Outline. Seepage Analysis. Soil Mechanics. Laplace Equation of Continuity

Size: px
Start display at page:

Download "Outline. Seepage Analysis. Soil Mechanics. Laplace Equation of Continuity"

Transcription

1 Soil Mecanics Seepage nalysis Ci-Ping Lin National Ciao Tung Uni. Outline Laplace Equation of Continuity 1-D D Eample (-D) Computations using in nisotropic Soil Seepage troug an Eart Dam 3-D D Flow

2 Laplace s Equation of Continuity Laplace Eqn. Laplace s Equation of Continuity [ ] 0 d dy ddy d dy d ddy d 0 i i 0 0 If y Laplace Eqn.

3 1-D Eample 0 C C 1 t 0, 1, we can get C 1 1. ( ) C / C / t, 1 ) ( ( ) C / C / t, t, 0, and we get ( ) ( ) C C / 1 ) ( ) ( Laplace Eqn. t L, (L ) (L ), so we can get / / 1 1 ) ( 1 ( ) 1 For 0 < L, For L < L L, Laplace Eqn.

4 Solution to -D flow nalytical solution possible only for simple boundary conditions. ut most seepage problems ae comple boundary conditions. lternatie solution Flow net (Grapical solution) Electrical analogy models Numerical solutions Flow troug a Dam Preatic line Unsaturated Soil Drainage blanet Flow of water 0

5 Grapical representation of solution 1. Equipotentials Lines of constant ead, (,) Equipotential (EP) Grapical representation of solution. Flow lines Pats followed by water particles - tangential to flow Preatic line Flow line (FL) Equipotential (EP)

6 Properties of Equipotentials Flow line (FL) Equipotential (EP) Tus: Equipotenial slope (,) constant d d d d 0 EP / / (1a) (1b) (1c) Properties of Flow Lines Geometry Flow line (FL) Equipotential (EP) Kinematics From te geometry d d FL (b) Now from Darcy s law ence d d FL (c)

7 Ortogonality of flow and equipotential lines Flow line (FL) Equipotential (EP) On an equipotential d d EP / / On a flow line d d FL ence d d FL d d EP 1 (3) Geometric properties of flow nets Y Q y From te definition of flow (4a) t y X Z EP X Conclusion FL T Q FL From Darcy s law Q t Combining (4a)&(4b) y t (4b) (4c) Q y t YX (5) ZT Similarly Q YX ZT (4d)

8 Geometric properties of flow nets b Q c d a Q FL C Conclusion cd ab CD D EP( ) EP ( ) From te definition of flow Q cd From Darcy s law Q ab Combining (6a)&(6b) cd ab Similarly Q CD (6a) (6b) (6c) (6d) Grapical Construction of Flow Net oundary conditions: Submerged soil boundary Equipotential b. Impermeable soil boundary - Flow Line c. Line of constant pore pressure - eg. preatic surface 1. Equipotential line flow line. Flow element ~ square

9 Procedure for drawing flow nets Mar all boundary conditions Draw a coarse net wic is consistent wit te boundary conditions and wic as ortogonal equipotentials and flow lines. (It is usually easier to isualise te pattern of flow so start by drawing te flow lines). Modify te mes so tat it meets te conditions outlined aboe and so tat rectangles between adjacent flow lines and equipotentials are square. Refine te flow net by repeating te preious step.

10 Calculation of flow Computations using Preatic line 15 m 15m 0 1m 9m 6m 3m For a single Flow tube of widt 1m: For 10-5 m/s and a widt of 1m For 5 suc flow tubes For a 5m wide dam Note tat per metre widt Q Q m 3 /sec/m Q m 3 /sec/m Q m 3 /sec Q N N f Computations using Calculation of pore pressure Preatic line 15 m 5m 15m P 0 Pore pressure from t P, using dam base as datum 1m 9m 6m u w u w γ w [ 1 ( 5)] γ 3m w

11 Computations using 001 roos/cole, a diision of Tomson Learning, Inc. Tomson Learning is a trademar used erein under license. Figure 7.13 (a) weir; (b) uplift under a ydraulic structure nisotropic in nisotropic Soil Goerning Equation V 0 Transformation α 0 α V α V 0

12 nisotropic Eample1: Flow net for anisotropic soil Te figure sows te dam drawn at its natural scale Impermeable 1 dam L Soil layer Z Impermeable bedroc Eample1: Flow net for anisotropic soil Let us assume tat te soil as different oriontal and ertical permeabilities suc tat 4 V Transformation nisotropic α 4 V V V so or

13 nisotropic Eample1: Flow net for anisotropic soil Te figure sows te dam drawn to its transformed scale 1 L/ Soil layer Z Impermeable bedroc nisotropic Eample: Flow net for anisotropic soil

14 nisotropic Equialent permeability for anisotropic flow - - Q Natural scale t transformed scale Considering oriontal flow we ae (a) Natural scale Q t (b) Transformed scale Q eq t eq t V (7a) (7b) Equating 7a and 7b gies eq V nisotropic Eample1: Seepage under a dam m.5 m V 10-6 m/s m/s tus eq ( 4 10 ) ( 10 ) 10 m/sec ( 13. 5) 075. m Q ( 10 ) ( 0. 75) m / s / m Q m / s / m 9 10 m / s / m

15 Seepage in Eart Dam Seepage troug a dam on imperious base Seepage in Eart Dam 1. Obtain α. Calculate and ten Calculate d 4. Wit now alues of α and d, calculate L by 5. Wit nown alue of L, calculate q by

16 Seepage in Eart Dam Seepage troug a dam on imperious base 3-Dimentional Flow 3-D Flow Laplace Eqn.. becomes y 0 Difficult to sole for most 3-dimentional 3 problems. Eception: flow to wells Pumping tests-confined acquifer Pumping tests-unconfined aquifer

17 Pumping Tests-Confined quifer 3-D Flow 3-D Flow Pumping Tests-Unconfined quifer

SOIL MECHANICS

SOIL MECHANICS 4.330 SOIL MECHANICS BERNOULLI S EQUATION Were: u w g Z = Total Head u = Pressure = Velocity g = Acceleration due to Graity w = Unit Weigt of Water Slide of 37 4.330 SOIL MECHANICS BERNOULLI S EQUATION

More information

Seepage Analysis through Earth Dam Based on Finite Difference Method

Seepage Analysis through Earth Dam Based on Finite Difference Method J. Basic. Appl. Sci. Res., (11)111-1, 1 1, TetRoad Publication ISSN -44 Journal of Basic and Applied Scientific Researc www.tetroad.com Seepage Analysis troug Eart Dam Based on Finite Difference Metod

More information

Darcy s law in 3-D. K * xx K * yy K * zz

Darcy s law in 3-D. K * xx K * yy K * zz PART 7 Equations of flow Darcy s law in 3-D Specific discarge (vector) is calculated by multiplying te ydraulic conductivity (second-order tensor) by te ydraulic gradient (vector). We obtain a general

More information

qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq qwertyuiopasdfgjklzxcbnmqwerty uiopasdfgjklzxcbnmqwertyuiopasd fgjklzxcbnmqwertyuiopasdfgjklzx cbnmqwertyuiopasdfgjklzxcbnmq Projectile Motion Quick concepts regarding Projectile Motion wertyuiopasdfgjklzxcbnmqwertyui

More information

ADVANCED SOIL MECHANICS

ADVANCED SOIL MECHANICS BERNOULLI S EQUATION h Where: u w g Z h = Total Head u = Pressure = Velocity g = Acceleration due to Graity w = Unit Weight of Water h 14.531 ADVANCED SOIL MECHANICS BERNOULLI S EQUATION IN SOIL u w g

More information

Water in Soil Sections in Craig

Water in Soil Sections in Craig Water in Soil Sections 2.1-2.6 in Craig Outlines Introduction Darcy s Law Volume of water flowing per unit time Measuring K in laboratory Seepage Theory Flow Net Introduction All soils are permeable materials,

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #4: Continuity and Flow Nets

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #4: Continuity and Flow Nets 1.7, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #4: Continuity and Flow Nets Equation of Continuity Our equations of hydrogeology are a combination of o Conservation of mass o Some empirical

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 6. Differential Calculus 6.. Differentiation from First Principles. In tis capter, we will introduce

More information

GEOTECHNICAL ENGINEERING II (Subject Code: 06CV64) UNIT 4: FLOW NETS 4.1 Introduction

GEOTECHNICAL ENGINEERING II (Subject Code: 06CV64) UNIT 4: FLOW NETS 4.1 Introduction GEOTECHNICAL ENGINEERING II (Subject Code: 06CV64) UNIT 4: FLOW NETS 4.1 Introduction In this chapter the topics that are covered include principles of seepage analysis, graphical solutions for seepage

More information

Outline. In Situ Stresses. Soil Mechanics. Stresses in Saturated Soil. Seepage Force Capillary Force. Without seepage Upward seepage Downward seepage

Outline. In Situ Stresses. Soil Mechanics. Stresses in Saturated Soil. Seepage Force Capillary Force. Without seepage Upward seepage Downward seepage Soil Mechanics In Situ Stresses Chih-Ping Lin National Chiao Tung Univ. cplin@mail.nctu.edu.tw Outline Without seepage Upward seepage Downward seepage Seepage Force The total stress at the elevation of

More information

Instructor : Dr. Jehad Hamad. Chapter (7)

Instructor : Dr. Jehad Hamad. Chapter (7) Instructor : Dr. Jehad Hamad Chapter (7) 2017-2016 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility Soil-Water Relationships Shear Strength Bearing Capacity

More information

Part 2: Introduction to Open-Channel Flow SPRING 2005

Part 2: Introduction to Open-Channel Flow SPRING 2005 Part : Introduction to Open-Cannel Flow SPRING 005. Te Froude number. Total ead and specific energy 3. Hydraulic jump. Te Froude Number Te main caracteristics of flows in open cannels are tat: tere is

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow 1.7, Groundwater Hydrology Prof. Carles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow Simulation: Te prediction of quantities of interest (dependent variables) based upon an equation

More information

5. TWO-DIMENSIONAL FLOW OF WATER THROUGH SOILS 5.1 INTRODUCTION

5. TWO-DIMENSIONAL FLOW OF WATER THROUGH SOILS 5.1 INTRODUCTION 5. TWO-DIMENSIONAL FLOW OF WATER TROUG SOILS 5.1 INTRODUCTION In many instances the flo of ater through soils is neither one-dimensional nor uniform over the area perpendicular to flo. It is often necessary

More information

(Refer Slide Time: 02:10)

(Refer Slide Time: 02:10) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 24 Flow of water through soils-v Welcome to lecture five of flow of water through

More information

pancakes. A typical pancake also appears in the sketch above. The pancake at height x (which is the fraction x of the total height of the cone) has

pancakes. A typical pancake also appears in the sketch above. The pancake at height x (which is the fraction x of the total height of the cone) has Volumes One can epress volumes of regions in tree dimensions as integrals using te same strateg as we used to epress areas of regions in two dimensions as integrals approimate te region b a union of small,

More information

MATH CALCULUS I 2.1: Derivatives and Rates of Change

MATH CALCULUS I 2.1: Derivatives and Rates of Change MATH 12002 - CALCULUS I 2.1: Derivatives and Rates of Cange Professor Donald L. Wite Department of Matematical Sciences Kent State University D.L. Wite (Kent State University) 1 / 1 Introduction Our main

More information

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Calculation of Entropy Changes. Lecture 19

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Calculation of Entropy Changes. Lecture 19 Department of Mecanical Engineering ME Mecanical Engineering ermodynamics Calculation of Entropy Canges Lecture 9 e Gibbs Equations How are entropy alues calculated? Clausius found tat, dq dq m re re ds

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

All soils in natural are permeable materials, water being free to flow through the interconnected pores between the solid particles.

All soils in natural are permeable materials, water being free to flow through the interconnected pores between the solid particles. 8.1 Introduction Among construction materials, soil is very unique. Because of a relatively large space of void in its constituent, water can flow through soil. The water flow (seepage) characteristics

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

Chapter 7 Permeability and Seepage

Chapter 7 Permeability and Seepage Permeability and Seepage - N. Sivakugan (2005) 1 7.1 INTRODUCTION Chapter 7 Permeability and Seepage Permeability, as the name implies (ability to permeate), is a measure of how easily a fluid can flow

More information

*** ***! " " ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14. " > /' ;-,=. / ١

*** ***!   ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14.  > /' ;-,=. / ١ ١ ******!" #$ % & '!( ) % * ") +,-./ % 01. 3 ( 4 56 7/4 ) 8%9 % : 7 ;14 < 8%9 % : *7./ = ;-, >/'." Soil Permeability & Seepage ٢ Soil Permeability- Definition ٣ What is Permeability? Permeability is the

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

Module 2 Lecture 9 Permeability and Seepage -5 Topics

Module 2 Lecture 9 Permeability and Seepage -5 Topics Module 2 Lecture 9 Permeability and Seepage -5 Topics 1.2.7 Numerical Analysis of Seepage 1.2.8 Seepage Force per Unit Volume of Soil Mass 1.2.9 Safety of Hydraulic Structures against Piping 1.2.10 Calculation

More information

b) EFFECTIVE STRESS (c) SEEPAGE

b) EFFECTIVE STRESS (c) SEEPAGE b) EFFECTIVE STRESS B1. A fine sand layer of 5 m thickness lies on a 5 m clay deposit. The water table is at the ground surface. Below the clay is a rock formation. Piezometers installed in the rock show

More information

10 Derivatives ( )

10 Derivatives ( ) Instructor: Micael Medvinsky 0 Derivatives (.6-.8) Te tangent line to te curve yf() at te point (a,f(a)) is te line l m + b troug tis point wit slope Alternatively one can epress te slope as f f a m lim

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

Parshall Flume Discharge Relation under Free Flow Condition

Parshall Flume Discharge Relation under Free Flow Condition Journal omepage: ttp://www.journalijar.com INTERNATIONAL JOURNAL OF ADVANCED RESEARCH RESEARCH ARTICLE Parsall Flume Discarge Relation under Free Flow Condition 1 Jalam Sing, 2 S.K.Mittal, and 3 H.L.Tiwari

More information

Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski. 26 February 2017

Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski. 26 February 2017 Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski 26 February 2017 Permeability, consolidation and seepage Department of Civil Engineering Advanced Soil Mechanics W. Sołowski 2 To learn 1. What is

More information

Gradient Descent etc.

Gradient Descent etc. 1 Gradient Descent etc EE 13: Networked estimation and control Prof Kan) I DERIVATIVE Consider f : R R x fx) Te derivative is defined as d fx) = lim dx fx + ) fx) Te cain rule states tat if d d f gx) )

More information

TD 603. Water Resources Milind Sohoni sohoni/ Lecture 6: Mathematics of Groundwater flow. () August 15, / 15

TD 603. Water Resources Milind Sohoni   sohoni/ Lecture 6: Mathematics of Groundwater flow. () August 15, / 15 TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/ sohoni/ Lecture 6: Mathematics of Groundwater flow () August 15, 2012 1 / 15 The basic variables and continuity h(, y, z, t): The head at a point

More information

A PHYSICAL MODEL STUDY OF SCOURING EFFECTS ON UPSTREAM/DOWNSTREAM OF THE BRIDGE

A PHYSICAL MODEL STUDY OF SCOURING EFFECTS ON UPSTREAM/DOWNSTREAM OF THE BRIDGE A PHYSICA MODE STUDY OF SCOURING EFFECTS ON UPSTREAM/DOWNSTREAM OF THE BRIDGE JIHN-SUNG AI Hydrotec Researc Institute, National Taiwan University Taipei, 1617, Taiwan HO-CHENG IEN National Center for Hig-Performance

More information

Lesson 4 - Limits & Instantaneous Rates of Change

Lesson 4 - Limits & Instantaneous Rates of Change Lesson Objectives Lesson 4 - Limits & Instantaneous Rates of Cange SL Topic 6 Calculus - Santowski 1. Calculate an instantaneous rate of cange using difference quotients and limits. Calculate instantaneous

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12. Capter 6. Fluid Mecanics Notes: Most of te material in tis capter is taken from Young and Freedman, Cap. 12. 6.1 Fluid Statics Fluids, i.e., substances tat can flow, are te subjects of tis capter. But

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

Used to estimate energy loss due to friction in pipe. D = internal diameter of pipe (feet) L = length of pipe (feet) Penn State-Harrisburg

Used to estimate energy loss due to friction in pipe. D = internal diameter of pipe (feet) L = length of pipe (feet) Penn State-Harrisburg Module b: Flow in Pipes Darcy-Weisbac Robert Pitt University o Alabama and Sirley Clark Penn State-Harrisburg Darcy-Weisbac can be written or low (substitute V Q/A, were A (π/4)d in te above equation):

More information

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM MA9-A Applied Calculus for Business 006 Fall Homework Solutions Due 9/9/006 0:0AM. #0 Find te it 5 0 + +.. #8 Find te it. #6 Find te it 5 0 + + = (0) 5 0 (0) + (0) + =.!! r + +. r s r + + = () + 0 () +

More information

Comment on Experimental observations of saltwater up-coning

Comment on Experimental observations of saltwater up-coning 1 Comment on Experimental observations of saltwater up-coning H. Zang 1,, D.A. Barry 2 and G.C. Hocking 3 1 Griffit Scool of Engineering, Griffit University, Gold Coast Campus, QLD 4222, Australia. Tel.:

More information

Definition of the Derivative

Definition of the Derivative Te Limit Definition of te Derivative Tis Handout will: Define te limit grapically and algebraically Discuss, in detail, specific features of te definition of te derivative Provide a general strategy of

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

158 Calculus and Structures

158 Calculus and Structures 58 Calculus and Structures CHAPTER PROPERTIES OF DERIVATIVES AND DIFFERENTIATION BY THE EASY WAY. Calculus and Structures 59 Copyrigt Capter PROPERTIES OF DERIVATIVES. INTRODUCTION In te last capter you

More information

DEFINITION OF A DERIVATIVE

DEFINITION OF A DERIVATIVE DEFINITION OF A DERIVATIVE Section 2.1 Calculus AP/Dual, Revised 2017 viet.dang@umbleisd.net 2.1: Definition of a Derivative 1 DEFINITION A. Te derivative of a function allows you to find te SLOPE OF THE

More information

Logarithmic functions

Logarithmic functions Roberto s Notes on Differential Calculus Capter 5: Derivatives of transcendental functions Section Derivatives of Logaritmic functions Wat ou need to know alread: Definition of derivative and all basic

More information

COMPUTATION OF ACTIVE EARTH PRESSURE OF COHESIVE BACKFILL ON RETAINING WALL CONSIDERING SEISMIC FORCE

COMPUTATION OF ACTIVE EARTH PRESSURE OF COHESIVE BACKFILL ON RETAINING WALL CONSIDERING SEISMIC FORCE COMPUTATION OF ACTIVE EARTH PRESSURE OF COHESIVE BACKFILL ON RETAINING WALL CONSIDERING SEISMIC FORCE Feng Zen Wang Na. Scool of Ciil Engineering and Arcitecture Beijing Jiaotong Uniersity Beijing 00044

More information

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x Eam Solutions Question (0%) Consider f() = 2 2 2 2. (a) By calculating relevant its, determine te equations of all vertical asymptotes of te grap of f(). If tere are none, say so. f() = ( 2) ( + )( 2)

More information

University Mathematics 2

University Mathematics 2 University Matematics 2 1 Differentiability In tis section, we discuss te differentiability of functions. Definition 1.1 Differentiable function). Let f) be a function. We say tat f is differentiable at

More information

Brief Review of Vector Calculus

Brief Review of Vector Calculus Darc s Law in 3D Toda Vector Calculus Darc s Law in 3D q " A scalar as onl a magnitude A vector is caracteried b bot direction and magnitude. e.g, g, q, v,"," Vectors are represented b : boldface in boos,

More information

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c)

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c) Paper 1: Pure Matematics 1 Mark Sceme 1(a) (i) (ii) d d y 3 1x 4x x M1 A1 d y dx 1.1b 1.1b 36x 48x A1ft 1.1b Substitutes x = into teir dx (3) 3 1 4 Sows d y 0 and states ''ence tere is a stationary point''

More information

SEISMIC PASSIVE EARTH PRESSURE WITH VARYING SHEAR MODULUS: PSEUDO-DYNAMIC APPROACH

SEISMIC PASSIVE EARTH PRESSURE WITH VARYING SHEAR MODULUS: PSEUDO-DYNAMIC APPROACH IGC 29, Guntur, INDIA SEISMIC PASSIE EART PRESSURE WIT ARYING SEAR MODULUS: PSEUDO-DYNAMIC APPROAC P. Gos Assistant Professor, Deartment of Ciil Engineering, Indian Institute of Tecnology Kanur, Kanur

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus Syllabus Objectives: 1.1 Te student will understand and apply te concept of te limit of a function at given values of te domain. 1. Te student will find te limit of a function at given values of te domain.

More information

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1 Numerical Analysis MTH60 PREDICTOR CORRECTOR METHOD Te metods presented so far are called single-step metods, were we ave seen tat te computation of y at t n+ tat is y n+ requires te knowledge of y n only.

More information

Review of the Fundamentals of Groundwater Flow

Review of the Fundamentals of Groundwater Flow Review of te Fundamentals of Groundwater Flow Darc s Law 1 A 1 L A or L 1 datum L : volumetric flow rate [L 3 T -1 ] 1 : draulic ead upstream [L] A : draulic ead downstream [L] : draulic conductivit [L

More information

Hydraulic Evaluation of Discharge Over Rock Closing Dams on the Upper Mississippi River

Hydraulic Evaluation of Discharge Over Rock Closing Dams on the Upper Mississippi River ydraulic Evaluation of Discarge Over Rock Closing Dams on te Upper Mississippi River Jon endrickson, P.E. Senior ydraulic Engineer, St Paul District Introduction Prototype data was used for calibrating

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

FINITE ELEMENT STOCHASTIC ANALYSIS

FINITE ELEMENT STOCHASTIC ANALYSIS FINITE ELEMENT STOCHASTIC ANALYSIS Murray Fredlund, P.D., P.Eng., SoilVision Systems Ltd., Saskatoon, SK ABSTRACT Numerical models can be valuable tools in te prediction of seepage. Te results can often

More information

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION INTRODUCTION DEFINITION OF FLUID plate solid F at t = 0 t > 0 = F/A plate U p F fluid t 0 t 1 t 2 t 3 FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

More information

Civil Engineering Department College of Engineering

Civil Engineering Department College of Engineering Civil Engineering Department College of Engineering Course: Soil Mechanics (CE 359) Lecturer: Dr. Frederick Owusu-Nimo FREQUENCY CE 260 Results (2013) 30 25 23 25 26 27 21 20 18 15 14 15 Civil Geological

More information

MATH1131/1141 Calculus Test S1 v8a

MATH1131/1141 Calculus Test S1 v8a MATH/ Calculus Test 8 S v8a October, 7 Tese solutions were written by Joann Blanco, typed by Brendan Trin and edited by Mattew Yan and Henderson Ko Please be etical wit tis resource It is for te use of

More information

5. (a) Find the slope of the tangent line to the parabola y = x + 2x

5. (a) Find the slope of the tangent line to the parabola y = x + 2x MATH 141 090 Homework Solutions Fall 00 Section.6: Pages 148 150 3. Consider te slope of te given curve at eac of te five points sown (see text for figure). List tese five slopes in decreasing order and

More information

Principles of Foundation Engineering 8th Edition Das SOLUTIONS MANUAL

Principles of Foundation Engineering 8th Edition Das SOLUTIONS MANUAL Principles of Foundation Engineering 8th Edition SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/principles-foundation-engineering- 8th-edition-das-solutions-manual/

More information

June : 2016 (CBCS) Body. Load

June : 2016 (CBCS) Body. Load Engineering Mecanics st Semester : Common to all rances Note : Max. marks : 6 (i) ttempt an five questions (ii) ll questions carr equal marks. (iii) nswer sould be precise and to te point onl (iv) ssume

More information

Soil Mechanics Permeability of Soils and Seepage page 1 CHAPITRE 9. PERMEABILITY OF SOILS AND SEEPAGE...1

Soil Mechanics Permeability of Soils and Seepage page 1 CHAPITRE 9. PERMEABILITY OF SOILS AND SEEPAGE...1 Soil Mechanics Permeability of Soils and Seepage page 1 Contents of this chapter : CHAPITRE 9. PERMEABILITY OF SOILS AND SEEPAGE...1 9.1 INTRODUCTION...1 9.2 DARCY S LAW...1 9.2.1 DEFINITION OF HEAD...1

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

Exponentials and Logarithms Review Part 2: Exponentials

Exponentials and Logarithms Review Part 2: Exponentials Eponentials and Logaritms Review Part : Eponentials Notice te difference etween te functions: g( ) and f ( ) In te function g( ), te variale is te ase and te eponent is a constant. Tis is called a power

More information

Department of Mathematics, K.T.H.M. College, Nashik F.Y.B.Sc. Calculus Practical (Academic Year )

Department of Mathematics, K.T.H.M. College, Nashik F.Y.B.Sc. Calculus Practical (Academic Year ) F.Y.B.Sc. Calculus Practical (Academic Year 06-7) Practical : Graps of Elementary Functions. a) Grap of y = f(x) mirror image of Grap of y = f(x) about X axis b) Grap of y = f( x) mirror image of Grap

More information

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3.

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3. Capter Functions and Graps Section. Ceck Point Exercises. Te slope of te line y x+ is. y y m( x x y ( x ( y ( x+ point-slope y x+ 6 y x+ slope-intercept. a. Write te equation in slope-intercept form: x+

More information

A general articulation angle stability model for non-slewing articulated mobile cranes on slopes *

A general articulation angle stability model for non-slewing articulated mobile cranes on slopes * tecnical note 3 general articulation angle stability model for non-slewing articulated mobile cranes on slopes * J Wu, L uzzomi and M Hodkiewicz Scool of Mecanical and Cemical Engineering, University of

More information

SIMG Solution Set #5

SIMG Solution Set #5 SIMG-303-0033 Solution Set #5. Describe completely te state of polarization of eac of te following waves: (a) E [z,t] =ˆxE 0 cos [k 0 z ω 0 t] ŷe 0 cos [k 0 z ω 0 t] Bot components are traveling down te

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

MATH 3208 MIDTERM REVIEW. (B) {x 4 x 5 ; x ʀ} (D) {x x ʀ} Use the given functions to answer questions # 3 5. determine the value of h(7).

MATH 3208 MIDTERM REVIEW. (B) {x 4 x 5 ; x ʀ} (D) {x x ʀ} Use the given functions to answer questions # 3 5. determine the value of h(7). MATH 08 MIDTERM REVIEW. If () = (f + g)() wat is te domain of () { 5 4 ; ʀ} { 4 4 ; ʀ} { 4 5 ; ʀ} { ʀ}. Given p() = and g() = wic function represents k() k() = p() g() + + Use te given functions to answer

More information

Exam in Fluid Mechanics SG2214

Exam in Fluid Mechanics SG2214 Exam in Fluid Mecanics G2214 Final exam for te course G2214 23/10 2008 Examiner: Anders Dalkild Te point value of eac question is given in parentesis and you need more tan 20 points to pass te course including

More information

Equilibrium and Pareto Efficiency in an exchange economy

Equilibrium and Pareto Efficiency in an exchange economy Microeconomic Teory -1- Equilibrium and efficiency Equilibrium and Pareto Efficiency in an excange economy 1. Efficient economies 2 2. Gains from excange 6 3. Edgewort-ox analysis 15 4. Properties of a

More information

Earth dam steady state seepage analysis

Earth dam steady state seepage analysis Engineering manual No. 32 Updated 3/2018 Earth dam steady state seepage analysis Program: FEM Water Flow File: Demo_manual_32.gmk Introduction This example illustrates an application of the GEO5 FEM module

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

3. Gradually-Varied Flow

3. Gradually-Varied Flow 5/6/18 3. Gradually-aried Flow Normal Flow vs Gradually-aried Flow Normal Flow /g EGL (energy grade line) iction slope Geometric slope S Normal flow: Downslope component of weigt balances bed friction

More information

y = 3 2 x 3. The slope of this line is 3 and its y-intercept is (0, 3). For every two units to the right, the line rises three units vertically.

y = 3 2 x 3. The slope of this line is 3 and its y-intercept is (0, 3). For every two units to the right, the line rises three units vertically. Mat 2 - Calculus for Management and Social Science. Understanding te basics of lines in te -plane is crucial to te stud of calculus. Notes Recall tat te and -intercepts of a line are were te line meets

More information

Differentiation. Area of study Unit 2 Calculus

Differentiation. Area of study Unit 2 Calculus Differentiation 8VCE VCEco Area of stud Unit Calculus coverage In tis ca 8A 8B 8C 8D 8E 8F capter Introduction to limits Limits of discontinuous, rational and brid functions Differentiation using first

More information

Quadratic Equation. ax bx c =. = + + =. Example 2. = + = + = 3 or. The solutions are -7/3 and 1.

Quadratic Equation. ax bx c =. = + + =. Example 2. = + = + = 3 or. The solutions are -7/3 and 1. Quadratic Equation A quadratic equation is any equation that is equialent to the equation in fmat a c + + = 0 (1.1) where a,, and c are coefficients and a 0. The ariale name is ut the same fmat applies

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

MATH 111 CHAPTER 2 (sec )

MATH 111 CHAPTER 2 (sec ) MATH CHAPTER (sec -0) Terms to know: function, te domain and range of te function, vertical line test, even and odd functions, rational power function, vertical and orizontal sifts of a function, reflection

More information

Lesson 6: The Derivative

Lesson 6: The Derivative Lesson 6: Te Derivative Def. A difference quotient for a function as te form f(x + ) f(x) (x + ) x f(x + x) f(x) (x + x) x f(a + ) f(a) (a + ) a Notice tat a difference quotient always as te form of cange

More information

3.4 Algebraic Limits. Ex 1) lim. Ex 2)

3.4 Algebraic Limits. Ex 1) lim. Ex 2) Calculus Maimus.4 Algebraic Limits At tis point, you sould be very comfortable finding its bot grapically and numerically wit te elp of your graping calculator. Now it s time to practice finding its witout

More information

= h. Geometrically this quantity represents the slope of the secant line connecting the points

= h. Geometrically this quantity represents the slope of the secant line connecting the points Section 3.7: Rates of Cange in te Natural and Social Sciences Recall: Average rate of cange: y y y ) ) ), ere Geometrically tis quantity represents te slope of te secant line connecting te points, f (

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS INTODUCTION ND MTHEMTICL CONCEPTS PEVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips of sine,

More information

Section 3: The Derivative Definition of the Derivative

Section 3: The Derivative Definition of the Derivative Capter 2 Te Derivative Business Calculus 85 Section 3: Te Derivative Definition of te Derivative Returning to te tangent slope problem from te first section, let's look at te problem of finding te slope

More information

AN ANALYSIS OF NEW FINITE ELEMENT SPACES FOR MAXWELL S EQUATIONS

AN ANALYSIS OF NEW FINITE ELEMENT SPACES FOR MAXWELL S EQUATIONS Journal of Matematical Sciences: Advances and Applications Volume 5 8 Pages -9 Available at ttp://scientificadvances.co.in DOI: ttp://d.doi.org/.864/jmsaa_7975 AN ANALYSIS OF NEW FINITE ELEMENT SPACES

More information

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions Concepts: definition of polynomial functions, linear functions tree representations), transformation of y = x to get y = mx + b, quadratic functions axis of symmetry, vertex, x-intercepts), transformations

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk Bob Brown Mat 251 Calculus 1 Capter 3, Section 1 Completed 1 Te Tangent Line Problem Te idea of a tangent line first arises in geometry in te context of a circle. But before we jump into a discussion of

More information

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim Mat 311 - Spring 013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, 013 Question 1. [p 56, #10 (a)] 4z Use te teorem of Sec. 17 to sow tat z (z 1) = 4. We ave z 4z (z 1) = z 0 4 (1/z) (1/z

More information

CALCULATION OF COLLAPSE PRESSURE IN SHALE GAS FORMATION AND THE INFLUENCE OF FORMATION ANISOTROPY

CALCULATION OF COLLAPSE PRESSURE IN SHALE GAS FORMATION AND THE INFLUENCE OF FORMATION ANISOTROPY CALCULATION OF COLLAPSE PRESSURE IN SHALE GAS FORMATION AND THE INFLUENCE OF FORMATION ANISOTROPY L.Hu, J.Deng, F.Deng, H.Lin, C.Yan, Y.Li, H.Liu, W.Cao (Cina University of Petroleum) Sale gas formations

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Chapter 6 Effective Stresses and Capillary

Chapter 6 Effective Stresses and Capillary Effectie Stresses and Capillary - N. Siakugan (2004) 1 6.1 INTRODUCTION Chapter 6 Effectie Stresses and Capillary When soils are subjected to external loads due to buildings, embankments or excaations,

More information