IST 4 Information and Logic

Size: px
Start display at page:

Download "IST 4 Information and Logic"

Transcription

1 IST 4 Information and Logic

2 T = today x= hw#x out x= hw#x due mon tue wed thr fri 30 M 6 oh M oh 3 oh oh 2M2M 20 oh oh 2 27 oh M2 oh midterms Students MQ oh = office hours Mx= MQx out 4 3 oh 3 4 oh oh oh presentations Mx= MQx due 8 oh oh T oh 5 oh oh oh

3 MQs. Everyone has a gift! (Tuesday) 2. Memory (Thursday)

4 Tuesday, 6/2, 2:30pm. Christopher Haack: The gift of resilience 2. Joon Lee: Settling is not an option 3. Spencer Strumwasser: The gift of dyslexia 4. Richard Zhu: The gift of memory 5. Ah Ashwin Hari: The gift of musical composition 6. Jessica Nassimi: Evolution a gift in disguise 7. Serena Delgadillo: The gift of self-expression 8. Megan Keehan: Gift of motherliness 9. Zane Murphy: Grandmother and the piano

5 Thursday, 6/4, 2:30pm. Connor Lee: Memory is a fickle thing blessing or curse 2. Pallavi Aggarwal: The wonders of human memory 3. Peter Kundzicz and Anshul Ramachandran: Muscle memories 4. Siva Gangavarapu: A cultural retrospection 5. Philip Liu: The light of other days 6. Jason Simon: Math and Broadway 7. Yujie Xu: Memory v.s. ESL 8. Celia Zhang: When memory sours

6 Last Lecture Gates and circuits AON: AND, OR, Not LT: Linear Threshold LT: Linear Threshold > > a b c a b > > a b c a >b > > > b c a b c a b c > > > > b c a b c a b c

7 Last Lecture AON: AND, OR, Not LT: Linear Threshold General construction for symmetric functions AON 5 LT-l 4 LT-nl 2 * Exponential gap in size What are the symmetric functions that can be computed by a single LT gate? * = it is optimal * *

8 Linear Threshold and SYM

9 LT: Linear Threshold

10 Symmetric Functions and LT Circuits Q: Which class has more functions? Q: How is SYM related to LT?? Definitions: () SYM = the class of Boolean symmetric functions (2) LT = the class of Boolean functions that can be (2) LT the class of Boolean functions that can be realized by a single LT gate.

11 AND, OR, XOR and MAJ are symmetric functions Q: Which h symmetric functions are in LT?? X AND OR XOR MAJ LT not LT LT LT LT = the class of Boolean functions that can be realized by a single LT gate.

12 Definition: A symmetric ti Boolean function is in TH if it has at most a single transition in the symmetric function table = a transition X AND OR XOR MAJ In TH Not in TH

13 The Class TH is in LT X TH0 TH TH2 TH3 TH0 TH TH2 TH

14 Q: How is TH related to SYM and LT?? We know that: We Proved that: SYM TH LT

15 TH is exactly in the intersection of SYM and LT Theorem: Proof: Not today... you might want to try and prove it... Q: What are the 4 functions? SYM TH LT???

16 LT Function that is not Symmetric

17 Linear Threshold l Circuits for symmetric functions

18 AON 5 LT-l 4 LT-nl 2 General construction for symmetric functions

19 X XOR Q: compute XOR with TH gates? X TH TH2 TH+TH

20 LT Depth-2 Circuits TH - + TH2 X TH TH2 TH+TH

21 Generalization X f(x)

22 Generalization X f(x)

23 Generalization X f(x) TH

24 Generalization X f(x) TH TH

25 Generalization X f(x) TH TH3 Σ

26 X f(x) TH TH3 Σ

27 Generalization to EQ 0 0 n

28 Generalization to EQ

29 Generalization to SYM - + Q: What is the generalization to arbitrary symmetric functions?

30 Generalization to SYM Q: What is the generalization to arbitrary symmetric functions? A: Consider the symmetric function table, it is a sum of non-overlapping -intervals 0 0 Sum of two TH functions

31 Back to XOR n TH gates for XOR of n variables

32 LT-l Circuit Design Algorithm for SYM f(x) Subtract for every isolated -block

33 The Layered Construction for SYM -Some History Saburo Muroga Was born in Japan Majority Decision PhD in 958 from Tokyo U, Japan : Researcher at IBM Research, NY : professor at the University of Illinois, Urbana-Champaign

34 Saburo Muroga HW#5 problem 2a

35 neural circuits and logic some more history...

36 Being Homeless and Interdisciplinary Research Warren McCulloch Walter Pitts Neurophysiologist, MD Logician, Autodidact Warren McCulloch arrived in early 942 to the University of Chicago, invited Pitts, who was homeless, to live with his family In the evenings McCulloch and Pitts collaborated. Pitts was familiar with the work of Leibniz on computing. They considered the question of whether the nervous system is a kind of universal computing device as described by Leibniz This led to their 943 seminal neural networks paper: A Logical Calculus of Ideas Immanent in Nervous Activity

37 Impact Warren McCulloch Walter Pitts Neurophysiologist, MD Logician, Autodidact This led to their 943 seminal neural networks paper: p A Logical Calculus of Ideas Immanent in Nervous Activity Neural networks and Logic Time Memory Threshold Logic and Learning State Machines

38 neural circuits and memory m computing with dynamics

39 Linear Threshold Some Adjustments Linear Threshold (LT) gate -t threshold -t -

40 AND Function with {0,}

41 AND Function with {-,} The AND function of two variables with {-, }:???

42 AND Function with {-,} The AND function of two variables with {-, }:???

43 Linear Threshold with Memory Elephants are symbols of wisdom in Asian cultures and are famed for their exceptional memory A memory nose Remembers the last f(x)

44 Feedback Networks Example weights thresholds Th t t f th t k th t th t d The state of the network: the vector that corresponds to the states (noses ) of the gates

45 Feedback Networks Example Label the gates

46 Feedback Networks Example

47 Feedback Networks Example

48 Feedback Networks Example is a stable state

49 Feedback Networks Example

50 Feedback Networks Example

51 Feedback Networks Example

52 Feedback Networks Example is a stable state

53 Feedback Networks Example state The node that computes State transition diagram (state space) Q: Is -- a stable state?

54 Feedback Networks Example Answer: No Q: Is -- a stable state?

55 Feedback Networks Example

56 Feedback Networks Example

57 Feedback Networks Example

58 Feedback Networks Example stable states

59 neural circuits and memory m associative memory

60 Feedback Networks Computing with Dynamics stable states Input: initial state Feedback Network Output: stable state -

61 Feedback Networks Computing with Dynamics stable states Input: initial state Feedback Network Output: stable state -

62 Input: initial state Feedback Networks Computing with Dynamics Associative Memory The Leibniz-Boole Machine Output: stable state Feedback Network

63 Input: initial state Feedback Networks Computing with Dynamics Associative Memory The Leibniz-Boole Machine Output: stable state Feedback Network

64 Input: initial state Feedback Networks Computing with Dynamics Associative Memory The Leibniz-Boole Machine Output: stable state Feedback Network

65 Input: initial state Feedback Networks Computing with Dynamics Associative Memory The Leibniz-Boole Machine Output: stable state Feedback Network

66 Input: initial state Feedback Networks Computing with Dynamics Associative Memory The Leibniz-Boole Machine Output: stable state Feedback Network

67 Input: initial state Feedback Networks Computing with Dynamics Associative Memory The Leibniz-Boole Machine Output: stable state Feedback Network

68 Input: initial state Feedback Networks Computing with Dynamics Associative Memory The Leibniz-Boole Machine Output: stable state Feedback Network

69 Input: initial state Feedback Networks Computing with Dynamics Associative Memory The Leibniz-Boole Machine Output: stable state Feedback Network

70 Who is this person?????

71 John Hopfield Feedback Networks Hopfield Model (Caltech 982)

72 John Hopfield Feedback Networks Hopfield Model (Caltech 982) i = node i = threshold ti = state vi - = weight of edge (i,j)

73 The matrix description

74 Feedback Networks The Vector/Matrix Description An n node feedback network can be specified by: W an nxn matrix of weights T an n vector of thresholds V an n vector of states

75 The Matrix Description Example An n node feedback network can be specified by: W an nxn matrix of weights T an n vector of thresholds V an n vector of states

76 The Matrix Description Computation Computation ti in N= (W,T) by column 5

77 Order of computation serial and parallel

78 Modes of Operation Q: when do the nodes compute? Serial mode: one node at a time (arbitrary order) - - 2

79 Modes of Operation Q: when do the nodes compute? Serial mode: one node at a time (arbitrary order) - - 2

80 Modes of Operation Q: when do the nodes compute? Serial mode: one node at a time (arbitrary order) Fully-Parallel mode: all nodes at the same time - - 2

81 Three examples

82 Example Serial Mode Symmetric Weight Matrix The state space: stable states

83 Example 2 Fully-Parallel (FP) Mode Symmetric Weight Matrix Q: how does the state space look? start with It s a cycle!

84 Example 2 Fully-Parallel (FP) Mode Symmetric Weight Matrix The state space: stable states cycle of length 2

85 Example 23 Fully-Parallel Mode Antisymmetric Symmetric Weight Matrix W T = WW Q: how does the state space look?

86 Example 3 Fully-Parallel Mode Antisymmetric Weight Matrix - Q: how does the state space look? 2 cycle of length 4

87 Example 3 Fully-Parallel Mode Antisymmetric Weight Matrix - 2 The state space: - cycle of length

88 The Three Cases Cycle lengths mode W symmetric antisymmetric Example # serial? fully-parallel,

89 The Three Cases Cycle lengths Example # mode W symmetric antisymmetric serial? fully-parallel, Hopfield Goles Goles 986

90 Proof Ideas Cycle lengths W symmetric antisymmetric mode Example # serial? fully-parallel, The proofs of these three results use the concept of an energy function For the serial mode: Show that: t Namely, stable states are local max of the energy E

91 Questions on Convergence Posted on the class web site Cycle lengths mode W symmetric antisymmetric Example # serial? Hopfield 982 fully-parallel, Goles 985 Q: Are the three cases distinct? 3 Goles 986 Q2: Elementary proof? (wo/energy)

92

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic mon tue wed thr fri sun T = today 3 M oh x= hw#x out 0 oh M 7 oh oh 2 M2 oh oh x= hw#x due 24 oh oh 2 oh = office hours oh oh M2 8 3 oh midterms oh oh Mx= MQx out 5 oh 3 4 oh

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic mon tue wed thr fri sun T = today 3 M oh x= hw#x out oh M 7 oh oh 2 M2 oh oh x= hw#x due 24 oh oh 2 oh = office hours oh oh M2 8 3 oh midterms oh oh Mx= MQx out 5 oh 3 4 oh

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic HW2 will be returned today Average is 53/6~=88% T = today x= hw#x out x= hw#x due mon tue wed thr fri 3 M 6 oh M oh 3 oh oh 2M2M 2 oh oh 2 Mx= MQx out 27 oh M2 oh oh = office

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic MQ1 Everyone has a gift! Due Today by 10pm Please email PDF lastname-firstname.pdf to ta4@paradise.caltech.edu HW #1 Due Tuesday, 4/12 2:30pm in class T = today x= hw#x out

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic T = today mon tue wed thr 3 M1 oh 1 fri sun x= hw#x out 10 oh M1 17 oh oh 1 2 M2 oh oh x= hw#x due 24 oh oh 2 Mx= MQx out 1 oh M2 oh = office hours oh T 8 3 15 oh 3 4 oh oh

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic mon tue wed thr fri sun T = today 3 M oh x= hw#x out oh M 7 oh oh 2 M2 oh oh x= hw#x due 24 oh oh 2 oh = office hours oh oh T M2 8 3 oh midterms oh oh Mx= MQx out 5 oh 3 4 oh

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic Lectures are at: paradise.caltech.edu/ist4/lectures.html edu/ist4/lectures html Homeworks are at: paradise.caltech.edu/ist4/homeworks.html edu/ist4/homeworks html T = today

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic MQ1 Computers outperform the human brain? Due Today by 10pm Have your name inside the file as well... Please email PDF lastname-firstname.pdf to istta4@paradise.caltech.edu

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic T = today x= hw#x out x= hw#x due mon tue wed thr fri 31 M1 1 7 oh M1 14 oh 1 oh 2M2 21 oh oh 2 oh Mx= MQx out 28 oh M2 oh oh = office hours 5 3 12 oh 3 4 oh oh T midterms oh

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic Lectures are at: paradise.caltech.edu/ist4/lectures.html edu/ist4/lectures html Homeworks are at: paradise.caltech.edu/ist4/homeworks.html edu/ist4/homeworks html T = today

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logi T = today x= hw#x out x= hw#x due mon tue wed thr fri 3 M 7 oh M 4 oh oh 2M2 2 oh oh 2 oh 28 oh M2 oh oh = offie hours 5 3 Mx= MQx out 2 oh 3 4 oh oh midterms oh Mx= MQx due

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic MQ1 Everyone has a gift! Due Today by 10pm Please email PDF lastname-firstname.pdf to ta4@paradise.caltech.edu HW #1 Due Tuesday, 4/14 230 2:30pm in class T = today x= hw#x

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic T = today x= hw#x out x= hw#x due mon tue wed thr fri 30 M1 1 6 oh M1 oh 13 oh 1 oh 2M2M 20 oh oh 2 Mx= MQx out 27 oh M2 h T oh = office hours oh T 4 3 11 oh 3 4 oh oh midterms

More information

Week 3: More Processing, Bits and Bytes. Blinky, Logic Gates, Digital Representations, Huffman Coding. Natural Language and Dialogue Systems Lab

Week 3: More Processing, Bits and Bytes. Blinky, Logic Gates, Digital Representations, Huffman Coding. Natural Language and Dialogue Systems Lab Week 3: More Processing, Bits and Bytes. Blinky, Logic Gates, Digital Representations, Huffman Coding Natural Language and Dialogue Systems Lab Robot Homework. Can keep playing with it Announcements Privacy

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic T = today x= hw#x out x= hw#x due mon tue wed thr fri 3 M 7 oh M 4 oh oh 2M2 2 oh oh 2 oh T Mx= MQx out 28 oh M2 oh oh = office hours 5 3 2 oh 3 4 oh oh midterms oh Mx= MQx

More information

Averaging Points. What s the average of P and Q? v = Q - P. P + 0.5v = P + 0.5(Q P) = 0.5P Q

Averaging Points. What s the average of P and Q? v = Q - P. P + 0.5v = P + 0.5(Q P) = 0.5P Q Linear Perceptron Averaging Points What s the average of P and Q? v = Q - P P Q P + 0.5v = P + 0.5(Q P) = 0.5P + 0.5 Q Averaging Points What s the average of P and Q? v = Q - P P Q Linear Interpolation

More information

CNS 188a Computation Theory and Neural Systems. Monday and Wednesday 1:30-3:00 Moore 080

CNS 188a Computation Theory and Neural Systems. Monday and Wednesday 1:30-3:00 Moore 080 CNS 88a Computation Theory and Neural Systems Monday and Wednesday :30-3:00 Moore 080 Lecturer: Shuki Bruck; 33 Moore office hours: Mon, Wed, 3-4pm TAs: Vincent Bohossian, Matt Cook; 3 Moore office hours:

More information

Reification of Boolean Logic

Reification of Boolean Logic 526 U1180 neural networks 1 Chapter 1 Reification of Boolean Logic The modern era of neural networks began with the pioneer work of McCulloch and Pitts (1943). McCulloch was a psychiatrist and neuroanatomist;

More information

Introduction Biologically Motivated Crude Model Backpropagation

Introduction Biologically Motivated Crude Model Backpropagation Introduction Biologically Motivated Crude Model Backpropagation 1 McCulloch-Pitts Neurons In 1943 Warren S. McCulloch, a neuroscientist, and Walter Pitts, a logician, published A logical calculus of the

More information

Where does it come from?

Where does it come from? 1 Course organization Textbook J.E. Hopcroft, R. Motwani, J.D. Ullman Introduction to Automata Theory, Languages, and Computation Second Edition, Addison-Wesley, New York, 2001 We shall cover Chapters

More information

Computational Intelligence Winter Term 2009/10

Computational Intelligence Winter Term 2009/10 Computational Intelligence Winter Term 2009/10 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund Plan for Today Organization (Lectures / Tutorials)

More information

Computational Intelligence

Computational Intelligence Plan for Today Computational Intelligence Winter Term 29/ Organization (Lectures / Tutorials) Overview CI Introduction to ANN McCulloch Pitts Neuron (MCP) Minsky / Papert Perceptron (MPP) Prof. Dr. Günter

More information

Neural Networks Introduction CIS 32

Neural Networks Introduction CIS 32 Neural Networks Introduction CIS 32 Functionalia Office Hours (Last Change!) - Location Moved to 0317 N (Bridges Room) Today: Alpha-Beta Example Neural Networks Learning with T-R Agent (from before) direction

More information

Artificial Neural Network and Fuzzy Logic

Artificial Neural Network and Fuzzy Logic Artificial Neural Network and Fuzzy Logic 1 Syllabus 2 Syllabus 3 Books 1. Artificial Neural Networks by B. Yagnanarayan, PHI - (Cover Topologies part of unit 1 and All part of Unit 2) 2. Neural Networks

More information

Computational Intelligence

Computational Intelligence Plan for Today Computational Intelligence Winter Term 207/8 Organization (Lectures / Tutorials) Overview CI Introduction to ANN McCulloch Pitts Neuron (MCP) Minsky / Papert Perceptron (MPP) Prof. Dr. Günter

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic Quizzes grade (6): average of top n-2 T = today x= hw#x out x= hw#x due mon tue wed thr fri 1 M1 oh 1 8 oh M1 15 oh 1 T 2 oh M2 22 oh PCP oh 2 oh sun oh 29 oh M2 oh = office

More information

CS 256: Neural Computation Lecture Notes

CS 256: Neural Computation Lecture Notes CS 56: Neural Computation Lecture Notes Chapter : McCulloch-Pitts Neural Networks A logical calculus of the ideas immanent in nervous activity M. Minsky s adaptation (Computation: Finite and Infinite Machines,

More information

Building a Computer Adder

Building a Computer Adder Logic Gates are used to translate Boolean logic into circuits. In the abstract it is clear that we can build AND gates that perform the AND function and OR gates that perform the OR function and so on.

More information

cse 311: foundations of computing Spring 2015 Lecture 3: Logic and Boolean algebra

cse 311: foundations of computing Spring 2015 Lecture 3: Logic and Boolean algebra cse 311: foundations of computing Spring 2015 Lecture 3: Logic and Boolean algebra gradescope Homework #1 is up (and has been since Friday). It is due Friday, October 9 th at 11:59pm. You should have received

More information

Simple Neural Nets for Pattern Classification: McCulloch-Pitts Threshold Logic CS 5870

Simple Neural Nets for Pattern Classification: McCulloch-Pitts Threshold Logic CS 5870 Simple Neural Nets for Pattern Classification: McCulloch-Pitts Threshold Logic CS 5870 Jugal Kalita University of Colorado Colorado Springs Fall 2014 Logic Gates and Boolean Algebra Logic gates are used

More information

Preparing for the CS 173 (A) Fall 2018 Midterm 1

Preparing for the CS 173 (A) Fall 2018 Midterm 1 Preparing for the CS 173 (A) Fall 2018 Midterm 1 1 Basic information Midterm 1 is scheduled from 7:15-8:30 PM. We recommend you arrive early so that you can start exactly at 7:15. Exams will be collected

More information

Machine Learning (CS 567) Lecture 3

Machine Learning (CS 567) Lecture 3 Machine Learning (CS 567) Lecture 3 Time: T-Th 5:00pm - 6:20pm Location: GFS 118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

CMSC 313 Lecture 16 Announcement: no office hours today. Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo

CMSC 313 Lecture 16 Announcement: no office hours today. Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo CMSC 33 Lecture 6 nnouncement: no office hours today. Good-bye ssembly Language Programming Overview of second half on Digital Logic DigSim Demo UMC, CMSC33, Richard Chang Good-bye ssembly

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

Last lecture Counter design Finite state machine started vending machine example. Today Continue on the vending machine example Moore/Mealy machines

Last lecture Counter design Finite state machine started vending machine example. Today Continue on the vending machine example Moore/Mealy machines Lecture 2 Logistics HW6 due Wednesday Lab 7 this week (Tuesday exception) Midterm 2 Friday (covers material up to simple FSM (today)) Review on Thursday Yoky office hour on Friday moved to Thursday 2-:2pm

More information

Multi-Dimensional Neural Networks: Unified Theory

Multi-Dimensional Neural Networks: Unified Theory Multi-Dimensional Neural Networks: Unified Theory Garimella Ramamurthy Associate Professor IIIT-Hyderebad India Slide 1 Important Publication Book based on my MASTERPIECE Title: Multi-Dimensional Neural

More information

Methods of Mathematics

Methods of Mathematics Methods of Mathematics Kenneth A. Ribet UC Berkeley Math 10B April 19, 2016 There is a new version of the online textbook file Matrix_Algebra.pdf. The next breakfast will be two days from today, April

More information

Generalized FSM model: Moore and Mealy

Generalized FSM model: Moore and Mealy Lecture 18 Logistics HW7 is due on Monday (and topic included in midterm 2) Midterm 2 on Wednesday in lecture slot cover materials up to today s lecture Review session Tuesday 4:15pm in EEB125 Last lecture

More information

Finite Automata. Warren McCulloch ( ) and Walter Pitts ( )

Finite Automata. Warren McCulloch ( ) and Walter Pitts ( ) 2 C H A P T E R Finite Automata Warren McCulloch (898 968) and Walter Pitts (923 969) Warren S. McCulloch was an American psychiatrist and neurophysiologist who co-founded Cybernetics. His greatest contributions

More information

Neural networks. Chapter 20. Chapter 20 1

Neural networks. Chapter 20. Chapter 20 1 Neural networks Chapter 20 Chapter 20 1 Outline Brains Neural networks Perceptrons Multilayer networks Applications of neural networks Chapter 20 2 Brains 10 11 neurons of > 20 types, 10 14 synapses, 1ms

More information

CMSC 313 Lecture 17. Focus Groups. Announcement: in-class lab Thu 10/30 Homework 3 Questions Circuits for Addition Midterm Exam returned

CMSC 313 Lecture 17. Focus Groups. Announcement: in-class lab Thu 10/30 Homework 3 Questions Circuits for Addition Midterm Exam returned Focus Groups CMSC 33 Lecture 7 Need good sample of all types of CS students Mon /7 & Thu /2, 2:3p-2:p & 6:p-7:3p Announcement: in-class lab Thu /3 Homework 3 Questions Circuits for Addition Midterm Exam

More information

CSE 105 Theory of Computation

CSE 105 Theory of Computation CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Today s agenda Formal definition of DFA DFA design Regular languages Closure properties of the regular languages

More information

Ph 1a Fall General Information

Ph 1a Fall General Information Ph 1a Fall 2017 General Information Lecturer Jonas Zmuidzinas 306 Cahill, Ext. 6229, jonas@caltech.edu Lectures are on Wednesdays and Fridays, 11:00-11:55 am, in 201 E. Bridge. Course Administrator Meagan

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Boolean Algebra CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

Are Rosenblatt multilayer perceptrons more powerfull than sigmoidal multilayer perceptrons? From a counter example to a general result

Are Rosenblatt multilayer perceptrons more powerfull than sigmoidal multilayer perceptrons? From a counter example to a general result Are Rosenblatt multilayer perceptrons more powerfull than sigmoidal multilayer perceptrons? From a counter example to a general result J. Barahona da Fonseca Department of Electrical Engineering, Faculty

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.02 Problem Set 1 Due Thursday

More information

BOOLEAN ALGEBRA INTRODUCTION SUBSETS

BOOLEAN ALGEBRA INTRODUCTION SUBSETS BOOLEAN ALGEBRA M. Ragheb 1/294/2018 INTRODUCTION Modern algebra is centered around the concept of an algebraic system: A, consisting of a set of elements: ai, i=1, 2,, which are combined by a set of operations

More information

Neural networks. Chapter 20, Section 5 1

Neural networks. Chapter 20, Section 5 1 Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of

More information

Information Storage and Spintronics 02

Information Storage and Spintronics 02 Information Storage and Spintronics 02 tsufumi Hirohata Department of Electronic Engineering 09:00 Tuesday, 02/October/2018 (J/Q 004) Contents of Information Storage and Spintronics Lectures : tsufumi

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: Computer Organization and Architecture Lecture 6 - Combinational Logic Introduction A combinational circuit consists of input variables, logic gates, and output variables. The logic gates accept

More information

1 Two-Way Deterministic Finite Automata

1 Two-Way Deterministic Finite Automata 1 Two-Way Deterministic Finite Automata 1.1 Introduction Hing Leung 1 In 1943, McCulloch and Pitts [4] published a pioneering work on a model for studying the behavior of the nervous systems. Following

More information

Computer Science. 19. Combinational Circuits. Computer Science COMPUTER SCIENCE. Section 6.1.

Computer Science. 19. Combinational Circuits. Computer Science COMPUTER SCIENCE. Section 6.1. COMPUTER SCIENCE S E D G E W I C K / W A Y N E PA R T I I : A L G O R I T H M S, M A C H I N E S, a n d T H E O R Y Computer Science Computer Science An Interdisciplinary Approach Section 6.1 ROBERT SEDGEWICK

More information

Math Book 20. Multiplication Level 2. Multiplying numbers 7-12

Math Book 20. Multiplication Level 2. Multiplying numbers 7-12 Math Book 0 Multiplication Level Multiplying numbers - Multiplication using and values between 0 and 0 0 If Cassandra has to practice the piano for hours each month, how many hours would she practice in

More information

Stat 406: Algorithms for classification and prediction. Lecture 1: Introduction. Kevin Murphy. Mon 7 January,

Stat 406: Algorithms for classification and prediction. Lecture 1: Introduction. Kevin Murphy. Mon 7 January, 1 Stat 406: Algorithms for classification and prediction Lecture 1: Introduction Kevin Murphy Mon 7 January, 2008 1 1 Slides last updated on January 7, 2008 Outline 2 Administrivia Some basic definitions.

More information

CE213 Artificial Intelligence Lecture 13

CE213 Artificial Intelligence Lecture 13 CE213 Artificial Intelligence Lecture 13 Neural Networks What is a Neural Network? Why Neural Networks? (New Models and Algorithms for Problem Solving) McCulloch-Pitts Neural Nets Learning Using The Delta

More information

Lecture 7 Artificial neural networks: Supervised learning

Lecture 7 Artificial neural networks: Supervised learning Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

Artificial Neural Networks. Historical description

Artificial Neural Networks. Historical description Artificial Neural Networks Historical description Victor G. Lopez 1 / 23 Artificial Neural Networks (ANN) An artificial neural network is a computational model that attempts to emulate the functions of

More information

Binary addition example worked out

Binary addition example worked out Binary addition example worked out Some terms are given here Exercise: what are these numbers equivalent to in decimal? The initial carry in is implicitly 0 1 1 1 0 (Carries) 1 0 1 1 (Augend) + 1 1 1 0

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic T = today x= hw#x out x= hw#x due mon tue wed thr fri 30 M1 1 6 oh M1 oh 13 oh 1 oh 2M2M 20 oh oh 2 T Mx= MQx out 27 oh M2 oh oh = office hours 4 3 11 oh 3 4 oh oh midterms

More information

CSE140: Digital Logic Design Registers and Counters

CSE140: Digital Logic Design Registers and Counters CSE14: Digital Logic Design Registers and Counters Prof. Tajana Simunic Rosing 38 Where we are now. What we covered last time: ALUs, SR Latch Latches and FlipFlops (FFs) Registers What we ll do next FSMs

More information

CSE 20 DISCRETE MATH WINTER

CSE 20 DISCRETE MATH WINTER CSE 20 DISCRETE MATH WINTER 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Reminders Homework 3 due Sunday at noon Exam 1 in one week One note card can be used. Bring photo ID. Review sessions Thursday

More information

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Artificial Neural Networks Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ NAND and NOR Logic Networks CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander

More information

Networks of McCulloch-Pitts Neurons

Networks of McCulloch-Pitts Neurons s Lecture 4 Netorks of McCulloch-Pitts Neurons The McCulloch and Pitts (M_P) Neuron x x sgn x n Netorks of M-P Neurons One neuron can t do much on its on, but a net of these neurons x i x i i sgn i ij

More information

Logic Design. Chapter 2: Introduction to Logic Circuits

Logic Design. Chapter 2: Introduction to Logic Circuits Logic Design Chapter 2: Introduction to Logic Circuits Introduction Logic circuits perform operation on digital signal Digital signal: signal values are restricted to a few discrete values Binary logic

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic T = today x= hw#x out mon tue wed thr fri 31 M1 1 7 oh M1 14 oh 1 oh 2M2 oh x= hw#x due 21 oh oh 2 T Mx= MQx out 28 oh M2 oh oh = office hours 5 3 12 oh 3 4 oh oh midterms oh

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ NAND and NOR Logic Networks CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander

More information

CMSC 313 Lecture 15 Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo

CMSC 313 Lecture 15 Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo CMSC 33 Lecture 5 Good-bye ssembly Language Programming Overview of second half on Digital Logic DigSim Demo UMC, CMSC33, Richard Chang Good-bye ssembly Language What a pain! Understand

More information

Circuits. Lecture 11 Uniform Circuit Complexity

Circuits. Lecture 11 Uniform Circuit Complexity Circuits Lecture 11 Uniform Circuit Complexity 1 Recall 2 Recall Non-uniform complexity 2 Recall Non-uniform complexity P/1 Decidable 2 Recall Non-uniform complexity P/1 Decidable NP P/log NP = P 2 Recall

More information

THE MOST IMPORTANT BIT

THE MOST IMPORTANT BIT NEURAL NETWORKS THE MOST IMPORTANT BIT A neural network represents a function f : R d R d 2. Peter Orbanz Applied Data Mining 262 BUILDING BLOCKS Units The basic building block is a node or unit: φ The

More information

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau Last update: October 26, 207 Neural networks CMSC 42: Section 8.7 Dana Nau Outline Applications of neural networks Brains Neural network units Perceptrons Multilayer perceptrons 2 Example Applications

More information

COMP 551 Applied Machine Learning Lecture 14: Neural Networks

COMP 551 Applied Machine Learning Lecture 14: Neural Networks COMP 551 Applied Machine Learning Lecture 14: Neural Networks Instructor: Ryan Lowe (ryan.lowe@mail.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted,

More information

CSC Neural Networks. Perceptron Learning Rule

CSC Neural Networks. Perceptron Learning Rule CSC 302 1.5 Neural Networks Perceptron Learning Rule 1 Objectives Determining the weight matrix and bias for perceptron networks with many inputs. Explaining what a learning rule is. Developing the perceptron

More information

Boolean Algebra & Digital Logic

Boolean Algebra & Digital Logic Boolean Algebra & Digital Logic Boolean algebra was developed by the Englishman George Boole, who published the basic principles in the 1854 treatise An Investigation of the Laws of Thought on Which to

More information

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

MAT01A1: Functions and Mathematical Models

MAT01A1: Functions and Mathematical Models MAT01A1: Functions and Mathematical Models Dr Craig 21 February 2017 Introduction Who: Dr Craig What: Lecturer & course coordinator for MAT01A1 Where: C-Ring 508 acraig@uj.ac.za Web: http://andrewcraigmaths.wordpress.com

More information

THE MULTIPLE-VALUED LOGIC.

THE MULTIPLE-VALUED LOGIC. By Marek Perkowski THE MULTIPLE-VALUED LOGIC. What is it? WHY WE BELIEVE IT HAS A BRIGHT FUTURE. Research topics (not circuit-design oriented) New research areas The need of unification Is this whole a

More information

PHYSICS 100. Introduction to Physics. Bridges the gap between school science and Physics 101, Physics 120, Physics 125 or Physics 140

PHYSICS 100. Introduction to Physics. Bridges the gap between school science and Physics 101, Physics 120, Physics 125 or Physics 140 PHYSICS 100 Introduction to Physics Bridges the gap between school science and Physics 101, Physics 120, Physics 125 or Physics 140 Only for those WITHOUT Physics 12 or equiv. (C+ or better). If you have

More information

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6 Administration Registration Hw3 is out Due on Thursday 10/6 Questions Lecture Captioning (Extra-Credit) Look at Piazza for details Scribing lectures With pay; come talk to me/send email. 1 Projects Projects

More information

Digital Electronics II Mike Brookes Please pick up: Notes from the front desk

Digital Electronics II Mike Brookes Please pick up: Notes from the front desk NOTATION.PPT(10/8/2010) 1.1 Digital Electronics II Mike Brookes Please pick up: Notes from the front desk 1. What does Digital mean? 2. Where is it used? 3. Why is it used? 4. What are the important features

More information

Memory Elements I. CS31 Pascal Van Hentenryck. CS031 Lecture 6 Page 1

Memory Elements I. CS31 Pascal Van Hentenryck. CS031 Lecture 6 Page 1 Memory Elements I CS31 Pascal Van Hentenryck CS031 Lecture 6 Page 1 Memory Elements (I) Combinational devices are good for computing Boolean functions pocket calculator Computers also need to remember

More information

Simultaneous equations for circuit analysis

Simultaneous equations for circuit analysis Simultaneous equations for circuit analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

2009 Spring CS211 Digital Systems & Lab CHAPTER 2: INTRODUCTION TO LOGIC CIRCUITS

2009 Spring CS211 Digital Systems & Lab CHAPTER 2: INTRODUCTION TO LOGIC CIRCUITS CHAPTER 2: INTRODUCTION TO LOGIC CIRCUITS What will we learn? 2 Logic functions and circuits Boolean Algebra Logic gates and Synthesis CAD tools and VHDL Read Section 2.9 and 2.0 Terminology 3 Digital

More information

Digital electronics form a class of circuitry where the ability of the electronics to process data is the primary focus.

Digital electronics form a class of circuitry where the ability of the electronics to process data is the primary focus. Chapter 2 Digital Electronics Objectives 1. Understand the operation of basic digital electronic devices. 2. Understand how to describe circuits which can process digital data. 3. Understand how to design

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Decoders and Encoders CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

Multiple Threshold Neural Logic

Multiple Threshold Neural Logic Multiple Threshold Neural Logic Vasken Bohossian Jehoshua Bruck ~mail: California Institute of Technology Mail Code 136-93 Pasadena, CA 91125 {vincent, bruck}~paradise.caltech.edu Abstract We introduce

More information

ECE/CS 250: Computer Architecture. Basics of Logic Design: Boolean Algebra, Logic Gates. Benjamin Lee

ECE/CS 250: Computer Architecture. Basics of Logic Design: Boolean Algebra, Logic Gates. Benjamin Lee ECE/CS 250: Computer Architecture Basics of Logic Design: Boolean Algebra, Logic Gates Benjamin Lee Slides based on those from Alvin Lebeck, Daniel Sorin, Andrew Hilton, Amir Roth, Gershon Kedem Admin

More information

CDS 110b: Lecture 2-1 Linear Quadratic Regulators

CDS 110b: Lecture 2-1 Linear Quadratic Regulators CDS 110b: Lecture 2-1 Linear Quadratic Regulators Richard M. Murray 11 January 2006 Goals: Derive the linear quadratic regulator and demonstrate its use Reading: Friedland, Chapter 9 (different derivation,

More information

y k = (a)synaptic f(x j ) link linear i/p o/p relation (b) Activation link linear i/p o/p relation

y k = (a)synaptic f(x j ) link linear i/p o/p relation (b) Activation link linear i/p o/p relation Neural networks viewed as directed graph - Signal flow graph: w j f(.) x j y k = w kj x j x j y k = (a)synaptic f(x j ) link linear i/p o/p relation (b) Activation link linear i/p o/p relation y i x j

More information

Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall Final Examination

Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall Final Examination Department of Electrical and Computer Engineering University of Wisconsin Madison ECE 553: Testing and Testable Design of Digital Systems Fall 2013-2014 Final Examination CLOSED BOOK Kewal K. Saluja Date:

More information

EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization

EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Discrete Systems Lecture: Automata, State machines, Circuits Stavros Tripakis University of California, Berkeley Stavros

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Design Examples CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Statistical NLP for the Web

Statistical NLP for the Web Statistical NLP for the Web Neural Networks, Deep Belief Networks Sameer Maskey Week 8, October 24, 2012 *some slides from Andrew Rosenberg Announcements Please ask HW2 related questions in courseworks

More information

Implementing an Intelligent Error Back Propagation (EBP) Relay in PSCAD TM /EMTDC 4.2.1

Implementing an Intelligent Error Back Propagation (EBP) Relay in PSCAD TM /EMTDC 4.2.1 1 Implementing an Intelligent Error Back Propagation (EBP) Relay in PSCAD TM /EMTDC 4.2.1 E. William, IEEE Student Member, Brian K Johnson, IEEE Senior Member, M. Manic, IEEE Senior Member Abstract Power

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 1: Quantum circuits and the abelian QFT

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 1: Quantum circuits and the abelian QFT Quantum algorithms (CO 78, Winter 008) Prof. Andrew Childs, University of Waterloo LECTURE : Quantum circuits and the abelian QFT This is a course on quantum algorithms. It is intended for graduate students

More information

CN2 1: Introduction. Paul Gribble. Sep 10,

CN2 1: Introduction. Paul Gribble. Sep 10, CN2 1: Introduction Paul Gribble http://gribblelab.org Sep 10, 2012 Administrivia Class meets Mondays, 2:00pm - 3:30pm and Thursdays, 11:30am - 1:00pm, in NSC 245A Contact me with any questions or to set

More information

CHEM 115 Lewis Structures Model

CHEM 115 Lewis Structures Model CHEM 115 Lewis Structures Model Please see Important Announcements slide inside for more details on the following: Lecture 22 Prof. Sevian Exam 3 is postponed to May 6 in order to give you the opportunity

More information

ECE 342 Electronic Circuits. Lecture 34 CMOS Logic

ECE 342 Electronic Circuits. Lecture 34 CMOS Logic ECE 34 Electronic Circuits Lecture 34 CMOS Logic Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 De Morgan s Law Digital Logic - Generalization ABC... ABC...

More information

HONORS LINEAR ALGEBRA (MATH V 2020) SPRING 2013

HONORS LINEAR ALGEBRA (MATH V 2020) SPRING 2013 HONORS LINEAR ALGEBRA (MATH V 2020) SPRING 2013 PROFESSOR HENRY C. PINKHAM 1. Prerequisites The only prerequisite is Calculus III (Math 1201) or the equivalent: the first semester of multivariable calculus.

More information