y k = (a)synaptic f(x j ) link linear i/p o/p relation (b) Activation link linear i/p o/p relation

Size: px
Start display at page:

Download "y k = (a)synaptic f(x j ) link linear i/p o/p relation (b) Activation link linear i/p o/p relation"

Transcription

1 Neural networks viewed as directed graph - Signal flow graph: w j f(.) x j y k = w kj x j x j y k = (a)synaptic f(x j ) link linear i/p o/p relation (b) Activation link linear i/p o/p relation y i x j y k = y i + y j x j y j (c) Node signal = algebraic sum of signals x j (d) A signal at a node is transmitted to each outgoing link Fig. (6) Signal flow graph component Using these rules we may construct the signal flow diagram x 0 x w w 0 =b k f(.) w 2 v k y k w m x m Fig. (7) signal flow graph of a neuron A reduced form of this graph is shown in fig. (8). This graph describes the layout of the neural network referred to as an architectural graph. x 0 x x m Fig. (8) Architectural graph of a neural y k 8

2 Feedback Feedback is said to exist in a dynamic system whenever the output of an element in the system influences in part the input applied to that particular element, thereby giving rise to one or more closed paths for the transmission of signals around the system. Fig. (9) shows the sign al flow graph of a single loop feedback system, x`j(n) A x j (n) y k (n) B Fig. (9) Signal flow graph of a single loop feedback system Where, x j (n) is the input signal, x`j(n) is the internal signal y k (n) is the output signal These signals are functions of the discrete time variable (n). The system is assumed to be linear, consisting of forward path and feedback path that are characterized by the operators A and B respectively. From figure (9) y k (n) = A [x`j(n)] () and x`j(n) = x j (n) + B[y k (n)]..(2) from eq. () y k A ( n) [ x j ( n)] (3) AB A/(-AB) is the closed loop operator of the system and AB is the open loop operator which non-commutative in that BA AB. Now consider A as a fixed weight W, B is a unit-delay operator z -, whose output is delayed with respect to the input by one time unit. We may then express the closed loop operator of the system as: 9

3 A AB w wz w( wz ) (4) Using binomial expansion for ( wz - ) -, we may rewrite the closedloop operator of the system as: A AB w l 0 w l z l.(5) Substituting eq. (5) into eq. (3), y ( n) w k l 0 l w z l [ x j ( n)] (6) From the definition of z -, we have z -l [x j (n)] = x j (n-l)..(7) where x j (n-l) is a sample of the input signal delayed by l time units. Accordingly, we may express the output signal y k (n) as an infinite weighted summation of present and past samples of the input signal x j (n), as shown by: y k ( n) l 0 w l x j ( n l) (8) We now see clearly that the dynamic behavior of a feedback system represented by the signal-flow graph of fig. (0) is contro lled by the weight w. 20

4 x j (n) x`j(n) w y k (n) (a) z - x j (n) z - x j (n-) z - z - w 2 w w N-2 w N- w (b) Fig. (0) (a) signal-flow graph of first-order, infinite-duration impulse response IIR filter. (b) Feedforward approximation of part (a) of the figure, obtained by truncating eq. (6) In particular two specific cases can be distinguished: - w <, the output signal y k (n) is exponentially convergent, that is the system is stable. This case is illustrated in fig. -a for a positive w. 2- w, the output signal y k (n) is divergent, that is, the system is unstable. If w = the divergence is linear, as in fig. -b, and if w > the divergence is exponential, as in fig. -c. y k (n) yk(n) yk(n) yk(n) n n n (a) stable w < (positive) (b) w =(linear divergence) (c) w > exponential divergence Fig. () the response of fig. (0) for 3 different values of w. 2

5 Now, suppose that, for some power N, w is small enough relative to the unity such that w N is negligible for all practical purpose. In such situation we may approximate the output y k by finite sum N y ( n) w k l 0 l x j ( n l) = wx j (n) + w 2 x j (n-) + w 3 x j (n-2) + + w N x j (n-n+) Network Architecture In general, we may identify three fundamentally different classes of network architectures: - Single layer feedforward networks: In a layered neural network, the neurons are organized in the form of layers. In the simplest form of a layered network, we have an input layer of source nodes that projects directly onto an output layer of neurons, (computation nodes), but not vice versa. In other words, this network of a feedforward type. Fig. (2) illustrated four nodes in both the input and the output layers. Such a network is called a single-layer network. With the designation single layer referring to the output layer of computation nodes (neurons). We do not count the input layer of source nodes because no computation is performed there. Fig. (2) Feedforward network with a single layer of neurons Input layer of source node output layer of neurons 22

6 Example-: Design neural network represents basic Boolean function AND with two input variables and bias, using the threshold function as the output activation function. Sol: Let x, be the two input variables, w 0 the weight of the bias and y the output of the N.N. Since the output of the AND gate is only when x and x2 are s, this will lead to the following: w x + w 2 + w 0 0, for y = 0 w x + w 2 + w 0 > 0, for y = x w x + w 2 y w w 0 (w + w 0 ) 0 0 w 2 0 (w 2 + w 0 ) 0 w + w 2 (w + w 2 + w 0 ) > 0 From the table we can recognize that w 0 is negative value, and (w + w 2 + w 0 ) should be positive, thus, w = w 2 =, and w 0 = -.5 will satisfy the required conditions. x 0 w 0 = -.5 x w = y k w 2 = Example-2: As example- but for OR function Sol: The output of OR function is except for x = =0 x w x + w 2 y w w (w + w 0 ) > 0 0 w 2 (w 2 + w 0 ) > 0 w + w 2 (w + w 2 + w 0 ) > 0 23

7 w = w 2 =, and w 0 = -0.5 will satisfy the required conditions. x 0 w 0 = -0.5 x w = y k w 2 = Example-3 : As example-2 but for NOR function Sol: x w x + w 2 y w 0 > 0 0 w 0 (w + w 0 ) 0 w < 0 0 w 2 0 (w 2 + w 0 ) 0 w 2 < 0 w + w 2 0 (w + w 2 + w 0 ) 0 Thus, w = w 2 = -, and w 0 = 0.5will satisfy the required conditions x 0 w 0 = 0.5 x w = - y k w 2 = - H.W: Design N.N that can perform the following logic unit, using threshold function as an activation function (a) with bias, (b) without bias x y

8 2- Multi-layer feedforward networks The second class of a feedforward N.N distinguishes it self by the presence of one or more hidden layers. - The source nodes in the input layer of the network constitute the input signals applied to the neurons in the 2 nd. Layer (i.e., the first hidden layer). The output signals of the second layer are used as input to the 3 rd. layer, and so on for the rest of the network. - Figure (3) shows fully connected feedforwar d network with one hidden layer and one output layer. layer of hidden neurons output layer of neurons Input layer of source node Figure (3) Fully connected multilayer feedforward network - A feedforward network with: m source node, h neurons in the first hidden layer, h2 neurons in the second hidden layer, and q neurons in the output layer, is referred to as an m-h-h2-q network. - As an example, the network illustrated in fig. (3) is referred to as an network. 25

9 Example-4: A simple example often given to illustrate the behavior of multilayer feedforward N.Ns is the one used to implement the XOR (exclusive OR) function. Such a function can be obtained in several ways, such as, x w 4 w 3 w 23 w 34 x 3 x 4 w 24 x 3 y w 4 x + w 24 + w 34 x 3 x w 3 x + w w 3 sgn(w 3 ) (w 4 + w 34 sgn(w 3 )) > 0 0 w 23 sgn(w 23 ) (w 24 + w 34 sgn(w 23 )) > 0 w 3 + w 23 sgn(w 3 + w 23 ) 0 (w 4 + w 24 + w 34 sgn(w 3 +w 23 )) 0 Starting from last pattern, if sgn(w 3 + w 23 )>0 then x3=, and if w 34 >0, then w 4 + w 24 > w 34, and (w 4 + w 24 ) < 0..(*) Now let w 3 = w 23 =, adding the output of pattern 2 to pattern 3: ((w 4 + w 34 sgn(w 3 )) + (w 24 + w 34 sgn(w 23 ))) > 0 ((w 4 + w 24 ) + w 34 (sgn(w 3 ) + sgn(w 23 ))) > 0 ((w 4 + w 24 ) + w 34 ( + )) > 0 ((w 4 + w 24 ) + 2w 34 ) > 0 From eq. (*) we have (w 4 + w 24 ) < 0 Let w 4 = w 24 = -, then 2w 34 should be > 2, i. e., w 34 >, say. 26

10 Another N.N example for XOR function is as illustrated in the figure: x - - x 3 x 4 x5 H.W: Find the suitable weights to represent the XOR for (a) threshold =, (b) threshold = 2. x w w 5 w 3 w 4 w 2 w 6 Example-5: This example presents the analysis of a two-layer feedforward N.N having the bipolar binary function ( -, +) as an activation function. Find the output for the given network and the input pattern to each layer. x - -2 O O 2 O O 5 x 3 = O 4 Input layer of 3 source node Layer of 4 hidden neurons Layer 2 of single o/p neurons Sol: For the first layer, the input, output vectors and the weight matrix, respectively are: X = [ x -] T 27

11 O = [ o o 2 o 3 o 4 ] T similarly for the second layer: w w2 w3 0 W = w2 w22 w32 = w3 w23 w w4 w24 w X = [ o o 2 o 3 o 4 ] T O = [o 5 ] W 2T = [ -3.5] The response of the first layer can be computed for bipolar binary activation function as: O = W X = 0 x sgn(x -) x2 = sgn(-x +2) sgn( ) sgn(- +3) The response of the second layer can easily be obtained as: o 5 = sgn(o + o 2 + o 3 + o 4-3.5) Note that y = o 5 (fifth neuron) responds + if and only if o =o 2 = o 3 =o 4 = 28

12 3- Recurrent Networks A recurrent network distinguishes it self from a feedforward neural network in that it has at least one feedback loop. Fig. (4) illustrates a recurrent neural network with hidden neurons. The feedback connections shown in the figure originate from the hidden neurons as well as from the output neurons. z - z - z - Output z - Unit delay time operator Input Figure (4) Recurrent network with hidden neurons 29

Reification of Boolean Logic

Reification of Boolean Logic 526 U1180 neural networks 1 Chapter 1 Reification of Boolean Logic The modern era of neural networks began with the pioneer work of McCulloch and Pitts (1943). McCulloch was a psychiatrist and neuroanatomist;

More information

2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net.

2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net. 2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net. - For an autoassociative net, the training input and target output

More information

Simple Neural Nets for Pattern Classification: McCulloch-Pitts Threshold Logic CS 5870

Simple Neural Nets for Pattern Classification: McCulloch-Pitts Threshold Logic CS 5870 Simple Neural Nets for Pattern Classification: McCulloch-Pitts Threshold Logic CS 5870 Jugal Kalita University of Colorado Colorado Springs Fall 2014 Logic Gates and Boolean Algebra Logic gates are used

More information

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD WHAT IS A NEURAL NETWORK? The simplest definition of a neural network, more properly referred to as an 'artificial' neural network (ANN), is provided

More information

XOR - XNOR Gates. The graphic symbol and truth table of XOR gate is shown in the figure.

XOR - XNOR Gates. The graphic symbol and truth table of XOR gate is shown in the figure. XOR - XNOR Gates Lesson Objectives: In addition to AND, OR, NOT, NAND and NOR gates, exclusive-or (XOR) and exclusive-nor (XNOR) gates are also used in the design of digital circuits. These have special

More information

Artificial Neural Network and Fuzzy Logic

Artificial Neural Network and Fuzzy Logic Artificial Neural Network and Fuzzy Logic 1 Syllabus 2 Syllabus 3 Books 1. Artificial Neural Networks by B. Yagnanarayan, PHI - (Cover Topologies part of unit 1 and All part of Unit 2) 2. Neural Networks

More information

CSC321 Lecture 5: Multilayer Perceptrons

CSC321 Lecture 5: Multilayer Perceptrons CSC321 Lecture 5: Multilayer Perceptrons Roger Grosse Roger Grosse CSC321 Lecture 5: Multilayer Perceptrons 1 / 21 Overview Recall the simple neuron-like unit: y output output bias i'th weight w 1 w2 w3

More information

Simple Neural Nets For Pattern Classification

Simple Neural Nets For Pattern Classification CHAPTER 2 Simple Neural Nets For Pattern Classification Neural Networks General Discussion One of the simplest tasks that neural nets can be trained to perform is pattern classification. In pattern classification

More information

Lecture 7 Artificial neural networks: Supervised learning

Lecture 7 Artificial neural networks: Supervised learning Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE 4: Linear Systems Summary # 3: Introduction to artificial neural networks DISTRIBUTED REPRESENTATION An ANN consists of simple processing units communicating with each other. The basic elements of

More information

Course 395: Machine Learning - Lectures

Course 395: Machine Learning - Lectures Course 395: Machine Learning - Lectures Lecture 1-2: Concept Learning (M. Pantic) Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis) Lecture 5-6: Evaluating Hypotheses (S. Petridis) Lecture

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

Neural networks. Chapter 20, Section 5 1

Neural networks. Chapter 20, Section 5 1 Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Eung Je Woo Department of Biomedical Engineering Impedance Imaging Research Center (IIRC) Kyung Hee University Korea ejwoo@khu.ac.kr Neuron and Neuron Model McCulloch and Pitts

More information

Ch.8 Neural Networks

Ch.8 Neural Networks Ch.8 Neural Networks Hantao Zhang http://www.cs.uiowa.edu/ hzhang/c145 The University of Iowa Department of Computer Science Artificial Intelligence p.1/?? Brains as Computational Devices Motivation: Algorithms

More information

Artificial Neural Networks. Part 2

Artificial Neural Networks. Part 2 Artificial Neural Netorks Part Artificial Neuron Model Folloing simplified model of real neurons is also knon as a Threshold Logic Unit x McCullouch-Pitts neuron (943) x x n n Body of neuron f out Biological

More information

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November.

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. COGS Q250 Fall 2012 Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. For the first two questions of the homework you will need to understand the learning algorithm using the delta

More information

Neural networks. Chapter 20. Chapter 20 1

Neural networks. Chapter 20. Chapter 20 1 Neural networks Chapter 20 Chapter 20 1 Outline Brains Neural networks Perceptrons Multilayer networks Applications of neural networks Chapter 20 2 Brains 10 11 neurons of > 20 types, 10 14 synapses, 1ms

More information

Chapter 2: Boolean Algebra and Logic Gates

Chapter 2: Boolean Algebra and Logic Gates Chapter 2: Boolean Algebra and Logic Gates Mathematical methods that simplify binary logics or circuits rely primarily on Boolean algebra. Boolean algebra: a set of elements, a set of operators, and a

More information

22c145-Fall 01: Neural Networks. Neural Networks. Readings: Chapter 19 of Russell & Norvig. Cesare Tinelli 1

22c145-Fall 01: Neural Networks. Neural Networks. Readings: Chapter 19 of Russell & Norvig. Cesare Tinelli 1 Neural Networks Readings: Chapter 19 of Russell & Norvig. Cesare Tinelli 1 Brains as Computational Devices Brains advantages with respect to digital computers: Massively parallel Fault-tolerant Reliable

More information

Neural Nets in PR. Pattern Recognition XII. Michal Haindl. Outline. Neural Nets in PR 2

Neural Nets in PR. Pattern Recognition XII. Michal Haindl. Outline. Neural Nets in PR 2 Neural Nets in PR NM P F Outline Motivation: Pattern Recognition XII human brain study complex cognitive tasks Michal Haindl Faculty of Information Technology, KTI Czech Technical University in Prague

More information

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

Chapter 2. Boolean Algebra and Logic Gates

Chapter 2. Boolean Algebra and Logic Gates Chapter 2 Boolean Algebra and Logic Gates Basic Definitions A binary operator defined on a set S of elements is a rule that assigns, to each pair of elements from S, a unique element from S. The most common

More information

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Artificial Neural Networks Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Backpropagation Neural Net

Backpropagation Neural Net Backpropagation Neural Net As is the case with most neural networks, the aim of Backpropagation is to train the net to achieve a balance between the ability to respond correctly to the input patterns that

More information

CHAPTER 12 Boolean Algebra

CHAPTER 12 Boolean Algebra 318 Chapter 12 Boolean Algebra CHAPTER 12 Boolean Algebra SECTION 12.1 Boolean Functions 2. a) Since x 1 = x, the only solution is x = 0. b) Since 0 + 0 = 0 and 1 + 1 = 1, the only solution is x = 0. c)

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson JUST THE MATHS UNIT NUMBER.5 DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) by A.J.Hobson.5. Maclaurin s series.5. Standard series.5.3 Taylor s series.5.4 Exercises.5.5 Answers to exercises

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Neural Networks Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart

More information

Fundamentals of Neural Networks

Fundamentals of Neural Networks Fundamentals of Neural Networks : Soft Computing Course Lecture 7 14, notes, slides www.myreaders.info/, RC Chakraborty, e-mail rcchak@gmail.com, Aug. 10, 2010 http://www.myreaders.info/html/soft_computing.html

More information

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau Last update: October 26, 207 Neural networks CMSC 42: Section 8.7 Dana Nau Outline Applications of neural networks Brains Neural network units Perceptrons Multilayer perceptrons 2 Example Applications

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

CE213 Artificial Intelligence Lecture 13

CE213 Artificial Intelligence Lecture 13 CE213 Artificial Intelligence Lecture 13 Neural Networks What is a Neural Network? Why Neural Networks? (New Models and Algorithms for Problem Solving) McCulloch-Pitts Neural Nets Learning Using The Delta

More information

BOOLEAN ALGEBRA INTRODUCTION SUBSETS

BOOLEAN ALGEBRA INTRODUCTION SUBSETS BOOLEAN ALGEBRA M. Ragheb 1/294/2018 INTRODUCTION Modern algebra is centered around the concept of an algebraic system: A, consisting of a set of elements: ai, i=1, 2,, which are combined by a set of operations

More information

Artificial Neural Networks

Artificial Neural Networks Introduction ANN in Action Final Observations Application: Poverty Detection Artificial Neural Networks Alvaro J. Riascos Villegas University of los Andes and Quantil July 6 2018 Artificial Neural Networks

More information

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS Contents: 3.1 Introduction IIR Filters 3.2 Transformation Function Derivation 3.3 Review of Analog IIR Filters 3.3.1 Butterworth

More information

CSC 411 Lecture 10: Neural Networks

CSC 411 Lecture 10: Neural Networks CSC 411 Lecture 10: Neural Networks Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla University of Toronto UofT CSC 411: 10-Neural Networks 1 / 35 Inspiration: The Brain Our brain has 10 11

More information

Unit III. A Survey of Neural Network Model

Unit III. A Survey of Neural Network Model Unit III A Survey of Neural Network Model 1 Single Layer Perceptron Perceptron the first adaptive network architecture was invented by Frank Rosenblatt in 1957. It can be used for the classification of

More information

Multi-Dimensional Neural Networks: Unified Theory

Multi-Dimensional Neural Networks: Unified Theory Multi-Dimensional Neural Networks: Unified Theory Garimella Ramamurthy Associate Professor IIIT-Hyderebad India Slide 1 Important Publication Book based on my MASTERPIECE Title: Multi-Dimensional Neural

More information

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary Number System Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary BOOLEAN ALGEBRA BOOLEAN LOGIC OPERATIONS Logical AND Logical OR Logical COMPLEMENTATION

More information

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes CS 6501: Deep Learning for Computer Graphics Basics of Neural Networks Connelly Barnes Overview Simple neural networks Perceptron Feedforward neural networks Multilayer perceptron and properties Autoencoders

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks 鮑興國 Ph.D. National Taiwan University of Science and Technology Outline Perceptrons Gradient descent Multi-layer networks Backpropagation Hidden layer representations Examples

More information

UNIT 1. SIGNALS AND SYSTEM

UNIT 1. SIGNALS AND SYSTEM Page no: 1 UNIT 1. SIGNALS AND SYSTEM INTRODUCTION A SIGNAL is defined as any physical quantity that changes with time, distance, speed, position, pressure, temperature or some other quantity. A SIGNAL

More information

Fundamentals of Digital Design

Fundamentals of Digital Design Fundamentals of Digital Design Digital Radiation Measurement and Spectroscopy NE/RHP 537 1 Binary Number System The binary numeral system, or base-2 number system, is a numeral system that represents numeric

More information

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 )

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 ) Review: Poles and Zeros of Fractional Form Let H() = P()/Q() be the system function of a rational form. Let us represent both P() and Q() as polynomials of (not - ) Then Poles: the roots of Q()=0 Zeros:

More information

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6 Machine Learning for Large-Scale Data Analysis and Decision Making 80-629-17A Neural Networks Week #6 Today Neural Networks A. Modeling B. Fitting C. Deep neural networks Today s material is (adapted)

More information

Artificial Neural Networks Examination, June 2004

Artificial Neural Networks Examination, June 2004 Artificial Neural Networks Examination, June 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates Chapter 2 Boolean Algebra and Logic Gates Huntington Postulates 1. (a) Closure w.r.t. +. (b) Closure w.r.t.. 2. (a) Identity element 0 w.r.t. +. x + 0 = 0 + x = x. (b) Identity element 1 w.r.t.. x 1 =

More information

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Lecture - 27 Multilayer Feedforward Neural networks with Sigmoidal

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

Temporal Backpropagation for FIR Neural Networks

Temporal Backpropagation for FIR Neural Networks Temporal Backpropagation for FIR Neural Networks Eric A. Wan Stanford University Department of Electrical Engineering, Stanford, CA 94305-4055 Abstract The traditional feedforward neural network is a static

More information

Chapter 4 Sequences and Series

Chapter 4 Sequences and Series Chapter 4 Sequences and Series 4.1 Sequence Review Sequence: a set of elements (numbers or letters or a combination of both). The elements of the set all follow the same rule (logical progression). The

More information

4.0 Update Algorithms For Linear Closed-Loop Systems

4.0 Update Algorithms For Linear Closed-Loop Systems 4. Update Algorithms For Linear Closed-Loop Systems A controller design methodology has been developed that combines an adaptive finite impulse response (FIR) filter with feedback. FIR filters are used

More information

CSC9R6 Computer Design. Practical Digital Logic

CSC9R6 Computer Design. Practical Digital Logic CSC9R6 Computer Design Practical Digital Logic 1 References (for this part of CSC9R6) Hamacher et al: Computer Organization App A. In library Floyd: Digital Fundamentals Ch 1, 3-6, 8-10 web page: www.prenhall.com/floyd/

More information

Unit 8: Introduction to neural networks. Perceptrons

Unit 8: Introduction to neural networks. Perceptrons Unit 8: Introduction to neural networks. Perceptrons D. Balbontín Noval F. J. Martín Mateos J. L. Ruiz Reina A. Riscos Núñez Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad

More information

Boolean Algebra & Logic Gates. By : Ali Mustafa

Boolean Algebra & Logic Gates. By : Ali Mustafa Boolean Algebra & Logic Gates By : Ali Mustafa Digital Logic Gates There are three fundamental logical operations, from which all other functions, no matter how complex, can be derived. These Basic functions

More information

Cosc 3451 Signals and Systems. What is a system? Systems Terminology and Properties of Systems

Cosc 3451 Signals and Systems. What is a system? Systems Terminology and Properties of Systems Cosc 3451 Signals and Systems Systems Terminology and Properties of Systems What is a system? an entity that manipulates one or more signals to yield new signals (often to accomplish a function) can be

More information

COMP 551 Applied Machine Learning Lecture 14: Neural Networks

COMP 551 Applied Machine Learning Lecture 14: Neural Networks COMP 551 Applied Machine Learning Lecture 14: Neural Networks Instructor: Ryan Lowe (ryan.lowe@mail.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted,

More information

SPSS, University of Texas at Arlington. Topics in Machine Learning-EE 5359 Neural Networks

SPSS, University of Texas at Arlington. Topics in Machine Learning-EE 5359 Neural Networks Topics in Machine Learning-EE 5359 Neural Networks 1 The Perceptron Output: A perceptron is a function that maps D-dimensional vectors to real numbers. For notational convenience, we add a zero-th dimension

More information

Revision: Neural Network

Revision: Neural Network Revision: Neural Network Exercise 1 Tell whether each of the following statements is true or false by checking the appropriate box. Statement True False a) A perceptron is guaranteed to perfectly learn

More information

Boolean Algebra, Gates and Circuits

Boolean Algebra, Gates and Circuits Boolean Algebra, Gates and Circuits Kasper Brink November 21, 2017 (Images taken from Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc.) Outline Last week: Von

More information

Machine Learning. Neural Networks

Machine Learning. Neural Networks Machine Learning Neural Networks Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 Biological Analogy Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 THE

More information

CSC242: Intro to AI. Lecture 21

CSC242: Intro to AI. Lecture 21 CSC242: Intro to AI Lecture 21 Administrivia Project 4 (homeworks 18 & 19) due Mon Apr 16 11:59PM Posters Apr 24 and 26 You need an idea! You need to present it nicely on 2-wide by 4-high landscape pages

More information

Analog vs. discrete signals

Analog vs. discrete signals Analog vs. discrete signals Continuous-time signals are also known as analog signals because their amplitude is analogous (i.e., proportional) to the physical quantity they represent. Discrete-time signals

More information

Deep Feedforward Networks. Han Shao, Hou Pong Chan, and Hongyi Zhang

Deep Feedforward Networks. Han Shao, Hou Pong Chan, and Hongyi Zhang Deep Feedforward Networks Han Shao, Hou Pong Chan, and Hongyi Zhang Deep Feedforward Networks Goal: approximate some function f e.g., a classifier, maps input to a class y = f (x) x y Defines a mapping

More information

CHAPTER 3. Pattern Association. Neural Networks

CHAPTER 3. Pattern Association. Neural Networks CHAPTER 3 Pattern Association Neural Networks Pattern Association learning is the process of forming associations between related patterns. The patterns we associate together may be of the same type or

More information

3.3 Discrete Hopfield Net An iterative autoassociative net similar to the nets described in the previous sections has been developed by Hopfield

3.3 Discrete Hopfield Net An iterative autoassociative net similar to the nets described in the previous sections has been developed by Hopfield 3.3 Discrete Hopfield Net An iterative autoassociative net similar to the nets described in the previous sections has been developed by Hopfield (1982, 1984). - The net is a fully interconnected neural

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory Announcements Be making progress on your projects! Three Types of Learning Unsupervised Supervised Reinforcement

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

Boolean Algebra and Logic Simplification

Boolean Algebra and Logic Simplification S302 Digital Logic Design Boolean Algebra and Logic Simplification Boolean Analysis of Logic ircuits, evaluating of Boolean expressions, representing the operation of Logic circuits and Boolean expressions

More information

Learning and Memory in Neural Networks

Learning and Memory in Neural Networks Learning and Memory in Neural Networks Guy Billings, Neuroinformatics Doctoral Training Centre, The School of Informatics, The University of Edinburgh, UK. Neural networks consist of computational units

More information

Notes on Back Propagation in 4 Lines

Notes on Back Propagation in 4 Lines Notes on Back Propagation in 4 Lines Lili Mou moull12@sei.pku.edu.cn March, 2015 Congratulations! You are reading the clearest explanation of forward and backward propagation I have ever seen. In this

More information

Prove that if not fat and not triangle necessarily means not green then green must be fat or triangle (or both).

Prove that if not fat and not triangle necessarily means not green then green must be fat or triangle (or both). hapter : oolean lgebra.) Definition of oolean lgebra The oolean algebra is named after George ool who developed this algebra (854) in order to analyze logical problems. n example to such problem is: Prove

More information

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing IT 204 Section 3.0 Boolean Algebra and Digital Logic Boolean Algebra 2 Logic Equations to Truth Tables X = A. B + A. B + AB A B X 0 0 0 0 3 Sum of Products The OR operation performed on the products of

More information

COSC 243. Introduction to Logic And Combinatorial Logic. Lecture 4 - Introduction to Logic and Combinatorial Logic. COSC 243 (Computer Architecture)

COSC 243. Introduction to Logic And Combinatorial Logic. Lecture 4 - Introduction to Logic and Combinatorial Logic. COSC 243 (Computer Architecture) COSC 243 Introduction to Logic And Combinatorial Logic 1 Overview This Lecture Introduction to Digital Logic Gates Boolean algebra Combinatorial Logic Source: Chapter 11 (10 th edition) Source: J.R. Gregg,

More information

Neural Networks Introduction

Neural Networks Introduction Neural Networks Introduction H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011 H. A. Talebi, Farzaneh Abdollahi Neural Networks 1/22 Biological

More information

Artificial neural networks

Artificial neural networks Artificial neural networks Chapter 8, Section 7 Artificial Intelligence, spring 203, Peter Ljunglöf; based on AIMA Slides c Stuart Russel and Peter Norvig, 2004 Chapter 8, Section 7 Outline Brains Neural

More information

NN V: The generalized delta learning rule

NN V: The generalized delta learning rule NN V: The generalized delta learning rule We now focus on generalizing the delta learning rule for feedforward layered neural networks. The architecture of the two-layer network considered below is shown

More information

IST 4 Information and Logic

IST 4 Information and Logic IST 4 Information and Logic mon tue wed thr fri sun T = today 3 M oh x= hw#x out 0 oh M 7 oh oh 2 M2 oh oh x= hw#x due 24 oh oh 2 oh = office hours oh oh M2 8 3 oh midterms oh oh Mx= MQx out 5 oh 3 4 oh

More information

18.6 Regression and Classification with Linear Models

18.6 Regression and Classification with Linear Models 18.6 Regression and Classification with Linear Models 352 The hypothesis space of linear functions of continuous-valued inputs has been used for hundreds of years A univariate linear function (a straight

More information

n=0 xn /n!. That is almost what we have here; the difference is that the denominator is (n + 1)! in stead of n!. So we have x n+1 n=0

n=0 xn /n!. That is almost what we have here; the difference is that the denominator is (n + 1)! in stead of n!. So we have x n+1 n=0 DISCRETE MATHEMATICS HOMEWORK 8 SOL Undergraduate Course Chukechen Honors College Zhejiang University Fall-Winter 204 HOMEWORK 8 P496 6. Find a closed form for the generating function for the sequence

More information

AI Programming CS F-20 Neural Networks

AI Programming CS F-20 Neural Networks AI Programming CS662-2008F-20 Neural Networks David Galles Department of Computer Science University of San Francisco 20-0: Symbolic AI Most of this class has been focused on Symbolic AI Focus or symbols

More information

Introduction to Machine Learning Spring 2018 Note Neural Networks

Introduction to Machine Learning Spring 2018 Note Neural Networks CS 189 Introduction to Machine Learning Spring 2018 Note 14 1 Neural Networks Neural networks are a class of compositional function approximators. They come in a variety of shapes and sizes. In this class,

More information

Lecture 19 IIR Filters

Lecture 19 IIR Filters Lecture 19 IIR Filters Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/5/10 1 General IIR Difference Equation IIR system: infinite-impulse response system The most general class

More information

Artificial Neural Networks Examination, March 2004

Artificial Neural Networks Examination, March 2004 Artificial Neural Networks Examination, March 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat Neural Networks, Computation Graphs CMSC 470 Marine Carpuat Binary Classification with a Multi-layer Perceptron φ A = 1 φ site = 1 φ located = 1 φ Maizuru = 1 φ, = 2 φ in = 1 φ Kyoto = 1 φ priest = 0 φ

More information

Artificial Neural Network : Training

Artificial Neural Network : Training Artificial Neural Networ : Training Debasis Samanta IIT Kharagpur debasis.samanta.iitgp@gmail.com 06.04.2018 Debasis Samanta (IIT Kharagpur) Soft Computing Applications 06.04.2018 1 / 49 Learning of neural

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 3 Additional Gates and Circuits Overview Part 1 Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra

More information

PSEUDORANDOM BINARY SEQUENCES GENERATOR

PSEUDORANDOM BINARY SEQUENCES GENERATOR PSEUDORANDOM BINARY SEQUENCES GENERATOR 1. Theoretical considerations White noise is defined as a random process with power spectral density that is constant in an infinite frequency band. Quasi-white

More information

Boolean algebra. Examples of these individual laws of Boolean, rules and theorems for Boolean algebra are given in the following table.

Boolean algebra. Examples of these individual laws of Boolean, rules and theorems for Boolean algebra are given in the following table. The Laws of Boolean Boolean algebra As well as the logic symbols 0 and 1 being used to represent a digital input or output, we can also use them as constants for a permanently Open or Closed circuit or

More information

A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation

A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation 1 Introduction A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation J Wesley Hines Nuclear Engineering Department The University of Tennessee Knoxville, Tennessee,

More information

In Module 3, we have learned about Exclusive OR (XOR) gate. Boolean Expression AB + A B = Y also A B = Y. Logic Gate. Truth table

In Module 3, we have learned about Exclusive OR (XOR) gate. Boolean Expression AB + A B = Y also A B = Y. Logic Gate. Truth table Module 8 In Module 3, we have learned about Exclusive OR (XOR) gate. Boolean Expression AB + A B = Y also A B = Y Logic Gate Truth table A B Y 0 0 0 0 1 1 1 0 1 1 1 0 In Module 3, we have learned about

More information

Cathedral Catholic High School Course Catalog

Cathedral Catholic High School Course Catalog Cathedral Catholic High School Course Catalog Course Title: Pre-Calculus Course Description: This course is designed to prepare students to begin their college studies in introductory Calculus. Students

More information

Sections 18.6 and 18.7 Analysis of Artificial Neural Networks

Sections 18.6 and 18.7 Analysis of Artificial Neural Networks Sections 18.6 and 18.7 Analysis of Artificial Neural Networks CS4811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline Univariate regression

More information

C1.2 Multilayer perceptrons

C1.2 Multilayer perceptrons Supervised Models C1.2 Multilayer perceptrons Luis B Almeida Abstract This section introduces multilayer perceptrons, which are the most commonly used type of neural network. The popular backpropagation

More information

control in out in out Figure 1. Binary switch: (a) opened or off; (b) closed or on.

control in out in out Figure 1. Binary switch: (a) opened or off; (b) closed or on. Chapter 2 Digital Circuits Page 1 of 18 2. Digital Circuits Our world is an analog world. Measurements that we make of the physical objects around us are never in discrete units but rather in a continuous

More information

Part 8: Neural Networks

Part 8: Neural Networks METU Informatics Institute Min720 Pattern Classification ith Bio-Medical Applications Part 8: Neural Netors - INTRODUCTION: BIOLOGICAL VS. ARTIFICIAL Biological Neural Netors A Neuron: - A nerve cell as

More information

Random Boolean Networks

Random Boolean Networks Random Boolean Networks Boolean network definition The first Boolean networks were proposed by Stuart A. Kauffman in 1969, as random models of genetic regulatory networks (Kauffman 1969, 1993). A Random

More information

Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS

Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS 1) Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X -Y and (b) Y - X using 2's complements. a) X = 1010100

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Yongjin Park 1 Goal of Feedforward Networks Deep Feedforward Networks are also called as Feedforward neural networks or Multilayer Perceptrons Their Goal: approximate some function

More information