP l η Q = discharge p = pressure difference at the ends of the capillary l = length of the capillary η = dynamic viscosity f HP = form factor (for circular cross section r 4 π / ) ( ) 8 hydraulic gradient i

27 Hydraulic conductivity Equation of Hagen-Poiseuille for laminar flow in capillaries p 1 Q = f HP l η Q = discharge p = pressure difference at the ends of the capillary l = length of the capillary η = dynamic viscosity f HP = form factor (for circular cross section r 4 π / ) ( ) 8 hydraulic gradient i Equitation with Darcy s law Q = k f i A

28 Hydraulic conductivity Equation of Hagen-Poiseuille for laminar flow in capillaries p 1 Q = f HP l η Q = discharge p = pressure difference at the ends of the capillary l = length of the capillary η = dynamic viscosity f HP = form factor (for circular cross section r 4 π / ) ( ) 8 hydraulic gradient i Equitation with Darcy s law Q = k f i A Saturated hydraulic conductivity A B m k f 1 = η 1 A = total surface area of all pore constellations = number of all pore constellations B m 1 f HP,m

29 Hydraulic conductivity Consideration of Tortuosity T 0 according to Bear (1972) it is feasible to use T 0 = 2/3 as a constant value for saturated condition for unsaturated condition the reduction of saturation has to be taken into account (T 0,unsat = T 0 S)

30 Hydraulic conductivity Consideration of Tortuosity T 0 according to Bear (1972) it is feasible to use T 0 = 2/3 as a constant value for saturated condition for unsaturated condition the reduction of saturation has to be taken into account (T 0,unsat = T 0 S) Connectivity K according to Vasconcelos (1998) the connectivity can be considered in context with the relationship between specific surface and its pore volume using a simplified consideration of the relationship between the surface of a pore channel formed by a pore constriction and the pore surface leads to a constant connectivity of K = 2,6 (for constant volume) connectivity is also dependent on the saturation (K unsat = K S)

31 Hydraulic conductivity Consideration of Tortuosity T 0 according to Bear (1972) it is feasible to use T 0 = 2/3 as a constant value for saturated condition for unsaturated condition the reduction of saturation has to be taken into account (T 0,unsat = T 0 S) Connectivity K according to Vasconcelos (1998) the connectivity can be considered in context with the relationship between specific surface and its pore volume using a simplified consideration of the relationship between the surface of a pore channel formed by a pore constriction and the pore surface leads to a constant connectivity of K = 2,6 (for constant volume) connectivity is also dependent on the saturation (K unsat = K S) f TK = T 0 K S 2 = 1,73 S 2

32 Hydraulic conductivity

33 Dependency on the relative density porosity limits n max = 0,428 n min = 0,314 hydraulic conductivity k f = m/s

34 Dependency on the relative density

35 Dependency on the relative density

36 Comparison with experimental results porosity limits n max = 0,483 n min = 0,347 hydraulic conductivity k f = m/s

37 Comparison with experimental results

38 Comparison with experimental results

39 Comparison with experimental results hydraulic Conductivity k f = m/s (calculated using the equation acc. to Kozeny/Carman)

40 Comparison with experimental results

41 Comparison with experimental results

42 Summary and Conclusion The pore constriction distribution of a soil can be used for the determination of the SWRC for the case of drainage. The definition for the residual water content has to be improved for a determination of the SWRC without empirical input data. Using the flow law of Hagen-Poiseuille it is possible to calculate the hydraulic conductivity for saturated and unsaturated conditions. The procedure offers the possibility for the determination of the pore range distribution forming the base for the determination of the SWRC for imbibition.

43 Dependency on the relative density Overview of the results relative density D 0 0,2 0,4 0,6 0,8 1,0 air entry value ψ AEV [kpa] 0,85 0,95 1,15 1,4 1,55 1,7 saturated hydraulic conductivity k f,calc. 7, , , , , ,2 10-4

THEORY. Water flow. Air flow

THEORY. Water flow. Air flow THEORY Water flow Air flow Does Suction Gradient Cause Flow? Coarse stone Fine ceramic Suction gradient to the right No suction gradient but still flow Does water content gradient cause Flow? Suction gradient

More information

Unsaturated Flow (brief lecture)

Unsaturated Flow (brief lecture) Physical Hydrogeology Unsaturated Flow (brief lecture) Why study the unsaturated zone? Evapotranspiration Infiltration Toxic Waste Leak Irrigation UNSATURATAED ZONE Aquifer Important to: Agriculture (most

More information

1. Water in Soils: Infiltration and Redistribution

1. Water in Soils: Infiltration and Redistribution Contents 1 Water in Soils: Infiltration and Redistribution 1 1a Material Properties of Soil..................... 2 1b Soil Water Flow........................... 4 i Incorporating K - θ and ψ - θ Relations

More information

dynamics of f luids in porous media

dynamics of f luids in porous media dynamics of f luids in porous media Jacob Bear Department of Civil Engineering Technion Israel Institute of Technology, Haifa DOVER PUBLICATIONS, INC. New York Contents Preface xvii CHAPTER 1 Introduction

More information

In all of the following equations, is the coefficient of permeability in the x direction, and is the hydraulic head.

In all of the following equations, is the coefficient of permeability in the x direction, and is the hydraulic head. Groundwater Seepage 1 Groundwater Seepage Simplified Steady State Fluid Flow The finite element method can be used to model both steady state and transient groundwater flow, and it has been used to incorporate

More information

Experimental measurement of parameters governing flow rates and partial saturation in paper-based microfluidic devices

Experimental measurement of parameters governing flow rates and partial saturation in paper-based microfluidic devices Experimental measurement of parameters governing flow rates and partial saturation in paper-based microfluidic devices Dharitri Rath 1, Sathishkumar N 1, Bhushan J. Toley 1* 1 Department of Chemical Engineering

More information

CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT

CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT SSC107 Fall 2000 Chapter 2, Page - 1 - CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT Contents: Transport mechanisms Water properties Definition of soil-water potential Measurement of soil-water

More information

16 Rainfall on a Slope

16 Rainfall on a Slope Rainfall on a Slope 16-1 16 Rainfall on a Slope 16.1 Problem Statement In this example, the stability of a generic slope is analyzed for two successive rainfall events of increasing intensity and decreasing

More information

On the relationships between the pore size distribution index and characteristics of the soil hydraulic functions

On the relationships between the pore size distribution index and characteristics of the soil hydraulic functions WATER RESOURCES RESEARCH, VOL. 41, W07019, doi:10.1029/2004wr003511, 2005 On the relationships between the pore size distribution index and characteristics of the soil hydraulic functions S. Assouline

More information

Permeability and fluid transport

Permeability and fluid transport Permeability and fluid transport Thermal transport: Fluid transport: q = " k # $p with specific discharge (filter velocity) q [m s 1 ] pressure gradient p [N m 3 ] dynamic viscosity η [N s m 2 ] (intrinsic)

More information

Predicting the soil-water characteristics of mine soils

Predicting the soil-water characteristics of mine soils Predicting the soil-water characteristics of mine soils D.A. Swanson, G. Savci & G. Danziger Savci Environmental Technologies, Golden, Colorado, USA R.N. Mohr & T. Weiskopf Phelps Dodge Mining Company,

More information

Simulating Fluid-Fluid Interfacial Area

Simulating Fluid-Fluid Interfacial Area Simulating Fluid-Fluid Interfacial Area revealed by a pore-network model V. Joekar-Niasar S. M. Hassanizadeh Utrecht University, The Netherlands July 22, 2009 Outline 1 What s a Porous medium 2 Intro to

More information

Petrophysics. Theory and Practice of Measuring. Properties. Reservoir Rock and Fluid Transport. Fourth Edition. Djebbar Tiab. Donaldson. Erie C.

Petrophysics. Theory and Practice of Measuring. Properties. Reservoir Rock and Fluid Transport. Fourth Edition. Djebbar Tiab. Donaldson. Erie C. Petrophysics Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties Fourth Edition Djebbar Tiab Erie C. Donaldson ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS

More information

R09. d water surface. Prove that the depth of pressure is equal to p +.

R09. d water surface. Prove that the depth of pressure is equal to p +. Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

More information

ψ ae is equal to the height of the capillary rise in the soil. Ranges from about 10mm for gravel to 1.5m for silt to several meters for clay.

ψ ae is equal to the height of the capillary rise in the soil. Ranges from about 10mm for gravel to 1.5m for silt to several meters for clay. Contents 1 Infiltration 1 1a Hydrologic soil horizons...................... 1 1b Infiltration Process......................... 2 1c Measurement............................ 2 1d Richard s Equation.........................

More information

Darcy s Law, Richards Equation, and Green-Ampt Equation

Darcy s Law, Richards Equation, and Green-Ampt Equation Darcy s Law, Richards Equation, and Green-Ampt Equation 1. Darcy s Law Fluid potential: in classic hydraulics, the fluid potential M is stated in terms of Bernoulli Equation (1.1) P, pressure, [F L!2 ]

More information

Principles of soil water and heat transfer in JULES

Principles of soil water and heat transfer in JULES Principles of soil water and heat transfer in JULES Anne Verhoef 1, Pier Luigi Vidale 2, Raquel Garcia- Gonzalez 1,2, and Marie-Estelle Demory 2 1. Soil Research Centre, Reading (UK); 2. NCAS-Climate,

More information

Supporting Information. Technique for real-time measurements of endothelial permeability in a

Supporting Information. Technique for real-time measurements of endothelial permeability in a Supporting Information Technique for real-time measurements of endothelial permeability in a microfluidic membrane chip using laser-induced fluorescence detection Edmond W.K. Young a,b,, Michael W.L. Watson

More information

Distribution of pore water pressure in an earthen dam considering unsaturated-saturated seepage analysis

Distribution of pore water pressure in an earthen dam considering unsaturated-saturated seepage analysis E3S Web of Conferences 9, 194 (16) DOI: 1.11/ e3sconf/169194 E-UNSAT 16 Distribution of pore water in an earthen dam considering unsaturated-saturated seepage analysis 1a Kumar Venkatesh, Siva Ram Karumanchi

More information

Water in Soil Sections in Craig

Water in Soil Sections in Craig Water in Soil Sections 2.1-2.6 in Craig Outlines Introduction Darcy s Law Volume of water flowing per unit time Measuring K in laboratory Seepage Theory Flow Net Introduction All soils are permeable materials,

More information

Updating the Coupling Algorithm in HYDRUS Package for MODFLOW

Updating the Coupling Algorithm in HYDRUS Package for MODFLOW Updating the Coupling Algorithm in HYDRUS Package for MODFLOW SAHILA BEEGUM Guided by Dr. K P Sudheer, Dr. Indumathi M Nambi & Dr. Jirka Šimunek Department of Civil Engineering, Indian Institute of Technology

More information

UNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow

UNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow UNIT II Real fluids The flow of real fluids exhibits viscous effect that is they tend to "stick" to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons

More information

Air Flow Modeling. An Engineering Methodology. February 2012 Edition. GEO-SLOPE International Ltd.

Air Flow Modeling. An Engineering Methodology. February 2012 Edition. GEO-SLOPE International Ltd. Air Flow Modeling with AIR/W An Engineering Methodology February 2012 Edition GEO-SLOPE International Ltd. Copyright 2007-2012 by GEO-SLOPE International, Ltd. All rights reserved. No part of this work

More information

INTERPRETATION OF UNDRAINED SHEAR STRENGTH OF UNSATURATED SOILS IN TERMS OF STRESS STATE VARIABLES

INTERPRETATION OF UNDRAINED SHEAR STRENGTH OF UNSATURATED SOILS IN TERMS OF STRESS STATE VARIABLES INTERPRETATION OF UNDRAINED SHEAR STRENGTH OF UNSATURATED SOILS IN TERMS OF STRESS STATE VARIABLES S. K. Vanapalli and D.G. Fredlund Department of Civil Engineering University of Saskatchewan, Saskatoon

More information

PORE-SCALE PHASE FIELD MODEL OF TWO-PHASE FLOW IN POROUS MEDIUM

PORE-SCALE PHASE FIELD MODEL OF TWO-PHASE FLOW IN POROUS MEDIUM Excerpt from the Proceedings of the COMSOL Conference 2010 Paris PORE-SCALE PHASE FIELD MODEL OF TWO-PHASE FLOW IN POROUS MEDIUM Igor Bogdanov 1*, Sylvain Jardel 1, Anis Turki 1, Arjan Kamp 1 1 Open &

More information

Water Retention of Rigid Soils from a Two-Factor Model for Clay

Water Retention of Rigid Soils from a Two-Factor Model for Clay 90 The Open Transport Phenomena Journal, 2010, 2, 90-102 Water Retention of Rigid Soils from a Two-Factor Model for Clay Open Access V.Y. Chertkov* Division of Environmental, Water, and Agricultural Engineering,

More information

I. Borsi. EMS SCHOOL ON INDUSTRIAL MATHEMATICS Bedlewo, October 11 18, 2010

I. Borsi. EMS SCHOOL ON INDUSTRIAL MATHEMATICS Bedlewo, October 11 18, 2010 : an : an (Joint work with A. Fasano) Dipartimento di Matematica U. Dini, Università di Firenze (Italy) borsi@math.unifi.it http://web.math.unifi.it/users/borsi porous EMS SCHOOL ON INDUSTRIAL MATHEMATICS

More information

Research Article One-Dimensional Vacuum Steady Seepage Model of Unsaturated Soil and Finite Difference Solution

Research Article One-Dimensional Vacuum Steady Seepage Model of Unsaturated Soil and Finite Difference Solution Hindawi Mathematical Problems in Engineering Volume 2017, Article ID 9589638, 7 pages https://doi.org/10.1155/2017/9589638 Research Article One-Dimensional Vacuum Steady Seepage Model of Unsaturated Soil

More information

PRINCIPLES OF GEOTECHNICAL ENGINEERING

PRINCIPLES OF GEOTECHNICAL ENGINEERING PRINCIPLES OF GEOTECHNICAL ENGINEERING Fourth Edition BRAJA M. DAS California State University, Sacramento I(T)P Boston Albany Bonn Cincinnati London Madrid Melbourne Mexico City New York Paris San Francisco

More information

Stochastic geometry and porous media

Stochastic geometry and porous media Stochastic geometry and transport in porous media Hans R. Künsch Seminar für Statistik, ETH Zürich February 15, 2007, Reisensburg Coauthors Thanks to the coauthors of this paper: P. Lehmann, A. Kaestner,

More information

Field Scale Modeling of Local Capillary Trapping during CO 2 Injection into the Saline Aquifer. Bo Ren, Larry Lake, Steven Bryant

Field Scale Modeling of Local Capillary Trapping during CO 2 Injection into the Saline Aquifer. Bo Ren, Larry Lake, Steven Bryant Field Scale Modeling of Local Capillary Trapping during CO 2 Injection into the Saline Aquifer Bo Ren, Larry Lake, Steven Bryant 2 nd Biennial CO 2 for EOR as CCUS Conference Houston, TX October 4-6, 2015

More information

UNIT I FLUID PROPERTIES AND STATICS

UNIT I FLUID PROPERTIES AND STATICS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: II-B.Tech & I-Sem Course & Branch:

More information

GG655/CEE623 Groundwater Modeling. Aly I. El-Kadi

GG655/CEE623 Groundwater Modeling. Aly I. El-Kadi GG655/CEE63 Groundwater Modeling Model Theory Water Flow Aly I. El-Kadi Hydrogeology 1 Saline water in oceans = 97.% Ice caps and glaciers =.14% Groundwater = 0.61% Surface water = 0.009% Soil moisture

More information

2. Modeling of shrinkage during first drying period

2. Modeling of shrinkage during first drying period 2. Modeling of shrinkage during first drying period In this chapter we propose and develop a mathematical model of to describe nonuniform shrinkage of porous medium during drying starting with several

More information

Chapter 6. Losses due to Fluid Friction

Chapter 6. Losses due to Fluid Friction Chapter 6 Losses due to Fluid Friction 1 Objectives To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. To correlate this in terms of the

More information

Flow interpretation implications for Poro-Elastic Modeling

Flow interpretation implications for Poro-Elastic Modeling Flow interpretation implications for Poro-Elastic Modeling James K. Fulford Naval Research Laboratory Stennis Space Center Stennis Space Center, Mississippi 39529 Email: jim.fulford@nrlssc.navy.mil Telephone:

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

COMPARISON OF WETTABILITY AND CAPILLARY EFFECT EVALUATED BY DIFFERENT CHARACTERIZING METHODS

COMPARISON OF WETTABILITY AND CAPILLARY EFFECT EVALUATED BY DIFFERENT CHARACTERIZING METHODS 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS COMPARISON OF WETTABILITY AND CAPILLARY EFFECT EVALUATED BY DIFFERENT CHARACTERIZING METHODS S.K. Wang*, M. Li*, Y.Z. Gu, Y.X. Li and Z.G. Zhang Key

More information

Microfluidics 1 Basics, Laminar flow, shear and flow profiles

Microfluidics 1 Basics, Laminar flow, shear and flow profiles MT-0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,

More information

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 5, Supp, Pages 85 92 c 2008 Institute for Scientific Computing and Information PHYSICS OF FLUID SPREADING ON ROUGH SURFACES K. M. HAY AND

More information

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 215 Christchurch, New Zealand Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes T. Nishimura

More information

P. Broadbridge. Snippets from Infiltration: where Approximate Integral Analysis is Exact.

P. Broadbridge. Snippets from Infiltration: where Approximate Integral Analysis is Exact. P. Broadbridge Snippets from Infiltration: where Approximate Integral Analysis is Exact. Hydrology of 1D Unsaturated Flow in Darcy-Buckingham-Richards approach. Nonlinear diffusion-convection equations

More information

FLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10

FLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10 Chapter 10 Shear stress distribution across a pipe section FLOW IN CONDUITS For steady, uniform flow, the momentum balance in s for the fluid cylinder yields Fluid Mechanics, Spring Term 2010 Velocity

More information

Electrical Resistivity of Compacted Kaolin and its Relation with Suction

Electrical Resistivity of Compacted Kaolin and its Relation with Suction Electrical Resistivity of Compacted Kaolin and its Relation with Suction Dias, Ana Sofia ana.sofia.dias@tecnico.ulisboa.pt Summary The electrical characteristics of compacted kaolin were studied and related

More information

Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils

Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils Ruowen Liu, Bruno Welfert and Sandra Houston School of Mathematical & Statistical Sciences,

More information

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0 UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and non-uniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and ir-rotational

More information

Degree of saturation effect on the grout-soil interface shear strength of soil nailing

Degree of saturation effect on the grout-soil interface shear strength of soil nailing E3S Web of Conferences 9, 7 (6) DOI:./ e3sconf/697 E-UNSAT 6 Degree of saturation effect on the grout-soil interface shear strength of soil nailing a, Qiong Wang, Xinyu Ye, Shanyong Wang, Scott William

More information

Fluid Flow Fluid Flow and Permeability

Fluid Flow Fluid Flow and Permeability and Permeability 215 Viscosity describes the shear stresses that develop in a flowing fluid. V z Stationary Fluid Velocity Profile x Shear stress in the fluid is proportional to the fluid velocity gradient.

More information

Soil physical and chemical properties the analogy lecture. Beth Guertal Auburn University, AL

Soil physical and chemical properties the analogy lecture. Beth Guertal Auburn University, AL Soil physical and chemical properties the analogy lecture. Beth Guertal Auburn University, AL Soil Physical Properties Porosity Pore size and pore size distribution Water holding capacity Bulk density

More information

*** ***! " " ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14. " > /' ;-,=. / ١

*** ***!   ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14.  > /' ;-,=. / ١ ١ ******!" #$ % & '!( ) % * ") +,-./ % 01. 3 ( 4 56 7/4 ) 8%9 % : 7 ;14 < 8%9 % : *7./ = ;-, >/'." Soil Permeability & Seepage ٢ Soil Permeability- Definition ٣ What is Permeability? Permeability is the

More information

Pore-scale modeling extension of constitutive relationships in the range of residual saturations

Pore-scale modeling extension of constitutive relationships in the range of residual saturations WATER RESOURCES RESEARCH, VOL. 37, NO. 1, PAGES 165 170, JANUARY 2001 Pore-scale modeling extension of constitutive relationships in the range of residual saturations Rudolf J. Held and Michael A. Celia

More information

THE EFFECTS OF ROCK FRAGMENT SHAPES AND POSITIONS ON MODELED HYDRAULIC CONDUCTIVITIES OF STONY SOILS

THE EFFECTS OF ROCK FRAGMENT SHAPES AND POSITIONS ON MODELED HYDRAULIC CONDUCTIVITIES OF STONY SOILS 5 th International Conference 'Hydrus Software Applications to Subsurface Flow and Contaminant Transport Problems' THE EFFECTS OF ROCK FRAGMENT SHAPES AND POSITIONS ON MODELED HYDRAULIC CONDUCTIVITIES

More information

Permeability of Sandy Soil CIVE 2341 Section 2 Soil Mechanics Laboratory Experiment #5, Laboratory #6 SPRING 2015 Group #3

Permeability of Sandy Soil CIVE 2341 Section 2 Soil Mechanics Laboratory Experiment #5, Laboratory #6 SPRING 2015 Group #3 Permeability of Sandy Soil CIVE 2341 Section 2 Soil Mechanics Laboratory Experiment #5, Laboratory #6 SPRING 2015 Group #3 Abstract: The purpose of this experiment was to determine the coefficient of permeability

More information

KOZENY-CARMAN EQUATION REVISITED. Jack Dvorkin Abstract

KOZENY-CARMAN EQUATION REVISITED. Jack Dvorkin Abstract KOZENY-CARMAN EQUATION REVISITED Jack Dvorkin -- 009 Abstract The Kozeny-Carman equation is often presented as permeability versus porosity, grain size, and tortuosity. When it is used to estimate permeability

More information

Experimental Analysis on Soil-Water Characteristic Curve of CH3COO - Contaminated Clay

Experimental Analysis on Soil-Water Characteristic Curve of CH3COO - Contaminated Clay Experimental Analysis on Soil-Water Characteristic Curve of CH3COO - Contaminated Clay Liwen Cao, Tianyu Xu, Yong Wang and Pan Huo School of Resource and Earth Science, China University of Mining and Technology

More information

Hydro-Mechanical Properties of Partially Saturated Sand

Hydro-Mechanical Properties of Partially Saturated Sand Hydro-Mechanical Properties of Partially Saturated Sand Dissertation as a requirement of the degree of Doktor - Ingenieur at the Faculty of Civil Egineering University Bochum submitted by Yvonne Lins Weißenfels,

More information

Water retention of prefractal porous media generated with the homogeneous and heterogeneous algorithms

Water retention of prefractal porous media generated with the homogeneous and heterogeneous algorithms WATER RESOURCES RESEARCH, VOL. 37, NO. 10, PAGES 2631 2636, OCTOBER 2001 Water retention of prefractal porous media generated with the homogeneous and heterogeneous algorithms Michael C. Sukop 1 Department

More information

Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND

Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND Soil Water Atmosphere Plant (SWAP) Model: I. INTRODUCTION AND THEORETICAL BACKGROUND Reinder A.Feddes Jos van Dam Joop Kroes Angel Utset, Main processes Rain fall / irrigation Transpiration Soil evaporation

More information

Polymers Reactions and Polymers Production (3 rd cycle)

Polymers Reactions and Polymers Production (3 rd cycle) EQ, Q, DEQuim, DQuim nd semester 017/018, IST-UL Science and Technology of Polymers ( nd cycle) Polymers Reactions and Polymers Production (3 rd cycle) Lecture 5 Viscosity easurements of the viscosity

More information

BME 419/519 Hernandez 2002

BME 419/519 Hernandez 2002 Vascular Biology 2 - Hemodynamics A. Flow relationships : some basic definitions Q v = A v = velocity, Q = flow rate A = cross sectional area Ohm s Law for fluids: Flow is driven by a pressure gradient

More information

The role of capillary pressure curves in reservoir simulation studies.

The role of capillary pressure curves in reservoir simulation studies. The role of capillary pressure curves in reservoir simulation studies. M. salarieh, A. Doroudi, G.A. Sobhi and G.R. Bashiri Research Inistitute of petroleum Industry. Key words: Capillary pressure curve,

More information

Suction Controlled Triaxial Apparatus for Saturated-Unsaturated Soil Test

Suction Controlled Triaxial Apparatus for Saturated-Unsaturated Soil Test Int. J. of GEOMATE, Int. March, J. of 2013, GEOMATE, Vol. 4, No. March, 1 (Sl. 2013, No. Vol. 7), pp. 4, 466-470 No. 1 (Sl. No. 7), pp.466-470 Geotec., Const. Mat. and Env., ISSN:2186-2982(P), 2186-2990(O),

More information

Calculate the total volumes of the following typical microfluidic channel dimensions.

Calculate the total volumes of the following typical microfluidic channel dimensions. Microfluidics and BioMEMS, 2018, Exercise 1. Unit conversions and laminar flow. (Note: this version, both the assignment and the model solutions, is now fixed (18.1.2018) so that the flow rate is 0.25µl/min

More information

CYDAR User Manual Two-phase flow module with chemical EOR

CYDAR User Manual Two-phase flow module with chemical EOR CYDAR User Manual Two-phase flow module with chemical EOR 1 CYDAR - Two-phase flow module with chemical EOR CYDAR USER MANUAL TWO-PHASE FLOW MODULE WITH CHEMICAL EOR... 1 CYDAR - TWO-PHASE FLOW MODULE

More information

Science of Lagging Behind- Hysteresis in Soil Moisture Characteristic Curve - A Review

Science of Lagging Behind- Hysteresis in Soil Moisture Characteristic Curve - A Review International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 10 (2017) pp. 151-156 Journal homepage: http://www.ijcmas.com Review Article https://doi.org/10.20546/ijcmas.2017.610.019

More information

EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES

EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES Stresa, Italy, 25-27 April 2007 EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES Slavka Tzanova 1, Lora Kamenova 2, Yvan Avenas

More information

Ability of Darcy s Law for Extension in Two- Phase Flow for Sedimentary Medium in Capillary Non-equilibrium Situations

Ability of Darcy s Law for Extension in Two- Phase Flow for Sedimentary Medium in Capillary Non-equilibrium Situations Research Article imedpub Journals http://www.imedpub.com Resources, Recycling and Waste Management Ability of Darcy s Law for Extension in Two- Phase Flow for Sedimentary Medium in Capillary Non-equilibrium

More information

GEO-SLOPE International Ltd, Calgary, Alberta, Canada Wick Drain

GEO-SLOPE International Ltd, Calgary, Alberta, Canada   Wick Drain 1 Introduction Wick Drain This example is about modeling the behavior of a wick drain. The primary purpose here is to illustrate how interface elements can conveniently be used to include the effects of

More information

Chapter 6. Losses due to Fluid Friction

Chapter 6. Losses due to Fluid Friction Chapter 6 Losses due to Fluid Friction 1 Objectives ä To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. ä To correlate this in terms of

More information

Evaporation rates from square capillaries limited by corner flow

Evaporation rates from square capillaries limited by corner flow 1 2 3 Evaporation rates from square capillaries limited by corner flow viscous losses Frouke Hoogland, May 2012 4 5 A master thesis for the master program Environmental Hydrogeology at the Department of

More information

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d) ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and non-circular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared

More information

Automatic Gamma-Ray Equipment for Multiple Soil Physical Properties Measurements

Automatic Gamma-Ray Equipment for Multiple Soil Physical Properties Measurements Automatic Gamma-Ray Equipment for Multiple Soil Physical Properties Measurements Carlos Manoel Pedro Vaz Embrapa Agricultural Instrumentation, São Carlos, Brazil Lecture given at the College on Soil Physics

More information

Effect of Suction on the Resilient Modulus of Compacted Fine- Grained Subgrade Soils

Effect of Suction on the Resilient Modulus of Compacted Fine- Grained Subgrade Soils THE UNIVERSITY OF WISCONSIN-MADISON Effect of Suction on the Resilient Modulus of Compacted Fine- Grained Subgrade Soils by Auckpath Sawangsuriya, Ph.D. Tuncer B. Edil, Ph.D., P.E. Craig H. Benson, Ph.D.,

More information

Subsurface Flow Modelling At The Hillslope Scale: Numerical And Physical Analysis. Oscar Cainelli

Subsurface Flow Modelling At The Hillslope Scale: Numerical And Physical Analysis. Oscar Cainelli Subsurface Flow Modelling At The Hillslope Scale: Numerical And Physical Analysis Oscar Cainelli 2007 Based on the doctoral thesis in Environmental Engineering (XIX cycle) defended in February 2007 at

More information

UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW

UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW Derivation of uniform flow equation Dimensional analysis Computation of normal depth UNIFORM FLOW 1. Uniform flow is the flow condition obtained from a

More information

Time Rate of Consolidation Settlement

Time Rate of Consolidation Settlement Time Rate of Consolidation Settlement We know how to evaluate total settlement of primary consolidation S c which will take place in a certain clay layer. However this settlement usually takes place over

More information

Procedia Earth and Planetary Science 9 ( 2014 ) The Third Italian Workshop on Landslides

Procedia Earth and Planetary Science 9 ( 2014 ) The Third Italian Workshop on Landslides Available online at www.sciencedirect.com ScienceDirect Procedia Earth and Planetary Science 9 ( 2014 ) 214 221 The Third Italian Workshop on Landslides Prediction of suction evolution of silty pyroclastic

More information

NUMERICAL AND EXPERIMENTAL ANALYSIS OF SEEPAGE BENEATH A MODEL OF A GRAVITY DAM

NUMERICAL AND EXPERIMENTAL ANALYSIS OF SEEPAGE BENEATH A MODEL OF A GRAVITY DAM Engineering Review Vol. 33, Issue 2, 75-84, 2013. 75 NUMERICAL AND EXPERIMENTAL ANALYSIS OF SEEPAGE BENEATH A MODEL OF A GRAVITY DAM T. Jelenkovi V. Travaš * Chair of Hydraulic Engineering, Faculty of

More information

Continuum and discrete modelling of isothermal water and air flow in porous media

Continuum and discrete modelling of isothermal water and air flow in porous media Continuum and discrete modelling of isothermal water and air flow in porous media Filip Descamps, Building physics laboratory, KU Leuven. Anyone who has ever watered the roses or given a baby its bottle,

More information

Paper E A pore network model for calculation of interfacial velocities

Paper E A pore network model for calculation of interfacial velocities Paper E A pore network model for calculation of interfacial velocities Submitted to Advances in Water Resources, fall 21. A PORE NETWORK MODEL FOR CALCULATION OF INTERFACIAL VELOCITIES H.F. Nordhaug a,

More information

A Modified van Genuchten-Mualem Model of Hydraulic Conductivity in Korean Residual Soils

A Modified van Genuchten-Mualem Model of Hydraulic Conductivity in Korean Residual Soils Water 205, 7, 5487-5502; doi:0.3390/w705487 Article OPEN ACCESS water ISSN 2073-444 www.mdpi.com/journal/water A Modified van Genuchten-Mualem Model of Hydraulic Conductivity in Korean Residual Soils Seoong

More information

Dimensionless Numbers

Dimensionless Numbers 1 06.10.2017, 09:49 Dimensionless Numbers A. Salih Dept. of Aerospace Engineering IIST, Thiruvananthapuram The nondimensionalization of the governing equations of fluid flow is important for both theoretical

More information

Instructor : Dr. Jehad Hamad. Chapter (7)

Instructor : Dr. Jehad Hamad. Chapter (7) Instructor : Dr. Jehad Hamad Chapter (7) 2017-2016 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility Soil-Water Relationships Shear Strength Bearing Capacity

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Investigation of transient effects on the soil-water characteristic curve of different granular soils

Investigation of transient effects on the soil-water characteristic curve of different granular soils Investigation of transient effects on the soil-water characteristic curve of different granular soils M. Milatz, T. Törzs & J. Grabe Institute of Geotechnical Engineering and Construction Management, Hamburg

More information

ABSORPTION RATE AND VOLUME DEPENDENCY ON THE COMPLEXITY OF POROUS NETWORK STRUCTURES

ABSORPTION RATE AND VOLUME DEPENDENCY ON THE COMPLEXITY OF POROUS NETWORK STRUCTURES ABSORPTION RATE AND VOLUME DEPENDENCY ON THE COMPLEXITY OF POROUS NETWORK STRUCTURES Patrick A. C. Gane, Cathy J. Ridgway * and Joachim Schoelkopf Omya AG, CH-4665 Oftringen, Switzerland. (Short title:

More information

Hydraulic conductivity of granular materials

Hydraulic conductivity of granular materials 3 r d International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, Hydraulic conductivity of granular materials Namir K.S.Al-Saoudi Building and construction Eng. Dept.

More information

EQUILIBRIUM SATURATION IN BINDER JETTING ADDITIVE MANUFACTURING PROCESSES: THEORETICAL MODEL VS. EXPERIMENTAL OBSERVEATIONS. Hadi Miyanaji*, Li Yang*

EQUILIBRIUM SATURATION IN BINDER JETTING ADDITIVE MANUFACTURING PROCESSES: THEORETICAL MODEL VS. EXPERIMENTAL OBSERVEATIONS. Hadi Miyanaji*, Li Yang* Solid Freeform Fabrication 2016: Proceedings of the 26th 27th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper EQUILIBRIUM SATURATION IN BINDER

More information

Soil Mechanics for Unsaturated Soils

Soil Mechanics for Unsaturated Soils Soil Mechanics for Unsaturated Soils Delwyn G. Fredlund University of Saskatchewan Saskatoon, Sask., Canada and Harianto Rahardjo Nanyang Technological University Singapore John Wiley & Sons Notes by:

More information

ME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts ME 305 Fluid Mechanics I Chapter 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Department of Mechanical Engineering Middle East Technical University Ankara, Turkey

More information

Calculation types: drained, undrained and fully coupled material behavior. Dr Francesca Ceccato

Calculation types: drained, undrained and fully coupled material behavior. Dr Francesca Ceccato Calculation types: drained, undrained and fully coupled material behavior Dr Francesca Ceccato Summary Introduction Applications: Piezocone penetration (CPTU) Submerged slope Conclusions Introduction Porous

More information

Numerical Simulations of Two-Phase Flow in Rigid Porous Media

Numerical Simulations of Two-Phase Flow in Rigid Porous Media University of Colorado, Boulder CU Scholar Civil Engineering Graduate Theses & Dissertations Civil, Environmental, and Architectural Engineering Spring 1-1-2017 Numerical Simulations of Two-Phase Flow

More information

Steady and Transient Heat Transfer Characteristics of Flat Micro Heatpipe

Steady and Transient Heat Transfer Characteristics of Flat Micro Heatpipe Steady and Transient Heat Transfer Characteristics of Flat Micro Heatpipe by Yuichi Kimura *, Yoshio Nakamura *, Junji Sotani * 2 and Masafumi Katsuta * 3 Recently, a flat micro heatpipe of slim-profile

More information

Viscosity and Polymer Melt Flow. Rheology-Processing / Chapter 2 1

Viscosity and Polymer Melt Flow. Rheology-Processing / Chapter 2 1 Viscosity and Polymer Melt Flow Rheology-Processing / Chapter 2 1 Viscosity: a fluid property resistance to flow (a more technical definition resistance to shearing) Remember that: τ μ du dy shear stress

More information

GEOTECHNICAL LABORATORY

GEOTECHNICAL LABORATORY 14.333 GEOTECHNICAL LABORATORY BERNOULLI S EQUATION h u w v 2 2g Z h = Total Head u = Pressure v = Velocity g = Acceleration due to Gravity w = Unit Weight of Water Slide 1 of 14 h 14.333 GEOTECHNICAL

More information

A novel modeling approach for the simulation of soil water interaction in a highly plastic clay

A novel modeling approach for the simulation of soil water interaction in a highly plastic clay Geomech. Geophys. Geo-energ. Geo-resour. (216) 2:77 95 DOI 1.17/s4948-16-23-5 ORIGINAL ARTICLE A novel modeling approach for the simulation of soil water interaction in a highly plastic clay Ramy Saadeldin.

More information

Building ground level

Building ground level TMA4195 MATHEMATICAL MODELLING PROJECT 212: AQUIFER THERMAL ENERGY STORAGE 1. Introduction In the project we will study a so-called Aquifer Thermal Energy Storage (ATES) system with the aim of climitizing

More information

Buckley-Leverett Analysis for Transient Two-phase Flow in Fractal Porous Medium

Buckley-Leverett Analysis for Transient Two-phase Flow in Fractal Porous Medium Copyright 2015 Tech Science Press CMES, vol.109-110, no.6, pp.481-504, 2015 Buckley-Leverett Analysis for Transient Two-phase Flow in Fractal Porous Medium Yonggang Duan 1, Ting Lu 1, Mingqiang Wei 1,

More information

Chapter 10. Solids and Fluids

Chapter 10. Solids and Fluids Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the

More information

Analysis of Pressure Losses in Conditioned Air Distribution: Case Study of an Industrial Cafeteria

Analysis of Pressure Losses in Conditioned Air Distribution: Case Study of an Industrial Cafeteria International Journal of Engineering Works Kambohwell Publisher Enterprises ISSN: 0-0 Vol., Issue, pp. -, March, 0 www.kwpublisher.com Analysis of Pressure Losses in Conditioned Air Distribution: Case

More information