Permeability of Sandy Soil CIVE 2341 Section 2 Soil Mechanics Laboratory Experiment #5, Laboratory #6 SPRING 2015 Group #3

Size: px
Start display at page:

Download "Permeability of Sandy Soil CIVE 2341 Section 2 Soil Mechanics Laboratory Experiment #5, Laboratory #6 SPRING 2015 Group #3"

Transcription

1 Permeability of Sandy Soil CIVE 2341 Section 2 Soil Mechanics Laboratory Experiment #5, Laboratory #6 SPRING 2015 Group #3 Abstract: The purpose of this experiment was to determine the coefficient of permeability of a sandy soil using the constant head method. The coefficient of permeability of a soil is a measurement of how a fluid can flow through the soil. The importance of this lab is to find the engineering properties characterized by the permeability, which relate to shrinkage, swelling and capillary action. The constant-head method was used to find the coefficient of permeability instead of the falling-head method as the soil was granular and not fine-grained. The sandy soil was placed in the permeability apparatus and compacted and then hooked up to the sink to establish steadyflow conditions. Once water was flowing through the apparatus, flow rate was measured for three different levels of head. Once all the data was collected and the results were analyzed, the average permeability coefficient at ambient temperature was found to be cm/s. The average permeability coefficient at 20 C was found to be cm/s. Group Members: Ian Greenbaum (Abstract/Reflection/Short Answer Questions, Ali Hayat (Introduction/Short Answer Questions, Lisa Hofgesang (Conclusion/Short Answer Questions, & San Kahn (Results & Analysis /Short Answer Questions Experiment Completed: 6 March 2015 Report Submitted: 19 March 2015

2 Introduction The objective of this lab was to determine the coefficient of permeability of a sandy soil using the constant head method. The permeability constant is a measure of how easily fluid can pass through a porous medium. The constant head method is used in this case since a granular soil is being tested. If a fine-grained soil was to be analyzed, the falling head method would have been used. The constant head method is paired with Darcy s Law to find the coefficient of permeability using flow rate, specimen area and the hydraulic gradient (Darcy s Law shown in equations. The procedure of ASTM D-2434 Standard Test Method for Permeability of Granular Soils (Constant Head was followed utilizing the key apparatus listed below to find the data. First, the mass of the permeability device was measured. Next, oven-dry sand was added to the device and compacted in three layers between two porous stones, one on each end of the specimen. The mass of the device and specimen was taken along with the length and diameter of the soil specimen. The device was then hooked up to a water supply that could supply water at a constant head. Water was run through the soil until fully saturated. The flow was then measured three times at a constant head using a stopwatch and a graduated cylinder to capture the volume. The temperature of each volume was also taken. Before each measurement, the air bubbles were removed. Flow was then measured at two more constant-heads, three times each. The data was recorded and analyzed. Key Apparatus: - Constant-head permeability device - Balance (sensitive up to 0.1g - Timer - Thermometer - Beaker for collecting water (1000mL - Graduated cylinder to measure water collected in beaker The expected coefficient of permeability was expected to be low, as it is typically difficult for fluid to flow through a soil. The k value of water flowing through a fine-grained soil may be 10 4 m/s or less. The k value for granular soils should be larger than that, perhaps in the range of 10 3 m/s. The given k value at 20 C was cm/s. There are many possible errors in the constant head test, making it largely unreliable for real world application. Most errors come in the form of the test not matching the field conditions. The effect of the entrapped air bubbles can cause considerable error in the lab. Results and Analysis In this section, the data, calculations and analysis necessary to determine the coefficient of permeability will be presented. Initial measurements of mass M d, diameter D and length L were taken of the device and specimen to determine area A, volume V, dry density ρ d and void ratio e (Eq. 1-5 and placed into Table 1. Once the device was hooked up to the water supply, flow and temperature were measured for three constant heads (Eq. 6 and placed into Table 2.

3 For each head, three trials were averaged to determine the temperature and flow to use in the succeeding calculations. Next, the hydraulic gradient, discharge velocity and seepage velocity were calculated for each case (Eq These values were then used to calculate the coefficient of permeability at the given temperature and 20 C for each case (Eq The average of each case was taken and is presented as the final coefficient. These measurements were placed in Table 3. M d = M 2 M 1 (Eq. 1 Where M 2 is the mass of the device + soil specimen and M 1 is the mass of the device. A = D2 π (Eq. 2 4 V = A L (Eq. 3 ρ d = M d π 4 D2 L (Eq. 4 e = G sρ w ρ d 1 (Eq. 5 Q = Volume collected t (Eq. 6 i = h L L (Eq. 7 v d = Q A v s = v d n (Eq. 8 (Eq. 9 Where n = porosity = e (1 + e (Eq. 10 k = QL Ah L (Eq. 11 k 20 = k T η T η 20 (Eq. 12 Where η T is the viscosity of water at temperature T and η 20 is the viscosity of water at 20 C

4 Table 1: Initial Measurements Specific Gravity, G s 2.65 Specimen Height, L (cm 11 Specimen Diameter, D (cm 6.35 Permeability Device, M 1 (g 2173 Permeability Device + Soil, M 2 (g Specimen Dry Weight, M d (g Area of Specimen, A (cm Volume of Specimen, V (cm Dry Density of Soil, ρ d (g/cm Density of Water, ρ w (g/cm Viscosity of Water at 20 C, η20 (g/cm*s Initial Void Ratio, e Table 2: Constant Head Tests Constant Head Test No. 1 Constant Head, h L (cm Trial No. t (s Volume (cm 3 T, ( C Q (cm 3 /s Average Constant Head Test No. 2 Constant Head, h L (cm Trial No. t (s Volume (cm 3 T, ( C Q (cm 3 /s Average Constant Head Test No. 3 Constant Head, h L (cm Trial No. t (s Volume (cm 3 T, ( C Q (cm 3 /s Average

5 Discharge Velocity (cm/s Table 3: Combined Test Data Test No Constant Head, h T (cm Water Temperature, T ( C Volume of water per unit time, Q (cm^3/s Viscosity of Water at T C, η T (g/cm*s Hydraulic Gradient, i Discharge Velocity, v d (cm/s Seepage Velocity, v s (cm/s Permeability Coeff. at Ambient T C, k T (cm/s Permeability Coeff. at 20 C, k 20 (cm/s Avg. Permeability Coefficient at Ambient T C Avg. Permeability Coefficient at 20 C Once the data was collected, Figure 1 was created by plotting Discharge Velocity vs. Hydraulic Gradient. A linear trend-line was then fitted to the data. Hydraulic Gradient vs. Discharge Velocity y = x Hydraulic Gradient Figure 1: Hydraulic Gradient vs. Discharge Velocity

6 Reflection Our results of k T = cm/s and k 20 = cm/s were off by one order of magnitude from the given results of and 0.092, respectively, which is seemingly a large amount. However, the lab manual states It is rare for the value obtained to be correct within one order of magnitude due to the many possible errors. One of the most influential errors is entrapped air in the sample. Even after releasing the air bubbles as the ASTM procedure states for about 5 minutes before each measurement, whatever air was left in the sample seems to have thrown our numbers off by an order of magnitude. Further, the lower coefficient (i.e vs 9.2 produced by our results is probably due to the compaction that our group was instructed to perform which differed from other groups. Since compaction leads to less voids in the soil for which the water to flow through, the permeability coefficient would be lower as was found. Short Answer Questions 1. Why is the permeability test important in soil mechanics? Explain. It is important to obtain the coefficient of permeability to understand how a specific soil will react to the influence of water. For example, one would use a soil with low permeability when building a land fill, as it is necessary to keep the contents contained. It is also good to know how much water will end up in a soil under a road in the winter to better account for frost action. 2. What are the factors influencing the accuracy of the test? Is it an accurate test? Explain. Test conditions are often different from the field conditions. Hydraulic head in the laboratory may be much larger than field hydraulic head, leading to turbulent flow. Darcy s Law is not always linear. The entrapped air offers a lot of error. Because of the many possible causes for error, this test is not accurate. 3. Do all sands have the same permeability? Suppose that the same sand is under testing but compacted at different degrees will the permeability be the same in all compaction cases? Why or why not? Not all sands have the same permeability. They can differ greatly due to grain size distribution and compaction. The more compact a soil is, the fewer amounts of voids exist, making it harder for water to flow through the soil, resulting in a lower coefficient of permeability. 4. Is clay more permeable than sand? Explain. Clay is less permeable than sand due to the smaller amount of voids between the smaller particles, as explained in question 3.

7 5. Is Darcy s Law always effective? If no, explain the proper case for its application. If yes, explain why it is effective. Darcy s Law is not always effective as it is not always linear. With small values of hydraulic gradient i, the equation is v = ki. With larger values of hydraulic gradient i, the equations is v = ki n. Conclusion The constant head permeability test was performed on a sample of sand by compacting it in a constant-head permeability device and measuring the water flow through the device from three constant head levels. All data was recorded and analyzed to produce the tables and figures in the results and analysis section. The findings were used in collaboration with class notes and the lab manual to answer the short answer questions. The average permeability coefficient at ambient temperature was found to be cm/s. The average permeability coefficient at 20 C was found to be cm/s. These results were only one order of magnitude off of the expected results. This is an acceptable range of error, as the test has been proven to be inaccurate.

8 Appendices Equations, sample calculations, tables and plots of the experiment: Equations: M d = M 2 M 1 (Eq. 1 Where M 2 is the mass of the device + soil specimen and M 1 is the mass of the device. A = D2 π (Eq. 2 4 V = A L (Eq. 3 ρ d = M d π 4 D2 L (Eq. 4 e = G sρ w ρ d 1 (Eq. 5 Q = Volume collected t (Eq. 6 i = h L L (Eq. 7 v d = Q A v s = v d n (Eq. 8 (Eq. 9 Where n = porosity = e (1 + e (Eq. 10 k = QL Ah L (Eq. 11 k 20 = k T η T η 20 (Eq. 12 Where η T is the viscosity of water at temperature T and η 20 is the viscosity of water at 20 C

9 Sample Calculations: Eq. 1: = Eq. 2: = (6.352 π Eq. 3: = Eq. 4: = π 4 ( Eq. 5: = Eq. 6: = 75 Eq. 7: = Eq. 8: = Eq. 9: = Eq. 10: = ( Eq. 11: = ( /( Eq. 12: =

10 Reference Tables: Table 1: Initial Measurements Specific Gravity, G s 2.65 Specimen Height, L (cm 11 Specimen Diameter, D (cm 6.35 Permeability Device, M 1 (g 2173 Permeability Device + Soil, M 2 (g Specimen Dry Weight, M d (g Area of Specimen, A (cm Volume of Specimen, V (cm Dry Density of Soil, ρ d (g/cm Density of Water, ρ w (g/cm Viscosity of Water at 20 C, η20 (g/cm*s Initial Void Ratio, e Table 2: Constant Head Tests Constant Head Test No. 1 Constant Head, h L (cm Trial No. t (s Volume (cm 3 T, ( C Q (cm 3 /s Average Constant Head Test No. 2 Constant Head, h L (cm Trial No. t (s Volume (cm 3 T, ( C Q (cm 3 /s Average Constant Head Test No. 3 Constant Head, h L (cm Trial No. t (s Volume (cm 3 T, ( C Q (cm 3 /s Average

11 Discharge Velocity (cm/s Table 3: Combined Test Data Test No Constant Head, h T (cm Water Temperature, T ( C Volume of water per unit time, Q (cm^3/s Viscosity of Water at T C, η T (g/cm*s Hydraulic Gradient, i Discharge Velocity, v d (cm/s Seepage Velocity, v s (cm/s Permeability Coeff. at Ambient T C, k T (cm/s Permeability Coeff. at 20 C, k 20 (cm/s Avg. Permeability Coefficient at Ambient T C Avg. Permeability Coefficient at 20 C Reference Figure: Hydraulic Gradient vs. Discharge Velocity y = x Hydraulic Gradient Figure 1: Hydraulic Gradient vs. Discharge Velocity

Darcy's Law. Laboratory 2 HWR 531/431

Darcy's Law. Laboratory 2 HWR 531/431 Darcy's Law Laboratory HWR 531/431-1 Introduction In 1856, Henry Darcy, a French hydraulic engineer, published a report in which he described a series of experiments he had performed in an attempt to quantify

More information

1.5 Permeability Tests

1.5 Permeability Tests 1-17 1.5 Permeability Tests 1.5.1 General - To determine the coefficient of permeability(or coefficient of hydraulic conductivity) k - General method for determining k directly. 1) Constant-head method

More information

Permeability in Soils

Permeability in Soils Permeability in Soils Contents: Darcy s law- assumption and validity, coefficient of permeability and its determination (laboratory and field), factors affecting permeability, permeability of stratified

More information

Lab: Porosity and Permeability in Different Soil Types

Lab: Porosity and Permeability in Different Soil Types Lab: Porosity and Permeability in Different Soil Types Important note: Do not proceed until you have read and understand the procedures. Some of the procedures must be timed and can only be performed once

More information

- To determine the coefficient of permeability (or coefficient of hydraulic

- To determine the coefficient of permeability (or coefficient of hydraulic 39 2.6 Permeability Tests 2.6.1 General - To determine te coefficient of permeability (or coefficient of ydraulic conductivity) k. - General metod for determining k directly. 1) Constant-ead metod (for

More information

CIV E Geotechnical Engineering I Hydraulic Conductivity Tests (Permeability Tests)

CIV E Geotechnical Engineering I Hydraulic Conductivity Tests (Permeability Tests) Purpose Determine the hydraulic conductivity (coefficient of permeability) of sand using the constant-head and falling-head permeameters. Required reading Das 006 Sections 6.1 to 6.6 (pages 156 to 177).

More information

GEOTECHNICAL LABORATORY

GEOTECHNICAL LABORATORY 14.333 GEOTECHNICAL LABORATORY BERNOULLI S EQUATION h u w v 2 2g Z h = Total Head u = Pressure v = Velocity g = Acceleration due to Gravity w = Unit Weight of Water Slide 1 of 14 h 14.333 GEOTECHNICAL

More information

QUESTION BANK DEPARTMENT: CIVIL SUBJECT CODE / Name: CE 2251 / SOIL MECHANICS SEMESTER: IV UNIT 1- INTRODUCTION PART - A (2 marks) 1. Distinguish between Residual and Transported soil. (AUC May/June 2012)

More information

Instructor : Dr. Jehad Hamad. Chapter (7)

Instructor : Dr. Jehad Hamad. Chapter (7) Instructor : Dr. Jehad Hamad Chapter (7) 2017-2016 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility Soil-Water Relationships Shear Strength Bearing Capacity

More information

*** ***! " " ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14. " > /' ;-,=. / ١

*** ***!   ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14.  > /' ;-,=. / ١ ١ ******!" #$ % & '!( ) % * ") +,-./ % 01. 3 ( 4 56 7/4 ) 8%9 % : 7 ;14 < 8%9 % : *7./ = ;-, >/'." Soil Permeability & Seepage ٢ Soil Permeability- Definition ٣ What is Permeability? Permeability is the

More information

Chapter 7 Permeability and Seepage

Chapter 7 Permeability and Seepage Permeability and Seepage - N. Sivakugan (2005) 1 7.1 INTRODUCTION Chapter 7 Permeability and Seepage Permeability, as the name implies (ability to permeate), is a measure of how easily a fluid can flow

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 13 Permeability and Seepage -2 Conditions favourable for the formation quick sand Quick sand is not a type of sand but a flow condition occurring within a cohesion-less soil when its effective stress is

More information

Hydraulic conductivity of granular materials

Hydraulic conductivity of granular materials 3 r d International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, Hydraulic conductivity of granular materials Namir K.S.Al-Saoudi Building and construction Eng. Dept.

More information

Water in Soil Sections in Craig

Water in Soil Sections in Craig Water in Soil Sections 2.1-2.6 in Craig Outlines Introduction Darcy s Law Volume of water flowing per unit time Measuring K in laboratory Seepage Theory Flow Net Introduction All soils are permeable materials,

More information

CONSOLIDATION OF SOIL

CONSOLIDATION OF SOIL Lecture-6 Soil consolidation Dr. Attaullah Shah 1 CONSOLIDATION OF SOIL When a soil mass is subjected to a compressive force there is a decrease in volume of soil mass. The reduction in volume of a saturated

More information

16 Rainfall on a Slope

16 Rainfall on a Slope Rainfall on a Slope 16-1 16 Rainfall on a Slope 16.1 Problem Statement In this example, the stability of a generic slope is analyzed for two successive rainfall events of increasing intensity and decreasing

More information

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials 1.3 Scope of This Book 1.4 Historical Development of Geotechnical

More information

Chapter 1 - Soil Mechanics Review Part A

Chapter 1 - Soil Mechanics Review Part A Chapter 1 - Soil Mechanics Review Part A 1.1 Introduction Geotechnical Engineer is concerned with predicting / controlling Failure/Stability Deformations Influence of water (Seepage etc.) Soil behavour

More information

SST3005 Fundamentals of Soil Science LAB 5 LABORATORY DETERMINATION OF SOIL TEXTURE: MECHANICAL ANALYSIS

SST3005 Fundamentals of Soil Science LAB 5 LABORATORY DETERMINATION OF SOIL TEXTURE: MECHANICAL ANALYSIS LAB 5 LABORATORY DETERMINATION OF SOIL TEXTURE: MECHANICAL ANALYSIS Learning outcomes The student is able to: 1. Separate soil particles : sand, silt and clay 2. determine the soil texture class using

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1 OCD59 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1 MODULE NO: CIE4009 Date: Saturday 14 January

More information

Oedometer and direct shear tests to the study of sands with various viscosity pore fluids

Oedometer and direct shear tests to the study of sands with various viscosity pore fluids 3 r d International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, Oedometer and direct shear tests to the study of sands with various viscosity pore fluids Rozhgar Abdullah

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF CIVIL ENGINEERING SUBJECT CODE : CE6405 YEAR : II SUBJECT NAME : SOIL MECHANICS SEM : IV QUESTION BANK (As per Anna University 2013 regulation) UNIT 1- SOIL

More information

Darcy s Law. Darcy s Law

Darcy s Law. Darcy s Law Darcy s Law Last time Groundwater flow is in response to gradients of mechanical energy Three types Potential Kinetic Kinetic energy is usually not important in groundwater Elastic (compressional) Fluid

More information

Soil Mechanics III. SOIL COMPOSITION WEIGHT-VOLUME RELATIONSHIPS TERMINOLOGY AND DEFINITIONS

Soil Mechanics III. SOIL COMPOSITION WEIGHT-VOLUME RELATIONSHIPS TERMINOLOGY AND DEFINITIONS Soil Mechanics III. SOIL COMPOSITION WEIGHT-VOLUME RELATIONSHIPS TERMINOLOGY AND DEFINITIONS Soil Basic Terminology Basic Terminology Porosity. Porosity of a soil mass is the ratio of the volume of voids

More information

YOUR HW MUST BE STAPLED YOU MUST USE A PENCIL (no pens)

YOUR HW MUST BE STAPLED YOU MUST USE A PENCIL (no pens) Spring 2008 CIVE 462 HOMEWORK #1 1. Print out the syllabus. Read it. Write the grade percentages in the first page of your notes. 2. Go back to your 301 notes, internet, etc. and find the engineering definition

More information

Civil Engineering Department College of Engineering

Civil Engineering Department College of Engineering Civil Engineering Department College of Engineering Course: Soil Mechanics (CE 359) Lecturer: Dr. Frederick Owusu-Nimo FREQUENCY CE 260 Results (2013) 30 25 23 25 26 27 21 20 18 15 14 15 Civil Geological

More information

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6 Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture 6 Good morning and welcome to the next lecture of this video course on Advanced Hydrology.

More information

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 215 Christchurch, New Zealand Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes T. Nishimura

More information

Time Rate of Consolidation Settlement

Time Rate of Consolidation Settlement Time Rate of Consolidation Settlement We know how to evaluate total settlement of primary consolidation S c which will take place in a certain clay layer. However this settlement usually takes place over

More information

1. Water in Soils: Infiltration and Redistribution

1. Water in Soils: Infiltration and Redistribution Contents 1 Water in Soils: Infiltration and Redistribution 1 1a Material Properties of Soil..................... 2 1b Soil Water Flow........................... 4 i Incorporating K - θ and ψ - θ Relations

More information

Principles of Foundation Engineering 8th Edition Das SOLUTIONS MANUAL

Principles of Foundation Engineering 8th Edition Das SOLUTIONS MANUAL Principles of Foundation Engineering 8th Edition SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/principles-foundation-engineering- 8th-edition-das-solutions-manual/

More information

The process of consolidation and settlement

The process of consolidation and settlement Consolidation Based on part of the GeotechniCAL reference package by Prof. John Atkinson, City University, London The process of consolidation and settlement One-dimensional consolidation theory The oedometer

More information

GG655/CEE623 Groundwater Modeling. Aly I. El-Kadi

GG655/CEE623 Groundwater Modeling. Aly I. El-Kadi GG655/CEE63 Groundwater Modeling Model Theory Water Flow Aly I. El-Kadi Hydrogeology 1 Saline water in oceans = 97.% Ice caps and glaciers =.14% Groundwater = 0.61% Surface water = 0.009% Soil moisture

More information

Estimation of Soil Permeability Using an Acoustic Technique for Sandy Soils

Estimation of Soil Permeability Using an Acoustic Technique for Sandy Soils Estimation of Soil Permeability Using an Acoustic Technique for Sandy Soils Kim, Jin Won Advised by Dr. Chung R. Song Department of University, MS 38677 Order of Presentation Introduction Literature t

More information

Hydraulic properties of porous media

Hydraulic properties of porous media PART 5 Hydraulic properties of porous media Porosity Definition: Void space: n V void /V total total porosity e V void /V solid Primary porosity - between grains Secondary porosity - fracture or solution

More information

Module 1 GEOTECHNICAL PROPERTIES OF SOIL AND OF REINFORCED SOIL (Lectures 1 to 4)

Module 1 GEOTECHNICAL PROPERTIES OF SOIL AND OF REINFORCED SOIL (Lectures 1 to 4) Module 1 GEOTECHNICAL PROPERTIES OF SOIL AND OF REINFORCED SOIL (Lectures 1 to 4) Topics 1.1 INTRODUCTION 1.2 GRAIN-SIZE DISTRIBUTION Sieve Analysis Hydrometer Analysis 1.3 SIZE LIMITS FOR SOILS 1.4 WEIGHT-VOLUME

More information

Teaching Unsaturated Soil Mechanics as Part of the Undergraduate Civil Engineering Curriculum

Teaching Unsaturated Soil Mechanics as Part of the Undergraduate Civil Engineering Curriculum Teaching Unsaturated Soil Mechanics as Part of the Undergraduate Civil Engineering Curriculum Delwyn G. Fredlund, Visiting Professor Kobe University, Kobe, Japan Sapporo, Hokkaido, Japan February 15, 2005

More information

The Effects of Different Surcharge Pressures on 3-D Consolidation of Soil

The Effects of Different Surcharge Pressures on 3-D Consolidation of Soil The Effects of Different Surcharge Pressures on 3-D Consolidation of Soil Arpan Laskar *1 and Sujit Kumar Pal 2 *1 Department of Civil Engineering, National Institute of Technology Agartala, Tripura, India.

More information

Chapter 3 Permeability

Chapter 3 Permeability 3.2 Darcy s Law In 1856, Darcy investigated the flow of water through sand filters for water purification. His experimental apparatus is shown in Figure 3.11. By empirical observation Figure 3.11 Schematic

More information

Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski. 26 February 2017

Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski. 26 February 2017 Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski 26 February 2017 Permeability, consolidation and seepage Department of Civil Engineering Advanced Soil Mechanics W. Sołowski 2 To learn 1. What is

More information

Permeability and fluid transport

Permeability and fluid transport Permeability and fluid transport Thermal transport: Fluid transport: q = " k # $p with specific discharge (filter velocity) q [m s 1 ] pressure gradient p [N m 3 ] dynamic viscosity η [N s m 2 ] (intrinsic)

More information

All soils in natural are permeable materials, water being free to flow through the interconnected pores between the solid particles.

All soils in natural are permeable materials, water being free to flow through the interconnected pores between the solid particles. 8.1 Introduction Among construction materials, soil is very unique. Because of a relatively large space of void in its constituent, water can flow through soil. The water flow (seepage) characteristics

More information

Consolidation Properties of NAPL Contaminated Sediments

Consolidation Properties of NAPL Contaminated Sediments Consolidation Properties of NAPL Contaminated Sediments M. B. Erten 1, C. S. El Mohtar 2, D. D. Reible 3, R. B. Gilbert 4 1 Graduate Research Assistant, University of Texas at Austin, 1 University Station

More information

Wikipedia.org BUILDING STONES. Chapter 4. Materials of Construction-Building Stones 1

Wikipedia.org BUILDING STONES. Chapter 4. Materials of Construction-Building Stones 1 Wikipedia.org BUILDING STONES Chapter 4 Materials of Construction-Building Stones 1 What is Stone? Stone is a concretion of mineral matter. Used either as a; Construction material, Manufacture of other

More information

I. Borsi. EMS SCHOOL ON INDUSTRIAL MATHEMATICS Bedlewo, October 11 18, 2010

I. Borsi. EMS SCHOOL ON INDUSTRIAL MATHEMATICS Bedlewo, October 11 18, 2010 : an : an (Joint work with A. Fasano) Dipartimento di Matematica U. Dini, Università di Firenze (Italy) borsi@math.unifi.it http://web.math.unifi.it/users/borsi porous EMS SCHOOL ON INDUSTRIAL MATHEMATICS

More information

Porous Weirs for Flood Mitigation

Porous Weirs for Flood Mitigation University of Southern Queensland Faculty of Engineering and Surveying Porous Weirs for Flood Mitigation A dissertation submitted by Mr Joseph Ian Saunders in fulfilment of the requirements of Courses

More information

TESTING of AGGREGATES for CONCRETE

TESTING of AGGREGATES for CONCRETE TESTING of AGGREGATES for CONCRETE The properties of the aggregates affect both the fresh and hardened properties of concrete. It is crucial to know the properties of the aggregates to be used in the making

More information

A Simplified Chamber Pressure Model for EPB TBM Tunneling in Granular Soil. Hongjie Yu Mike Mooney Adam Bezuijen

A Simplified Chamber Pressure Model for EPB TBM Tunneling in Granular Soil. Hongjie Yu Mike Mooney Adam Bezuijen A Simplified Chamber Pressure Model for EPB TBM Tunneling in Granular Soil Hongjie Yu Mike Mooney Adam Bezuijen 1 Excavation chamber is like the Heart Beat of the TBM During advancement, TBM operation

More information

Experimental Study on The Seismic Assessment of Pile Foundation in Volcanic Ash Ground

Experimental Study on The Seismic Assessment of Pile Foundation in Volcanic Ash Ground Experimental Study on The Seismic Assessment of Pile Foundation in Volcanic Ash Ground Takuya EGAWA, Satoshi NISHIMOTO & Koichi TOMISAWA Civil Engineering Research Institute for Cold Region, Public Works

More information

Micro-scale modelling of internally

Micro-scale modelling of internally Micro-scale modelling of internally unstable soils Dr Tom Shire School of Engineering, University of Glasgow 1 st September 2017 Outline Internal instability Micro-scale modelling Hydromechanical criteria

More information

Soil Mechanics I 3 Water in Soils. 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground

Soil Mechanics I 3 Water in Soils. 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground Soil Mechanics I 3 Water in Soils 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground 1 Influence of Water - Basics WATER IN SOIL - affects soil

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL Soil Failure Criteria SHEAR STRENGTH OF SOIL Knowledge about the shear strength of soil important for the analysis of: Bearing capacity of foundations, Slope stability, Lateral pressure on retaining structures,

More information

Drying shrinkage of deformable porous media: mechanisms induced by the fluid removal

Drying shrinkage of deformable porous media: mechanisms induced by the fluid removal Drying shrinkage of deformable porous media: mechanisms induced by the fluid removal L.B. Hu 1, H. Péron 2, T. Hueckel 1 and L. Laloui 2 1 Department of Civil and Environmental Engineering, Duke University,

More information

Chapter I Basic Characteristics of Soils

Chapter I Basic Characteristics of Soils Chapter I Basic Characteristics of Soils Outline 1. The Nature of Soils (section 1.1 Craig) 2. Soil Texture (section 1.1 Craig) 3. Grain Size and Grain Size Distribution (section 1.2 Craig) 4. Particle

More information

Reservoirs and Production

Reservoirs and Production Lesson Plan - Page 1 Topic Reservoirs and Production Source Oil and Natural Gas, pages 24-25, 26-27 Objective The students will learn that porosity refers to the percentage of holes (pores) in the rock.

More information

FUNDAMENTALS SOIL MECHANICS. Isao Ishibashi Hemanta Hazarika. >C\ CRC Press J Taylor & Francis Group. Taylor & Francis Group, an Informa business

FUNDAMENTALS SOIL MECHANICS. Isao Ishibashi Hemanta Hazarika. >C\ CRC Press J Taylor & Francis Group. Taylor & Francis Group, an Informa business SOIL MECHANICS FUNDAMENTALS Isao Ishibashi Hemanta Hazarika >C\ CRC Press J Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an Informa business

More information

MS 20 Introduction To Oceanography. Lab 3: Density, Specific Gravity, Archimedes and Isostasy

MS 20 Introduction To Oceanography. Lab 3: Density, Specific Gravity, Archimedes and Isostasy Grade 10/10 MS 20 Introduction To Oceanography Lab 3: Density, Specific Gravity, Archimedes and Isostasy Team Number: 1 Team Leader: Team Members MS 20 Laboratory Density, Specific Gravity, Archimedes

More information

Effect of Suction on the Resilient Modulus of Compacted Fine- Grained Subgrade Soils

Effect of Suction on the Resilient Modulus of Compacted Fine- Grained Subgrade Soils THE UNIVERSITY OF WISCONSIN-MADISON Effect of Suction on the Resilient Modulus of Compacted Fine- Grained Subgrade Soils by Auckpath Sawangsuriya, Ph.D. Tuncer B. Edil, Ph.D., P.E. Craig H. Benson, Ph.D.,

More information

Permeability Estimates & Saturation Height Functions: A talk of two halves. Dr Joanne Tudge LPS Petrophysics 101 Seminar 17 th March 2016

Permeability Estimates & Saturation Height Functions: A talk of two halves. Dr Joanne Tudge LPS Petrophysics 101 Seminar 17 th March 2016 Permeability Estimates & Saturation Height Functions: A talk of two halves Dr Joanne Tudge LPS Petrophysics 101 Seminar 17 th March 2016 Permeability: What is it? How do we measure it? Why do we need it?

More information

1 Modeling Immiscible Fluid Flow in Porous Media

1 Modeling Immiscible Fluid Flow in Porous Media Excerpts from the Habilitation Thesis of Peter Bastian. For references as well as the full text, see http://cox.iwr.uni-heidelberg.de/people/peter/pdf/bastian_habilitationthesis.pdf. Used with permission.

More information

CE 240 Soil Mechanics & Foundations Lecture 5.2. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. 2-6)

CE 240 Soil Mechanics & Foundations Lecture 5.2. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. 2-6) CE 40 Soil Mechanics & Foundations Lecture 5. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. -6) Outline of this Lecture 1. Getting the in situ hydraulic conductivity 1.1 pumping

More information

Study on Estimation of Hydraulic Conductivity of Porous Media Using Drag Force Model Jashandeep Kaur, M. A. Alam

Study on Estimation of Hydraulic Conductivity of Porous Media Using Drag Force Model Jashandeep Kaur, M. A. Alam 26 IJSRSET Volume 2 Issue 3 Print ISSN : 2395-99 Online ISSN : 2394-499 Themed Section: Engineering and Technology Study on Estimation of Hydraulic Conductivity of Porous Media Using Drag Force Model Jashandeep

More information

Rock Layers Lab

Rock Layers Lab Rock Layers Lab Name: 4th grade PSI Science - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Experiment Questions How are different sediments deposited differently?

More information

(Refer Slide Time: 02:10)

(Refer Slide Time: 02:10) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 24 Flow of water through soils-v Welcome to lecture five of flow of water through

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 31 Module 7: Lecture - 6 on Geotechnical Physical Modelling Scaling laws in centrifuge modelling Force, work, and energy Consider the definition of potential energy PE normally expressed as energy lost

More information

IQI IQI. Proposal of quadratic equation for prediction of flow rates versus pressure in packed beds of cement. By Jan Malczyk

IQI IQI. Proposal of quadratic equation for prediction of flow rates versus pressure in packed beds of cement. By Jan Malczyk IQI IQI InstruQuest, Inc. December, 2018 Proposal of quadratic equation for prediction of flow rates versus pressure in packed beds of cement By Jan Malczyk Based on experimental measurements of flow rates

More information

Unsaturated Flow (brief lecture)

Unsaturated Flow (brief lecture) Physical Hydrogeology Unsaturated Flow (brief lecture) Why study the unsaturated zone? Evapotranspiration Infiltration Toxic Waste Leak Irrigation UNSATURATAED ZONE Aquifer Important to: Agriculture (most

More information

Goundwater Seepage Mechanisms of Streambank Erosion and Failure

Goundwater Seepage Mechanisms of Streambank Erosion and Failure Goundwater Seepage Mechanisms of Streambank Erosion and Failure Taber L. Midgley M.S. Student Garey A. Fox Associate Professor Abdulsahib Al-Madhhachi Ph.D. Student Rachel Carson M.S. Student Biosystems

More information

1 Water Beneath the Surface

1 Water Beneath the Surface CHAPTER 16 1 Water Beneath the Surface SECTION Groundwater KEY IDEAS As you read this section, keep these questions in mind: What are two properties of aquifers? How is the water table related to the land

More information

Prof. Stephen A. Nelson EENS 111. Groundwater

Prof. Stephen A. Nelson EENS 111. Groundwater Page 1 of 8 Prof. Stephen A. Nelson EENS 111 Tulane University Physical Geology This page last updated on 20-Oct-2003 is water that exists in the pore spaces and fractures in rock and sediment beneath

More information

Consolidation. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University

Consolidation. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Consolidation Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Some Definitions Settlement: change in elevation Compression: change in thickness settlement S i = compresseion of layer

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Groundwater Chapter 10 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois Co Jennifer Cole Northeastern University

More information

CHARACTERISTICS OF SEDIMENT TRANSPORT IN SWASH ZONE DUE TO SATURATED-UNSATURATED SLOPED BEACH

CHARACTERISTICS OF SEDIMENT TRANSPORT IN SWASH ZONE DUE TO SATURATED-UNSATURATED SLOPED BEACH CHARACTERISTICS OF SEDIMENT TRANSPORT IN SWASH ZONE DUE TO SATURATED-UNSATURATED SLOPED BEACH Masashi Ochi 1, Makoto Miyatake 2 and Katsutoshi Kimura 3 The influence of saturated-unsaturated sloped beach

More information

b) EFFECTIVE STRESS (c) SEEPAGE

b) EFFECTIVE STRESS (c) SEEPAGE b) EFFECTIVE STRESS B1. A fine sand layer of 5 m thickness lies on a 5 m clay deposit. The water table is at the ground surface. Below the clay is a rock formation. Piezometers installed in the rock show

More information

In all of the following equations, is the coefficient of permeability in the x direction, and is the hydraulic head.

In all of the following equations, is the coefficient of permeability in the x direction, and is the hydraulic head. Groundwater Seepage 1 Groundwater Seepage Simplified Steady State Fluid Flow The finite element method can be used to model both steady state and transient groundwater flow, and it has been used to incorporate

More information

Testing of an expansive clay in a centrifuge permeameter

Testing of an expansive clay in a centrifuge permeameter Plaisted, M.D., and Zornberg, J.G. (2010). Testing of an Expansive Clay in a Centrifuge Permeameter. Proceedings of the 7th International Conference on Physical Modelling in Geotechnics (ICPMG 2010), Zurich,

More information

B.E. (Civil) Semester: V Subject Name: GEOTECHNICAL ENGINEERING-I (CV503)

B.E. (Civil) Semester: V Subject Name: GEOTECHNICAL ENGINEERING-I (CV503) B.E. (Civil) Semester: V Subject Name: GEOTECHNICAL ENGINEERING-I (CV503) A. Course Objective: To provide a coherent development to the students for the courses in sector of Engineering like Geotechnical

More information

Reservoirs and Production

Reservoirs and Production Lesson Plan Page 1 Topic: Reservoirs and production Topic Overview: Porosity refers to the percentage of holes (pores) in the rock. Permeability is the ability of fluids to travel through porous rocks.

More information

Chapter 2. 53% v. 2.2 a. From Eqs. (2.11) and (2.12), it can be seen that, 2.67

Chapter 2. 53% v. 2.2 a. From Eqs. (2.11) and (2.12), it can be seen that, 2.67 Chapter 2 2.1 d. (87.5)(9.81) (1000)(0.05) 3 17.17 kn/m c. d 1 w 17.17 1 0.15 3 14.93 kn/m G a. Eq. (2.12): s w (2.68)(9.81). 14.93 ; e 0.76 1 e 1 e e 0.76 b. Eq. (2.6): n 0.43 1 e 1 0.76 Vw wgs (0.15)(2.68)

More information

5. Which surface soil type has the slowest permeability rate and is most likely to produce flooding? A) pebbles B) sand C) silt D) clay A) B) C) D)

5. Which surface soil type has the slowest permeability rate and is most likely to produce flooding? A) pebbles B) sand C) silt D) clay A) B) C) D) 1. During a heavy rainstorm, soil samples A and B both became saturated with water. However, 10 minutes after the storm ended, the soils appeared as shown below. Which statement best explains the observed

More information

8 th Grade Science Blizzard Bag Day 3 Lab Safety, Scientific Inquiry, Lab Safety

8 th Grade Science Blizzard Bag Day 3 Lab Safety, Scientific Inquiry, Lab Safety Generated By: Jennifer Adkins 8 th Grade Science Blizzard Bag Day 3 Lab Safety, Scientific Inquiry, Lab Safety 1. Biological scientists use a variety of methods to gather evidence, or data. If a biologist

More information

APPENDIX G APPENDIX G SEDIMENT CONTAINMENT SYSTEM DESIGN RATIONALE

APPENDIX G APPENDIX G SEDIMENT CONTAINMENT SYSTEM DESIGN RATIONALE APPENDIX G SEDIMENT CONTAINMENT SYSTEM DESIGN RATIONALE March 18, 2003 This page left blank intentionally. March 18, 2003 G-2 FIGURES Page # Figure G.1 Estimated Runoff from Precipitation Over Different

More information

Geotechnical Properties of Soil

Geotechnical Properties of Soil Geotechnical Properties of Soil 1 Soil Texture Particle size, shape and size distribution Coarse-textured (Gravel, Sand) Fine-textured (Silt, Clay) Visibility by the naked eye (0.05 mm is the approximate

More information

Effect of Gas Hydrate Saturation on Hydraulic Conductivity of Marine Sediments

Effect of Gas Hydrate Saturation on Hydraulic Conductivity of Marine Sediments Effect of Gas Hydrate Saturation on Hydraulic Conductivity of Marine Sediments *Chul-Whan Kang 1), Ah-Ram Kim 2), Hak-Sung Kim 3), Gye-Chun Cho 4) and Joo-Yong Lee 5) 1), 2), 3), 4) Department of Civil

More information

DISCUSSION ON THE PROBLEM ABOUT SATURATED LOESS DYNAMIC PORE PRESSURE BY VIBRATION

DISCUSSION ON THE PROBLEM ABOUT SATURATED LOESS DYNAMIC PORE PRESSURE BY VIBRATION DISCUSSION ON THE PROBLEM ABOUT SATURATED LOESS DYNAMIC PORE PRESSURE BY VIBRATION Lan LI 1 And Lanmin WANG 2 SUMMARY Based on the dynamic triaxial test of the saturated loess, according to the undisturbed

More information

NUMERICAL AND EXPERIMENTAL ANALYSIS OF SEEPAGE BENEATH A MODEL OF A GRAVITY DAM

NUMERICAL AND EXPERIMENTAL ANALYSIS OF SEEPAGE BENEATH A MODEL OF A GRAVITY DAM Engineering Review Vol. 33, Issue 2, 75-84, 2013. 75 NUMERICAL AND EXPERIMENTAL ANALYSIS OF SEEPAGE BENEATH A MODEL OF A GRAVITY DAM T. Jelenkovi V. Travaš * Chair of Hydraulic Engineering, Faculty of

More information

The Use of Expanded Shale, Clay and Slate Lightweight Aggregates in Granular Geotechnical Fills

The Use of Expanded Shale, Clay and Slate Lightweight Aggregates in Granular Geotechnical Fills Information Sheet 6660.0 January 2017 The Use of Expanded Shale, Clay and Slate Lightweight Aggregates in Granular Geotechnical Fills For over 50 years Rotary Kiln produced Expanded Shale, Clay & Slate

More information

C) D) 3. Which graph best represents the relationship between soil particle size and the rate at which water infiltrates permeable soil?

C) D) 3. Which graph best represents the relationship between soil particle size and the rate at which water infiltrates permeable soil? 1. Which earth material covering the surface of a landfill would permit the least amount of rainwater to infiltrate the surface? A) silt B) clay C) sand D) pebbles 2. Which graph best represents the relationship

More information

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK Parkside Lane Dewsbury Road Leeds LS11 5SX Contact: Mr K Walker Tel: +44 (0)113 385 9157 Fax: +44 (0)113 276 0472 E-Mail: Kevin.Walker@soil-engineering.co.uk

More information

q v = - K h = kg/ν units of velocity Darcy's Law: K = kρg/µ HYDRAULIC CONDUCTIVITY, K Proportionality constant in Darcy's Law

q v = - K h = kg/ν units of velocity Darcy's Law: K = kρg/µ HYDRAULIC CONDUCTIVITY, K Proportionality constant in Darcy's Law Darcy's Law: q v - K h HYDRAULIC CONDUCTIVITY, K m/s K kρg/µ kg/ν units of velocity Proportionality constant in Darcy's Law Property of both fluid and medium see D&S, p. 62 HYDRAULIC POTENTIAL (Φ): Φ g

More information

PRINCIPLES OF GEOTECHNICAL ENGINEERING

PRINCIPLES OF GEOTECHNICAL ENGINEERING PRINCIPLES OF GEOTECHNICAL ENGINEERING Fourth Edition BRAJA M. DAS California State University, Sacramento I(T)P Boston Albany Bonn Cincinnati London Madrid Melbourne Mexico City New York Paris San Francisco

More information

ADVANCED SOIL MECHANICS

ADVANCED SOIL MECHANICS BERNOULLI S EQUATION h Where: u w g Z h = Total Head u = Pressure = Velocity g = Acceleration due to Graity w = Unit Weight of Water h 14.531 ADVANCED SOIL MECHANICS BERNOULLI S EQUATION IN SOIL u w g

More information

Effect of Frozen-thawed Procedures on Shear Strength and Shear Wave Velocity of Sands

Effect of Frozen-thawed Procedures on Shear Strength and Shear Wave Velocity of Sands Effect of Frozen-thawed Procedures on Shear Strength and Shear Wave Velocity of Sands JongChan Kim 1), *Sang Yeob Kim 1), Shinhyun Jeong 2), Changho Lee 3) and Jong-Sub Lee 4) 1), 4) School of Civil, Environmental

More information

Course Scheme -UCE501: SOIL MECHANICS L T P Cr

Course Scheme -UCE501: SOIL MECHANICS L T P Cr Course Scheme -UCE501: SOIL MECHANICS L T P Cr 3 1 2 4.5 Course Objective: To expose the students about the various index and engineering properties of soil. Introduction: Soil formation, various soil

More information

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1 Geology and Soil Mechanics 55401 /1A (2002-2003) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet.

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet. Geology and Soil Mechanics 55401 /1A (2003-2004) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

Changes in soil deformation and shear strength by internal erosion

Changes in soil deformation and shear strength by internal erosion Changes in soil deformation and shear strength by internal erosion C. Chen & L. M. Zhang The Hong Kong University of Science and Technology, Hong Kong, China D. S. Chang AECOM Asia Company Ltd., Hong Kong,

More information

Asphalt Mix Designer. Module 2 Physical Properties of Aggregate. Specification Year: July Release 4, July

Asphalt Mix Designer. Module 2 Physical Properties of Aggregate. Specification Year: July Release 4, July Specification Year: July 2005 Release 4, July 2005 2-1 The first step in the development of an HMA mix design is to identify the materials that will be used in the pavement. In Florida the asphalt binder

More information

Impact of Effective Stress on the Dynamic Shear Modulus of Unsaturated Sand

Impact of Effective Stress on the Dynamic Shear Modulus of Unsaturated Sand Impact of Effective Stress on the Dynamic Shear Modulus of Unsaturated Sand Ali Khosravi 1, Majid Ghayoomi 1, John McCartney 2, Hon-Yim Ko 3 1 Graduate Research Assistants, University of Colorado at Boulder,

More information

SLOPE STABILITY LAB INTRODUCTION

SLOPE STABILITY LAB INTRODUCTION INTRODUCTION SLOPE STABILITY LAB Slope Stability 1 Hills are made of various types of rocks. Some hills are made large layers of strong rock, others are made of unconsolidated sands. The slope of the hillside

More information