MATH 3208 MIDTERM REVIEW. (B) {x 4 x 5 ; x ʀ} (D) {x x ʀ} Use the given functions to answer questions # 3 5. determine the value of h(7).

Size: px
Start display at page:

Download "MATH 3208 MIDTERM REVIEW. (B) {x 4 x 5 ; x ʀ} (D) {x x ʀ} Use the given functions to answer questions # 3 5. determine the value of h(7)."

Transcription

1 MATH 08 MIDTERM REVIEW. If () = (f + g)() wat is te domain of () { 5 4 ; ʀ} { 4 4 ; ʀ} { 4 5 ; ʀ} { ʀ}. Given p() = and g() = wic function represents k() k() = p() g() + + Use te given functions to answer questions # 5. g() = p() = q() =. Given ( ) g( ) q( ) determine te value of (7) Wic function represents k() k() = p()q() k() = k() = k() = k() = 5. Wat is te domain of r() { ʀ} { ; ʀ} p( ) r( ) g( ) { ; ʀ} { ; ; ʀ}. Given f() = and g() = f. Determine te non permissible values of te grap of y () g ± none 7. Given te functions f() = 4 and g() = + +. Determine te value of f(g( )) Given te functions g() = + 5 and () =. Wic function represents ( g )( ) Given p ( ) and q() = + wat is te range of te composite function q(p()) { y y 0 ; yʀ} { y y ; yʀ} { y y ; yʀ} { y y ; yʀ} 0. Wic function represents f(g()) f ( ) and g( )

2 . Wic statement is FALSE for te grap of te function 4 y Te y intercept is 4. Te intercept is. Te orizontal asymptote is y =. Te vertical asymptote is =.. Wat is te point of discontinuity of te function y (, ) (, ) (, 5 ) (, 5 ). Given te functions f ( ) 4, g ( ), ( ), k( ). Determine te following composite functions and state teir domain and range. (a) g(f()) (b) (g()) (c) k(g()) 4. Sketc te grap of te function y. Identy te important caracteristics 8 5 of te grap by completing te table below. 0 y Caracteristic y 8 5 Domain Range Equation of Vertical Equation of Horizontal Non Permissible Value(s) Sketc te grap of te function y. Identy te important caracteristics 4 of te grap by completing te table below. y Caracteristic y 4 Domain Range Equation of Vertical Equation of Horizontal Non Permissible Value(s) -0

3 Use te given functions to answer questions # 8. g() = + p() = 4 q() = +. Given ( ) g( ) q( ) determine te value of ( 5) Wat is te domain of r() { ʀ} { > 4 ; ʀ} g( ) r( ) p( ) { 4 ; ʀ} { 4 ; ʀ} 8. Wat is te range of k() k() = q(p()) { y yʀ} { y y 0 ; yʀ} { y y ; yʀ} { y y ; yʀ} 9. Given te functions f() = and g() =. Determine te value of f(g( )) Given f() = + and g() = 4. Determine te non permissible values of te grap g of y () f = =, = ± =. Wic function represents ( g f )( ) f ( ) and g ( ). Wic statement is TRUE for te grap of te function 5 y 9 Te y intercept is 9. Te intercepts are, 5. Te orizontal asymptote is y =. Te vertical asymptote is =.. Wat is te point of discontinuity of te function y 5 (, ) (, 5 ) (, ) (, 5 ) 4. Given te functions f ( ), g ( ), ( ) 4, k ( ). Determine te following functions and state teir domain and range. (a) f(g()) (b) (g()) (c) k(g())

4 0 5. Sketc te grap of te function y. Identy te important caracteristics of te grap by completing te table below. y 0 Caracteristic y 0 5 Domain Range Equation of Vertical Equation of Horizontal Non Permissible Value(s) -0. Evaluate te its. (a) 4 (b) (c) 0 8 (d) (e) (f) (g) sin7 0 sin () tan 4 sin 0 7. Wat is te domain of te function f ( ) (, 0 ) U ( 0, ) U (, ) (, ) U (, 0 ) U ( 0, ) (, ) U (, ) U (, ) (, ) 8. Wat are te intervals of increase for te function graped below (, ) U (, 0 ) (, ) U ( 0, ) (, 0 ) U (, ) ( 0, ) U (, )

5 9. Evaluate te it: Evaluate te it: 0 0 does not eist. Evaluate te it: 4. Evaluate te it: 4 4 does not eist. Evaluate te it: 0 does not eist Use te given grap to answer questions # Determine te value of f( ). 0 undefined 5. Evaluate te it: f ( ) 0. Evaluate te it: f ( ) 0 does not eist

6 7. Given f ( ) on wic interval(s) is te function f() continuous 8 (, ] U [ 4, ) (, ) U ( 4, ) [, 4 ] (, 4 ) 8. Wic function as a removable discontinuity at = 4 f ( ) 9 4 f ( ) 9 f ( ) 9 f ( ) 9 9. Wic statement is TRUE for te piecewise function f ( ) Te value of f( ) =. Te function is left continuous at =. Te value of f() = 5. Te function is rigt continuous at =. 40. Wic statement is FALSE for te function 5 f ( ) 4 Te point of discontinuity is,. Te vertical asymptote is =. 4 Te intercept is. Te orizontal asymptote is =. 4. Wat is te oblique asymptote of te function 7 f ( ) y = y = y = 8 y = 9 4. Evaluate te it: Determine te orizontal asymptote of te function f ( ). y = y y does not eist 44. Sketc te grap of te given function and evaluate f ( ). 4 f ( ) 45. Evaluate te following its. 0 (a) (b) (c) sin (5) 0 cos ()

7 0 4. Given te function f ( ), using te definition of continuity 9 0 determine all points at wic f() is discontinuous. Classy any discontinuities as removable or non removable. Sow your it workings to very your answer. 47. Determine te equation of all orizontal asymptotes and all vertical asymptotes of te following functions. For vertical asymptotes, determine te beavior of te function as it approaces te vertical asymptote from eac side. (a) 5 f ( ) (b) 4 5 f ( ) Wic is te correct it definition of te derivative for te function f() =. [( ) 0 ( )] [ ] [( ) 0 ( )] [ ] [( ) 0 ( )] [ ] [( ) 0 ( )] [ ] 49. Given f ( ), determine te domain of f (). { > ; ʀ} { ; ʀ} { > ; ʀ} { ; ʀ} 50. Wic function is dferentiable at te given value f ( ) 5 f ( ) 5 f ( ) 5 f ( ) 5 5. Wat is te slope of te tangent line on te curve y at = 4 dy 5. Given y, determine. d dy dy dy d d d dy d 5. Dferentiate y = sin cos. y= cos sin y= cos + sin y= cos sin y= cos + sin

8 d 54. Evaluate: d 55. Determine te equation of te normal line tat passes troug te curve y at (, ). y = y = + y y d y 5. Determine d for te function y = ( + )( + ) Wat are te points on te curve f() = were te tangent line as a slope of 5 (, 0 ) and ( 5, 0 ) (, 5 ) and ( 5, 5 ) (, 7 ) and ( 5, 5 ) ( 5, 5 ) and (, 5 ) 58. A toy rocket takes off from te ground and travels te pat represented by (t) = t + 8t + 9t were is eigt in meters and t is time in seconds. Wat is te acceleration of te rocket at seconds m/sec 4 m/sec m/sec 0 m/sec 59. Given f ( ), determine f (). f () = f () = 4 f () = 4 f () = 0. Dferentiate: ( 4 ) ( ) ( 4 ) ( 4 ) ( 4 ). Dferentiate: sin( cos + ) ( sin ) cos( cos + ) ( sin ) sin( cos + ) ( + sin ) cos( cos + ) ( + sin ) sin( cos + ). Dferentiate: 4 4. Given te function f() =. (a) Use te Limit Definition of te Derivative to determine f (). (b) Very your answer in part (a) by using te Quotient Rule. 4. Determine te equation of te tangent line at = on te curve y.

9 5. Dferentiate te following functions. (a) 4 y (b) y = ( + )( + ) 4 (c) 4 y ( ). Wic is te correct it definition of te derivative for te function f ( ). 5 0 ( ) 5 ( ) 5 0 ( ) 5 ( ) 5 0 ( 5( ) ) 5 0 ( ) 5 ( ) 5 7. Wic value of k will make te given function dferentiable k f ( ) k = k = k = 4 k = 4 8. Wat is te slope of te tangent line on te curve y at = 8 9. Given y determine dy. d dy 4 d dy 4 d dy 4 d dy 4 d 70. Dferentiate y = sin + cos. y= cos sin y= cos sin y= cos + sin y= cos + sin 7. Wat are te points on te curve f() = 4 were te tangent line as a slope of 0 (, 0 ) and (, 0 ) (, ) and (, ) ( 4, 0 ) and ( 4, 0 ) ( 4, ) and ( 4, ) 7. A toy rocket takes off from te ground and travels te pat represented by (t) = t + 5t + 9t were is eigt in meters and t is time in seconds. Wat is te acceleration of te rocket at seconds m/sec 4 m/sec m/sec m/sec d y 7. Determine d for te function y = ( + )( + )

10 74. Determine te slope of te normal line tat passes troug te curve y at =. 75. Dferentiate: ( + ) ( + ) + 5 8( + ) + 5 4( + ) + 5 4( + ) Given f ( ), determine f () Dferentiate: cos( sin ) sin( sin ) sin( sin ) sin( sin ) sin( sin ) 78. Dferentiate: 79. Determine y: y + + y = 4 y y= y y= y y= y= 80. Use te Limit Definition of te Derivative to determine f () for te function f() = Determine te equation of te tangent line at = on te curve y. 8. Dferentiate te following functions. (a) f() = ( + )( + ) (b) ( ) y 8. Use implicit dferentiation to find te equation of te normal line to y = y at (, ).

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value AB Calculus Unit Review Key Concepts Average and Instantaneous Speed Definition of Limit Properties of Limits One-sided and Two-sided Limits Sandwic Teorem Limits as x ± End Beaviour Models Continuity

More information

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1 Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 969) Quick Review..... f ( ) ( ) ( ) 0 ( ) f ( ) f ( ) sin π sin π 0 f ( ). < < < 6. < c c < < c 7. < < < < < 8. 9. 0. c < d d < c

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

. h I B. Average velocity can be interpreted as the slope of a tangent line. I C. The difference quotient program finds the exact value of f ( a)

. h I B. Average velocity can be interpreted as the slope of a tangent line. I C. The difference quotient program finds the exact value of f ( a) Capter Review Packet (questions - ) KEY. In eac case determine if te information or statement is correct (C) or incorrect (I). If it is incorrect, include te correction. f ( a ) f ( a) I A. represents

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x Eam Solutions Question (0%) Consider f() = 2 2 2 2. (a) By calculating relevant its, determine te equations of all vertical asymptotes of te grap of f(). If tere are none, say so. f() = ( 2) ( + )( 2)

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk Bob Brown Mat 251 Calculus 1 Capter 3, Section 1 Completed 1 Te Tangent Line Problem Te idea of a tangent line first arises in geometry in te context of a circle. But before we jump into a discussion of

More information

MATH Fall 08. y f(x) Review Problems for the Midterm Examination Covers [1.1, 4.3] in Stewart

MATH Fall 08. y f(x) Review Problems for the Midterm Examination Covers [1.1, 4.3] in Stewart MATH 121 - Fall 08 Review Problems for te Midterm Eamination Covers [1.1, 4.3] in Stewart 1. (a) Use te definition of te derivative to find f (3) wen f() = π 1 2. (b) Find an equation of te tangent line

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus Syllabus Objectives: 1.1 Te student will understand and apply te concept of te limit of a function at given values of te domain. 1. Te student will find te limit of a function at given values of te domain.

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

Honors Calculus Midterm Review Packet

Honors Calculus Midterm Review Packet Name Date Period Honors Calculus Midterm Review Packet TOPICS THAT WILL APPEAR ON THE EXAM Capter Capter Capter (Sections. to.6) STRUCTURE OF THE EXAM Part No Calculators Miture o multiple-coice, matcing,

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

Section 3: The Derivative Definition of the Derivative

Section 3: The Derivative Definition of the Derivative Capter 2 Te Derivative Business Calculus 85 Section 3: Te Derivative Definition of te Derivative Returning to te tangent slope problem from te first section, let's look at te problem of finding te slope

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

Differentiation. Area of study Unit 2 Calculus

Differentiation. Area of study Unit 2 Calculus Differentiation 8VCE VCEco Area of stud Unit Calculus coverage In tis ca 8A 8B 8C 8D 8E 8F capter Introduction to limits Limits of discontinuous, rational and brid functions Differentiation using first

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

Calculus I Homework: The Derivative as a Function Page 1

Calculus I Homework: The Derivative as a Function Page 1 Calculus I Homework: Te Derivative as a Function Page 1 Example (2.9.16) Make a careful sketc of te grap of f(x) = sin x and below it sketc te grap of f (x). Try to guess te formula of f (x) from its grap.

More information

Math 1210 Midterm 1 January 31st, 2014

Math 1210 Midterm 1 January 31st, 2014 Mat 110 Midterm 1 January 1st, 01 Tis exam consists of sections, A and B. Section A is conceptual, wereas section B is more computational. Te value of every question is indicated at te beginning of it.

More information

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions Concepts: definition of polynomial functions, linear functions tree representations), transformation of y = x to get y = mx + b, quadratic functions axis of symmetry, vertex, x-intercepts), transformations

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

DEFINITION OF A DERIVATIVE

DEFINITION OF A DERIVATIVE DEFINITION OF A DERIVATIVE Section 2.1 Calculus AP/Dual, Revised 2017 viet.dang@umbleisd.net 2.1: Definition of a Derivative 1 DEFINITION A. Te derivative of a function allows you to find te SLOPE OF THE

More information

1 Limits and Continuity

1 Limits and Continuity 1 Limits and Continuity 1.0 Tangent Lines, Velocities, Growt In tion 0.2, we estimated te slope of a line tangent to te grap of a function at a point. At te end of tion 0.3, we constructed a new function

More information

MATH 111 CHAPTER 2 (sec )

MATH 111 CHAPTER 2 (sec ) MATH CHAPTER (sec -0) Terms to know: function, te domain and range of te function, vertical line test, even and odd functions, rational power function, vertical and orizontal sifts of a function, reflection

More information

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM MA9-A Applied Calculus for Business 006 Fall Homework Solutions Due 9/9/006 0:0AM. #0 Find te it 5 0 + +.. #8 Find te it. #6 Find te it 5 0 + + = (0) 5 0 (0) + (0) + =.!! r + +. r s r + + = () + 0 () +

More information

Chapter 2 Limits and Continuity. Section 2.1 Rates of Change and Limits (pp ) Section Quick Review 2.1

Chapter 2 Limits and Continuity. Section 2.1 Rates of Change and Limits (pp ) Section Quick Review 2.1 Section. 6. (a) N(t) t (b) days: 6 guppies week: 7 guppies (c) Nt () t t t ln ln t ln ln ln t 8. 968 Tere will be guppies ater ln 8.968 days, or ater nearly 9 days. (d) Because it suggests te number o

More information

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES (Section.0: Difference Quotients).0. SECTION.0: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES Define average rate of cange (and average velocity) algebraically and grapically. Be able to identify, construct,

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Chapter 4 Derivatives [ ] = ( ) ( )= + ( ) + + = ()= + ()+ Exercise 4.1. Review of Prerequisite Skills. 1. f. 6. d. 4. b. lim. x x. = lim = c.

Chapter 4 Derivatives [ ] = ( ) ( )= + ( ) + + = ()= + ()+ Exercise 4.1. Review of Prerequisite Skills. 1. f. 6. d. 4. b. lim. x x. = lim = c. Capter Derivatives Review of Prerequisite Skills. f. p p p 7 9 p p p Eercise.. i. ( a ) a ( b) a [ ] b a b ab b a. d. f. 9. c. + + ( ) ( + ) + ( + ) ( + ) ( + ) + + + + ( ) ( + ) + + ( ) ( ) ( + ) + 7

More information

Calculus I Practice Exam 1A

Calculus I Practice Exam 1A Calculus I Practice Exam A Calculus I Practice Exam A Tis practice exam empasizes conceptual connections and understanding to a greater degree tan te exams tat are usually administered in introductory

More information

Chapter. Differentiation: Basic Concepts. 1. The Derivative: Slope and Rates. 2. Techniques of Differentiation. 3. The Product and Quotient Rules

Chapter. Differentiation: Basic Concepts. 1. The Derivative: Slope and Rates. 2. Techniques of Differentiation. 3. The Product and Quotient Rules Differentiation: Basic Concepts Capter 1. Te Derivative: Slope and Rates 2. Tecniques of Differentiation 3. Te Product and Quotient Rules 4. Marginal Analsis: Approimation b Increments 5. Te Cain Rule

More information

11.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR

11.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR SECTION 11.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 633 wit speed v o along te same line from te opposite direction toward te source, ten te frequenc of te sound eard b te observer is were c is

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information

Mathematics 123.3: Solutions to Lab Assignment #5

Mathematics 123.3: Solutions to Lab Assignment #5 Matematics 3.3: Solutions to Lab Assignment #5 Find te derivative of te given function using te definition of derivative. State te domain of te function and te domain of its derivative..: f(x) 6 x Solution:

More information

2.1 THE DEFINITION OF DERIVATIVE

2.1 THE DEFINITION OF DERIVATIVE 2.1 Te Derivative Contemporary Calculus 2.1 THE DEFINITION OF DERIVATIVE 1 Te grapical idea of a slope of a tangent line is very useful, but for some uses we need a more algebraic definition of te derivative

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

Math Module Preliminary Test Solutions

Math Module Preliminary Test Solutions SSEA Summer 207 Mat Module Preliminar Test Solutions. [3 points] Find all values of tat satisf =. Solution: = ( ) = ( ) = ( ) =. Tis means ( ) is positive. Tat is, 0, wic implies. 2. [6 points] Find all

More information

Calculus I - Spring 2014

Calculus I - Spring 2014 NAME: Calculus I - Spring 04 Midterm Exam I, Marc 5, 04 In all non-multiple coice problems you are required to sow all your work and provide te necessary explanations everywere to get full credit. In all

More information

A.P. CALCULUS (AB) Outline Chapter 3 (Derivatives)

A.P. CALCULUS (AB) Outline Chapter 3 (Derivatives) A.P. CALCULUS (AB) Outline Capter 3 (Derivatives) NAME Date Previously in Capter 2 we determined te slope of a tangent line to a curve at a point as te limit of te slopes of secant lines using tat point

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3.

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3. Capter Functions and Graps Section. Ceck Point Exercises. Te slope of te line y x+ is. y y m( x x y ( x ( y ( x+ point-slope y x+ 6 y x+ slope-intercept. a. Write te equation in slope-intercept form: x+

More information

Calculus I, Fall Solutions to Review Problems II

Calculus I, Fall Solutions to Review Problems II Calculus I, Fall 202 - Solutions to Review Problems II. Find te following limits. tan a. lim 0. sin 2 b. lim 0 sin 3. tan( + π/4) c. lim 0. cos 2 d. lim 0. a. From tan = sin, we ave cos tan = sin cos =

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Lesson 4 - Limits & Instantaneous Rates of Change

Lesson 4 - Limits & Instantaneous Rates of Change Lesson Objectives Lesson 4 - Limits & Instantaneous Rates of Cange SL Topic 6 Calculus - Santowski 1. Calculate an instantaneous rate of cange using difference quotients and limits. Calculate instantaneous

More information

1. AB Calculus Introduction

1. AB Calculus Introduction 1. AB Calculus Introduction Before we get into wat calculus is, ere are several eamples of wat you could do BC (before calculus) and wat you will be able to do at te end of tis course. Eample 1: On April

More information

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here! Precalculus Test 2 Practice Questions Page Note: You can expect oter types of questions on te test tan te ones presented ere! Questions Example. Find te vertex of te quadratic f(x) = 4x 2 x. Example 2.

More information

Time (hours) Morphine sulfate (mg)

Time (hours) Morphine sulfate (mg) Mat Xa Fall 2002 Review Notes Limits and Definition of Derivative Important Information: 1 According to te most recent information from te Registrar, te Xa final exam will be eld from 9:15 am to 12:15

More information

MTH-112 Quiz 1 Name: # :

MTH-112 Quiz 1 Name: # : MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Determine weter te given relation is a function. Give te domain and range of te relation.. Does te equation

More information

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4.

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4. SECTION 3-1 101 CHAPTER 3 Section 3-1 1. No. A correspondence between two sets is a function only if eactly one element of te second set corresponds to eac element of te first set. 3. Te domain of a function

More information

Derivative as Instantaneous Rate of Change

Derivative as Instantaneous Rate of Change 43 Derivative as Instantaneous Rate of Cange Consider a function tat describes te position of a racecar moving in a straigt line away from some starting point Let y s t suc tat t represents te time in

More information

Lines, Conics, Tangents, Limits and the Derivative

Lines, Conics, Tangents, Limits and the Derivative Lines, Conics, Tangents, Limits and te Derivative Te Straigt Line An two points on te (,) plane wen joined form a line segment. If te line segment is etended beond te two points ten it is called a straigt

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ).

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ). Mat - Final Exam August 3 rd, Name: Answer Key No calculators. Sow your work!. points) All answers sould eiter be,, a finite) real number, or DNE does not exist ). a) Use te grap of te function to evaluate

More information

Math 115 Test 1 Sample Problems for Dr. Hukle s Class

Math 115 Test 1 Sample Problems for Dr. Hukle s Class Mat 5 Test Sample Problems for Dr. Hukle s Class. Demand for a Jayawk pen at te Union is known to be D(p) = 26 pens per mont wen te selling p price is p dollars and eac p 3. A supplier for te bookstore

More information

y = 3 2 x 3. The slope of this line is 3 and its y-intercept is (0, 3). For every two units to the right, the line rises three units vertically.

y = 3 2 x 3. The slope of this line is 3 and its y-intercept is (0, 3). For every two units to the right, the line rises three units vertically. Mat 2 - Calculus for Management and Social Science. Understanding te basics of lines in te -plane is crucial to te stud of calculus. Notes Recall tat te and -intercepts of a line are were te line meets

More information

INTRODUCTION TO CALCULUS LIMITS

INTRODUCTION TO CALCULUS LIMITS Calculus can be divided into two ke areas: INTRODUCTION TO CALCULUS Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

Midterm #1B. x 8 < < x 8 < 11 3 < x < x > x < 5 or 3 2x > 5 2x < 8 2x > 2

Midterm #1B. x 8 < < x 8 < 11 3 < x < x > x < 5 or 3 2x > 5 2x < 8 2x > 2 Mat 30 College Algebra Februar 2, 2016 Midterm #1B Name: Answer Ke David Arnold Instructions. ( points) For eac o te ollowing questions, select te best answer and darken te corresponding circle on our

More information

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits.

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits. Questions 1. State weter te function is an exponential growt or exponential decay, and describe its end beaviour using its. (a) f(x) = 3 2x (b) f(x) = 0.5 x (c) f(x) = e (d) f(x) = ( ) x 1 4 2. Matc te

More information

2.2 Derivative. 1. Definition of Derivative at a Point: The derivative of the function f x at x a is defined as

2.2 Derivative. 1. Definition of Derivative at a Point: The derivative of the function f x at x a is defined as . Derivative. Definition of Derivative at a Point: Te derivative of te function f at a is defined as f fa fa a lim provided te limit eists. If te limit eists, we sa tat f is differentiable at a, oterwise,

More information

Solutions Manual for Precalculus An Investigation of Functions

Solutions Manual for Precalculus An Investigation of Functions Solutions Manual for Precalculus An Investigation of Functions David Lippman, Melonie Rasmussen 1 st Edition Solutions created at Te Evergreen State College and Soreline Community College 1.1 Solutions

More information

Section 2: The Derivative Definition of the Derivative

Section 2: The Derivative Definition of the Derivative Capter 2 Te Derivative Applied Calculus 80 Section 2: Te Derivative Definition of te Derivative Suppose we drop a tomato from te top of a 00 foot building and time its fall. Time (sec) Heigt (ft) 0.0 00

More information

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00 SFU UBC UNBC Uvic Calculus Callenge Eamination June 5, 008, :00 5:00 Host: SIMON FRASER UNIVERSITY First Name: Last Name: Scool: Student signature INSTRUCTIONS Sow all your work Full marks are given only

More information

MAT 1800 FINAL EXAM HOMEWORK

MAT 1800 FINAL EXAM HOMEWORK MAT 800 FINAL EXAM HOMEWORK Read te directions to eac problem careully ALL WORK MUST BE SHOWN DO NOT USE A CALCULATOR Problems come rom old inal eams (SS4, W4, F, SS, W) Solving Equations: Let 5 Find all

More information

In Leibniz notation, we write this rule as follows. DERIVATIVE OF A CONSTANT FUNCTION. For n 4 we find the derivative of f x x 4 as follows: lim

In Leibniz notation, we write this rule as follows. DERIVATIVE OF A CONSTANT FUNCTION. For n 4 we find the derivative of f x x 4 as follows: lim .1 DERIVATIVES OF POLYNOIALS AND EXPONENTIAL FUNCTIONS c =c slope=0 0 FIGURE 1 Te grap of ƒ=c is te line =c, so fª()=0. In tis section we learn ow to ifferentiate constant functions, power functions, polnomials,

More information

First Midterm Examination

First Midterm Examination Çankaya University Department of Mathematics 016-017 Fall Semester MATH 155 - Calculus for Engineering I First Midterm Eamination 1) Find the domain and range of the following functions. Eplain your solution.

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Exponentials and Logarithms Review Part 2: Exponentials

Exponentials and Logarithms Review Part 2: Exponentials Eponentials and Logaritms Review Part : Eponentials Notice te difference etween te functions: g( ) and f ( ) In te function g( ), te variale is te ase and te eponent is a constant. Tis is called a power

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

Mathematics 105 Calculus I. Exam 1. February 13, Solution Guide

Mathematics 105 Calculus I. Exam 1. February 13, Solution Guide Matematics 05 Calculus I Exam February, 009 Your Name: Solution Guide Tere are 6 total problems in tis exam. On eac problem, you must sow all your work, or oterwise torougly explain your conclusions. Tere

More information

Derivatives and Rates of Change

Derivatives and Rates of Change Section.1 Derivatives and Rates of Cange 2016 Kiryl Tsiscanka Derivatives and Rates of Cange Measuring te Rate of Increase of Blood Alcool Concentration Biomedical scientists ave studied te cemical and

More information

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves.

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves. Calculus can be divided into two ke areas: Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and minima problems Integral

More information

Differentiation. introduction to limits

Differentiation. introduction to limits 9 9A Introduction to limits 9B Limits o discontinuous, rational and brid unctions 9C Dierentiation using i rst principles 9D Finding derivatives b rule 9E Antidierentiation 9F Deriving te original unction

More information

Name: Sept 21, 2017 Page 1 of 1

Name: Sept 21, 2017 Page 1 of 1 MATH 111 07 (Kunkle), Eam 1 100 pts, 75 minutes No notes, books, electronic devices, or outside materials of an kind. Read eac problem carefull and simplif our answers. Name: Sept 21, 2017 Page 1 of 1

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

CHAPTER 3: DERIVATIVES

CHAPTER 3: DERIVATIVES (Answers to Exercises for Capter 3: Derivatives) A.3.1 CHAPTER 3: DERIVATIVES SECTION 3.1: DERIVATIVES, TANGENT LINES, and RATES OF CHANGE 1) a) f ( 3) f 3.1 3.1 3 f 3.01 f ( 3) 3.01 3 f 3.001 f ( 3) 3.001

More information

MTH 119 Pre Calculus I Essex County College Division of Mathematics Sample Review Questions 1 Created April 17, 2007

MTH 119 Pre Calculus I Essex County College Division of Mathematics Sample Review Questions 1 Created April 17, 2007 MTH 9 Pre Calculus I Essex County College Division of Matematics Sample Review Questions Created April 7, 007 At Essex County College you sould be prepared to sow all work clearly and in order, ending

More information

5. (a) Find the slope of the tangent line to the parabola y = x + 2x

5. (a) Find the slope of the tangent line to the parabola y = x + 2x MATH 141 090 Homework Solutions Fall 00 Section.6: Pages 148 150 3. Consider te slope of te given curve at eac of te five points sown (see text for figure). List tese five slopes in decreasing order and

More information

KEY CONCEPT: THE DERIVATIVE

KEY CONCEPT: THE DERIVATIVE Capter Two KEY CONCEPT: THE DERIVATIVE We begin tis capter by investigating te problem of speed: How can we measure te speed of a moving object at a given instant in time? Or, more fundamentally, wat do

More information

CALCULUS MPT SAMPLE QUESTIONS

CALCULUS MPT SAMPLE QUESTIONS CALCULUS MPT SAMPLE QUESTIONS Important Note: Calculators are not permitted wen writing te Mat Placement Test. In order to fully enefit from tese practice prolems, you sould solve tem witout te aid of

More information

Main Points: 1. Limit of Difference Quotients. Prep 2.7: Derivatives and Rates of Change. Names of collaborators:

Main Points: 1. Limit of Difference Quotients. Prep 2.7: Derivatives and Rates of Change. Names of collaborators: Name: Section: Names of collaborators: Main Points:. Definition of derivative as limit of difference quotients. Interpretation of derivative as slope of grap. Interpretation of derivative as instantaneous

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing:

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing: AP Calculus AB PRACTICE MIDTERM EXAM Read each choice carefully and find the best answer. Your midterm exam will be made up of 8 of these questions. I reserve the right to change numbers and answers on

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

MAT Calculus for Engineers I EXAM #1

MAT Calculus for Engineers I EXAM #1 MAT 65 - Calculus for Engineers I EXAM # Instructor: Liu, Hao Honor Statement By signing below you conrm tat you ave neiter given nor received any unautorized assistance on tis eam. Tis includes any use

More information

Notes: DERIVATIVES. Velocity and Other Rates of Change

Notes: DERIVATIVES. Velocity and Other Rates of Change Notes: DERIVATIVES Velocity and Oter Rates of Cange I. Average Rate of Cange A.) Def.- Te average rate of cange of f(x) on te interval [a, b] is f( b) f( a) b a secant ( ) ( ) m troug a, f ( a ) and b,

More information

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line Teacing Differentiation: A Rare Case for te Problem of te Slope of te Tangent Line arxiv:1805.00343v1 [mat.ho] 29 Apr 2018 Roman Kvasov Department of Matematics University of Puerto Rico at Aguadilla Aguadilla,

More information