The AADL behavior annex - experiments and roadmap

Size: px
Start display at page:

Download "The AADL behavior annex - experiments and roadmap"

Transcription

1 The AADL behavior annex - experiments and roadmap R. B. França 1 J-P. Bodeveix 1 M. Filali 1 J-F. Rolland 1 D. Chemouil 2 D. Thomas 3 1 Institut de Recherche en Informatique de Toulouse Université Paul Sabatier Équipe ACADIE 2 Centre National d Études Spatiales 3 EADS Astrium Satellites UML&AADL 2007 Evolution of the AADL behavior annex 1/19

2 Outline Context 1 Context 2 3 Evolution of the AADL behavior annex 2/19

3 Outline Context 1 Context 2 3 Evolution of the AADL behavior annex 3/19

4 The ArchiDyn study Goals: Describe a complete flight software in AADL Integration of AADL in an existing process Identification of architectural patterns Evaluation of the language (AADL + behavioral annex) Evolution of the AADL behavior annex 4/19

5 of this study Concerning the 2006 version of the behavioral annex: the annex is too simple, we needed: composite states concurrent states Multiples synchronizations a more precise definition of communication timings Evolution of the AADL behavior annex 5/19

6 The behavioral annex A simple state-transition system Describe the behavior of thread and subprograms Actions can read and/or write ports Start in an initial state and end in a complete state Complete state is the starting state for the next dispatch Perform (eventually remote) procedure calls Evolution of the AADL behavior annex 6/19

7 Example Context thread AVB_HDLR features t i m e r : in event port ; i n t _ i t : in event port ; e o f _ i t : in event port ; aocs_ack : out event port ; dor_ack : out event port ; properties Dispatch_Protocol => Sporadic ; Period => 10ms; end AVB_HDLR; thread implementation AVB_HDLR. i annex behavior_specification { states s0 : i n i t i a l complete state ; s1, s2, s3 : complete state ; transitions s0 [ t i m e r? ] s1 ; s1 [ i n t _ i t? ] s2 { aocs_ack! ; } ; s2 [ i n t _ i t? ] s3 { dor_ack! ; } ; s3 [ e o f _ i t? ] s0 ; } ; end AVB_HDLR. i ; Evolution of the AADL behavior annex 7/19

8 Outline Context 1 Context 2 3 Evolution of the AADL behavior annex 8/19

9 Composites states Refinement of AADL modes Hierarchical automata system implementation AOCS_FUNCTION. N0 modes IDLE : i n i t i a l mode; ASH_MODE: mode; NM_MODE: mode; OCM_MODE: mode; annex behavior_specification { mode transitions IDLE [ TC.ASH_REQ? ] ASH_MODE; NM_MODE [ TC.OCM_REQ? ] OCM_MODE; ASH_MODE, OCM_MODE [ TC.NM_REQ? ] NM_MODE; composite mode ASH_MODE states STAB: i n i t i a l state ; STRAP, SLO: state ; transitions STAB [ on Bdot_Control_Law_Converged ] STRAP; STRAP [ on Sun_Presence ] SLO; SLO [ on Sun_Presence = false ] STRAP; end ASH_MODE;... }; end AOCS_FUNCTION. N0 ; Evolution of the AADL behavior annex 9/19

10 Concurrent states Introduce logical parallelism No run-time threads Reduction of the number of states Evolution of the AADL behavior annex 10/19

11 Concurrent state - example thread avb_bus features i n t _ i t : out event port ; e o f _ i t : out event port ; properties Dispatch_Protocol => P e r i o d i c ; Period => 125ms; end avb_bus ; thread implementation avb_bus. i annex behavior_specification { states s0 : i n i t i a l concurrent state ; s1 : complete j o i n state ; transitions s0 [ ] s1 ; concurrent state s0 composite state st1 states t1 : i n i t i a l e x i t state ; transitions t 1 i [ ] t 1 i { delay (38ms ) ; i n t _ i t! ; end t1 ; composite state st2 states t2 : i n i t i a l e x i t state ; transitions t 2 i [ ] t 2 i { delay (79ms ) ; i n t _ i t! ; end t2 ;... end s0 ; } ; end avb_bus. i ; Evolution of the AADL behavior annex 11/19

12 Concurrent state - example S0 t1 delay(38ms) t2 delay(79ms) init_i! init_i! S1 Evolution of the AADL behavior annex 12/19

13 Multiple Synchronizations Dispatch on reception of multiple signals Dispatch on timer Supported by several OS thread implementation PL_CYC. i annex behavior_specification { states RQ: i n i t i a l state ; wait_plb, ACC, DA: complete state ; transitions RQ [ s t a r t? ] wait_plb { computation (2ms ) ; } ; wait_plb [ PLB_ACK? ] ACC { computation (4ms ) ; } ; ACC [ PF_END? & AOCS_END? ] DA {... } ; } ; end PL_CYC. i ; Evolution of the AADL behavior annex 13/19

14 Requested extension to AADL Modification of the dispatch mechanism Dispatch condition expressed as a boolean function on ports Bounded wait (support for timeout) More precise support for communication timing: Date of emission or reception Evolution of the AADL behavior annex 14/19

15 Example Context thread implementation PL_CYC. i annex behavior_specification { states RQ: i n i t i a l complete state ; s1, s2 : state ; transitions RQ [ s t a r t? ] s1 { computation (2ms ) ; sync1! } ; s1 [ ] s2 { computation (4ms ) ; sync2! } ; s2 [] RQ { sync3! } ; } ; end PL_CYC. i ; Evolution of the AADL behavior annex 15/19

16 Outline Context 1 Context 2 3 Evolution of the AADL behavior annex 16/19

17 Context Extension of the behavioral annex (concurrent and hierarchic states) Proposition of extension for AADL Integration of a static analyzer in Topcased Perspectives How to implement the delay with AADL constructions Define simplification for hierarchical and concurrent states Formalize the link between AADL and the behavioral annex Evolution of the AADL behavior annex 17/19

18 Ongoing work around AADL Formal semantics of the AADL execution model in TLA+ TLA+ : a formal language based on set theory and temporal logic We consider a subset of AADL (Threads, Data, Ports, Shared variables) Model checking using TLC Evolution of the AADL behavior annex 18/19

19 Ongoing work around AADL A mapping to Real-Time Java Implementation of the execution model in RTSJ Based on the semantics defined in TLA AADL to Fiacre Intermediate language for model checking purpose Synchronous communication Timed transition systems semantics Hierarchical components Evolution of the AADL behavior annex 19/19

Outline F eria AADL behavior 1/ 78

Outline F eria AADL behavior 1/ 78 Outline AADL behavior Annex Jean-Paul Bodeveix 2 Pierre Dissaux 3 Mamoun Filali 2 Pierre Gaufillet 1 François Vernadat 2 1 AIRBUS-FRANCE 2 FéRIA 3 ELLIDIS SAE AS2C Detroit Michigan April 2006 FéRIA AADL

More information

The Montana Toolset: Formal Analysis of AADL Specifications

The Montana Toolset: Formal Analysis of AADL Specifications Fremont Associates Process Project QA The Montana Toolset: Formal Analysis of AADL Specifications SAE AS-2 2 Working Group Seal Beach, California 27 January 2005 Outline Origins, Origins, Goals, Plans

More information

Logic Model Checking

Logic Model Checking Logic Model Checking Lecture Notes 10:18 Caltech 101b.2 January-March 2004 Course Text: The Spin Model Checker: Primer and Reference Manual Addison-Wesley 2003, ISBN 0-321-22862-6, 608 pgs. the assignment

More information

A Multi-Periodic Synchronous Data-Flow Language

A Multi-Periodic Synchronous Data-Flow Language Julien Forget 1 Frédéric Boniol 1 David Lesens 2 Claire Pagetti 1 firstname.lastname@onera.fr 1 ONERA - Toulouse, FRANCE 2 EADS Astrium Space Transportation - Les Mureaux, FRANCE November 19, 2008 1 /

More information

Causality Interfaces and Compositional Causality Analysis

Causality Interfaces and Compositional Causality Analysis Causality Interfaces and Compositional Causality Analysis Edward A. Lee Haiyang Zheng Ye Zhou {eal,hyzheng,zhouye}@eecs.berkeley.edu Center for Hybrid and Embedded Software Systems (CHESS) Department of

More information

Formal Verification of Mobile Network Protocols

Formal Verification of Mobile Network Protocols Dipartimento di Informatica, Università di Pisa, Italy milazzo@di.unipi.it Pisa April 26, 2005 Introduction Modelling Systems Specifications Examples Algorithms Introduction Design validation ensuring

More information

T Reactive Systems: Temporal Logic LTL

T Reactive Systems: Temporal Logic LTL Tik-79.186 Reactive Systems 1 T-79.186 Reactive Systems: Temporal Logic LTL Spring 2005, Lecture 4 January 31, 2005 Tik-79.186 Reactive Systems 2 Temporal Logics Temporal logics are currently the most

More information

Finite-State Model Checking

Finite-State Model Checking EECS 219C: Computer-Aided Verification Intro. to Model Checking: Models and Properties Sanjit A. Seshia EECS, UC Berkeley Finite-State Model Checking G(p X q) Temporal logic q p FSM Model Checker Yes,

More information

Timo Latvala. February 4, 2004

Timo Latvala. February 4, 2004 Reactive Systems: Temporal Logic LT L Timo Latvala February 4, 2004 Reactive Systems: Temporal Logic LT L 8-1 Temporal Logics Temporal logics are currently the most widely used specification formalism

More information

Today s Lecture. Lecture 4: Formal SE. Some Important Points. Formal Software Engineering. Introduction to Formal Software Engineering

Today s Lecture. Lecture 4: Formal SE. Some Important Points. Formal Software Engineering. Introduction to Formal Software Engineering Today s Lecture Lecture 4: Formal SE Introduction to Formal Software Engineering Discuss Models Discuss Formal Notations Kenneth M. Anderson Foundations of Software Engineering CSCI 5828 - Spring Semester,

More information

Synchronous Modelling of Complex Systems

Synchronous Modelling of Complex Systems Synchronous Modelling of Complex Systems Nicolas Halbwachs Verimag, Grenoble joint work with L. Mandel LRI E. Jahier, P. Raymond, X. Nicollin Verimag and D. Lesens Astrium Space Transportation () 1 / 45

More information

Automata-based Verification - III

Automata-based Verification - III COMP30172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2009 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

HRML: a hybrid relational modelling language. He Jifeng

HRML: a hybrid relational modelling language. He Jifeng HRML: a hybrid relational modelling language He Jifeng Hybrid Systems Systems are composed by continuous physical component and discrete control component The system state evoles over time according to

More information

Linear Temporal Logic and Büchi Automata

Linear Temporal Logic and Büchi Automata Linear Temporal Logic and Büchi Automata Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 Yih-Kuen Tsay (SVVRL @ IM.NTU) Linear Temporal Logic and Büchi Automata

More information

Abstractions and Decision Procedures for Effective Software Model Checking

Abstractions and Decision Procedures for Effective Software Model Checking Abstractions and Decision Procedures for Effective Software Model Checking Prof. Natasha Sharygina The University of Lugano, Carnegie Mellon University Microsoft Summer School, Moscow, July 2011 Lecture

More information

Models for Efficient Timed Verification

Models for Efficient Timed Verification Models for Efficient Timed Verification François Laroussinie LSV / ENS de Cachan CNRS UMR 8643 Monterey Workshop - Composition of embedded systems Model checking System Properties Formalizing step? ϕ Model

More information

Verification of Real-Time Specification Patterns on Time Transition Systems

Verification of Real-Time Specification Patterns on Time Transition Systems Verification of Real-Time Specification Patterns on Time Transition Systems Nouha Abid 1,2, Silvano Dal Zilio 1,2, and Didier Le Botlan 1,2 1 CNRS ; LAAS ; 7 avenue colonel Roche, F-31077 Toulouse, France

More information

Model transformation with Scala

Model transformation with Scala UPC FIB Facultat d Informatica de Barcelona Master Final Project Report Done at Centre national d études spatiales (CNES) Model transformation with Scala Celia Picard 18 th of february 2008 18 th of august

More information

Real-Time Scheduling. Real Time Operating Systems and Middleware. Luca Abeni

Real-Time Scheduling. Real Time Operating Systems and Middleware. Luca Abeni Real Time Operating Systems and Middleware Luca Abeni luca.abeni@unitn.it Definitions Algorithm logical procedure used to solve a problem Program formal description of an algorithm, using a programming

More information

Algorithmic verification

Algorithmic verification Algorithmic verification Ahmed Rezine IDA, Linköpings Universitet Hösttermin 2018 Outline Overview Model checking Symbolic execution Outline Overview Model checking Symbolic execution Program verification

More information

Automata-based Verification - III

Automata-based Verification - III CS3172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20/22: email: howard.barringer@manchester.ac.uk March 2005 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

On simulations and bisimulations of general flow systems

On simulations and bisimulations of general flow systems On simulations and bisimulations of general flow systems Jen Davoren Department of Electrical & Electronic Engineering The University of Melbourne, AUSTRALIA and Paulo Tabuada Department of Electrical

More information

Embedded Systems 2. REVIEW: Actor models. A system is a function that accepts an input signal and yields an output signal.

Embedded Systems 2. REVIEW: Actor models. A system is a function that accepts an input signal and yields an output signal. Embedded Systems 2 REVIEW: Actor models A system is a function that accepts an input signal and yields an output signal. The domain and range of the system function are sets of signals, which themselves

More information

Relational Interfaces and Refinement Calculus for Compositional System Reasoning

Relational Interfaces and Refinement Calculus for Compositional System Reasoning Relational Interfaces and Refinement Calculus for Compositional System Reasoning Viorel Preoteasa Joint work with Stavros Tripakis and Iulia Dragomir 1 Overview Motivation General refinement Relational

More information

Scheduling. Uwe R. Zimmer & Alistair Rendell The Australian National University

Scheduling. Uwe R. Zimmer & Alistair Rendell The Australian National University 6 Scheduling Uwe R. Zimmer & Alistair Rendell The Australian National University References for this chapter [Bacon98] J. Bacon Concurrent Systems 1998 (2nd Edition) Addison Wesley Longman Ltd, ISBN 0-201-17767-6

More information

THEORY OF SYSTEMS MODELING AND ANALYSIS. Henny Sipma Stanford University. Master class Washington University at St Louis November 16, 2006

THEORY OF SYSTEMS MODELING AND ANALYSIS. Henny Sipma Stanford University. Master class Washington University at St Louis November 16, 2006 THEORY OF SYSTEMS MODELING AND ANALYSIS Henny Sipma Stanford University Master class Washington University at St Louis November 16, 2006 1 1 COURSE OUTLINE 8:37-10:00 Introduction -- Computational model

More information

Distributed Deadlock-Avoidance. IMDEA Software Institute, Spain

Distributed Deadlock-Avoidance. IMDEA Software Institute, Spain Distributed Deadlock-voidance César Sánchez IMDE Software Institute, Spain DRV Workshop, ertinoro 19-May, 216 Distributed Deadlock-voidance little story about how static knowledge can help solve unsolvable

More information

Temporal Logic of Actions

Temporal Logic of Actions Advanced Topics in Distributed Computing Dominik Grewe Saarland University March 20, 2008 Outline Basic Concepts Transition Systems Temporal Operators Fairness Introduction Definitions Example TLC - A

More information

Lecture 4 Event Systems

Lecture 4 Event Systems Lecture 4 Event Systems This lecture is based on work done with Mark Bickford. Marktoberdorf Summer School, 2003 Formal Methods One of the major research challenges faced by computer science is providing

More information

Verification, Refinement and Scheduling of Real-time Programs

Verification, Refinement and Scheduling of Real-time Programs Verification, Refinement and Scheduling of Real-time Programs Zhiming Liu Department of Maths & Computer Science Universisty of Leicester Leicester LE1 7RH, UK. E-mail: Z.Liu@mcs.le.ac.uk Mathai Joseph

More information

PALS: Physically Asynchronous Logically Synchronous Systems

PALS: Physically Asynchronous Logically Synchronous Systems PALS: Physically Asynchronous Logically Synchronous Systems Lui Sha 1, Abdullah Al-Nayeem 1, Mu Sun 1, Jose Meseguer 1, Peter Ölveczky2, 1 University of Illinois at Urbana Champaign, 2 University of Oslo

More information

Lecture 3: Semantics of Propositional Logic

Lecture 3: Semantics of Propositional Logic Lecture 3: Semantics of Propositional Logic 1 Semantics of Propositional Logic Every language has two aspects: syntax and semantics. While syntax deals with the form or structure of the language, it is

More information

Design of Real-Time Software

Design of Real-Time Software Design of Real-Time Software Reference model Reinder J. Bril Technische Universiteit Eindhoven Department of Mathematics and Computer Science System Architecture and Networking Group P.O. Box 513, 5600

More information

A Timed CTL Model Checker for Real-Time Maude

A Timed CTL Model Checker for Real-Time Maude A Timed CTL Model Checker for Real-Time Maude Daniela Lepri 1, Erika Ábrahám 2, and Peter Csaba Ölveczky 1 1 University of Oslo and 2 RWTH Aachen Real-Time Maude Extends Maude to real-time systems Object-oriented

More information

Composition for Component-Based Modeling

Composition for Component-Based Modeling Composition for Component-Based Modeling Gregor Gössler a, Joseph Sifakis b a INRIA Rhône-Alpes, France b VERIMAG, France Abstract We propose a framework for component-based modeling using an abstract

More information

Automata-Theoretic Model Checking of Reactive Systems

Automata-Theoretic Model Checking of Reactive Systems Automata-Theoretic Model Checking of Reactive Systems Radu Iosif Verimag/CNRS (Grenoble, France) Thanks to Tom Henzinger (IST, Austria), Barbara Jobstmann (CNRS, Grenoble) and Doron Peled (Bar-Ilan University,

More information

ESE601: Hybrid Systems. Introduction to verification

ESE601: Hybrid Systems. Introduction to verification ESE601: Hybrid Systems Introduction to verification Spring 2006 Suggested reading material Papers (R14) - (R16) on the website. The book Model checking by Clarke, Grumberg and Peled. What is verification?

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Propositional Logic [1] Boolean algebras by examples U X U U = {a} U = {a, b} U = {a, b, c} {a} {b} {a, b} {a, c} {b, c}... {a} {b} {c} {a, b} {a} The arrows represents proper inclusion

More information

Temporal Logic Model Checking

Temporal Logic Model Checking 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 1 Temporal Logic Model Checking Thomas Wahl Computing Laboratory, Oxford University 18 Feb, 2009 Thomas Wahl, Oxford University

More information

Formal Verification. Lecture 1: Introduction to Model Checking and Temporal Logic¹

Formal Verification. Lecture 1: Introduction to Model Checking and Temporal Logic¹ Formal Verification Lecture 1: Introduction to Model Checking and Temporal Logic¹ Jacques Fleuriot jdf@inf.ed.ac.uk ¹Acknowledgement: Adapted from original material by Paul Jackson, including some additions

More information

The TLA + proof system

The TLA + proof system The TLA + proof system Stephan Merz Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport INRIA Nancy & INRIA-MSR Joint Centre, France Amir Pnueli Memorial Symposium New York University, May 8, 2010 Stephan

More information

Benefits of Interval Temporal Logic for Specification of Concurrent Systems

Benefits of Interval Temporal Logic for Specification of Concurrent Systems Benefits of Interval Temporal Logic for Specification of Concurrent Systems Ben Moszkowski Software Technology Research Laboratory De Montfort University Leicester Great Britain email: benm@dmu.ac.uk http://www.tech.dmu.ac.uk/~benm

More information

Information System Design IT60105

Information System Design IT60105 n IT60105 Lecture 13 Statechart Diagrams Lecture #13 What is a Statechart diagram? Basic components in a state-chart diagram and their notations Examples: Process Order in OLP system What is a Statechart

More information

Contracts-refinement proof system for component-based embedded systems

Contracts-refinement proof system for component-based embedded systems Contracts-refinement proof system for component-based embedded systems Alessandro Cimatti a, Stefano Tonetta a a Fondazione Bruno Kessler, Trento, Italy Abstract Contract-based design is an emerging paradigm

More information

Part I. Principles and Techniques

Part I. Principles and Techniques Introduction to Formal Methods Part I. Principles and Techniques Lecturer: JUNBEOM YOO jbyoo@konkuk.ac.kr Introduction Text System and Software Verification : Model-Checking Techniques and Tools In this

More information

Trace Diagnostics using Temporal Implicants

Trace Diagnostics using Temporal Implicants Trace Diagnostics using Temporal Implicants ATVA 15 Thomas Ferrère 1 Dejan Nickovic 2 Oded Maler 1 1 VERIMAG, University of Grenoble / CNRS 2 Austrian Institute of Technology October 14, 2015 Motivation

More information

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics CS256/Spring 2008 Lecture #11 Zohar Manna Beyond Temporal Logics Temporal logic expresses properties of infinite sequences of states, but there are interesting properties that cannot be expressed, e.g.,

More information

Automatic Synthesis of Distributed Protocols

Automatic Synthesis of Distributed Protocols Automatic Synthesis of Distributed Protocols Rajeev Alur Stavros Tripakis 1 Introduction Protocols for coordination among concurrent processes are an essential component of modern multiprocessor and distributed

More information

An object-oriented design process. Weather system description. Layered architecture. Process stages. System context and models of use

An object-oriented design process. Weather system description. Layered architecture. Process stages. System context and models of use An object-oriented design process Process stages Structured design processes involve developing a number of different system models. They require a lot of effort for development and maintenance of these

More information

Model Checking. Boris Feigin March 9, University College London

Model Checking. Boris Feigin March 9, University College London b.feigin@cs.ucl.ac.uk University College London March 9, 2005 Outline 1 2 Techniques Symbolic 3 Software 4 Vs. Deductive Verification Summary Further Reading In a nutshell... Model checking is a collection

More information

Using Patterns and Composite Propositions to Automate the Generation of LTL Specifications

Using Patterns and Composite Propositions to Automate the Generation of LTL Specifications Using Patterns and Composite Propositions to Automate the Generation of LTL Specifications Salamah Salamah, Ann Q. Gates, Vladik Kreinovich, and Steve Roach Dept. of Computer Science, University of Texas

More information

Towards a Property Preserving Transformation from IEC to BIP

Towards a Property Preserving Transformation from IEC to BIP Towards a Property Preserving Transformation from IEC 61131 3 to BIP Jan Olaf Blech, Anton Hattendorf, Jia Huang fortiss GmbH, Guerickestraße 25, 80805 München, Germany September 7, 2010 arxiv:1009.0817v1

More information

IN4R21. Real-Time Specification for Java (RTSJ) Damien MASSON January 20, 2014

IN4R21. Real-Time Specification for Java (RTSJ) Damien MASSON  January 20, 2014 IN4R21 Real-Time Specification for Java (RTSJ) Damien MASSON http://www.esiee.fr/~massond/ January 20, 2014 References www.rtsj.org Concurrent and Real-Time Programming in Java, Andy Wellings Real-Time

More information

Decomposition of planning for multi-agent systems under LTL specifications

Decomposition of planning for multi-agent systems under LTL specifications Decomposition of planning for multi-agent systems under LTL specifications Jana Tumova and Dimos V. Dimarogonas KTH Royal Institute of Technology R E C O N F I G December 14, 2015 General Motivation and

More information

Partial model checking via abstract interpretation

Partial model checking via abstract interpretation Partial model checking via abstract interpretation N. De Francesco, G. Lettieri, L. Martini, G. Vaglini Università di Pisa, Dipartimento di Ingegneria dell Informazione, sez. Informatica, Via Diotisalvi

More information

Automata on Infinite words and LTL Model Checking

Automata on Infinite words and LTL Model Checking Automata on Infinite words and LTL Model Checking Rodica Condurache Lecture 4 Lecture 4 Automata on Infinite words and LTL Model Checking 1 / 35 Labeled Transition Systems Let AP be the (finite) set of

More information

Synchronous Reactive Systems

Synchronous Reactive Systems Synchronous Reactive Systems Stephen Edwards sedwards@synopsys.com Synopsys, Inc. Outline Synchronous Reactive Systems Heterogeneity and Ptolemy Semantics of the SR Domain Scheduling the SR Domain 2 Reactive

More information

Real-Time Systems. LS 12, TU Dortmund

Real-Time Systems. LS 12, TU Dortmund Real-Time Systems Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund April 24, 2014 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 57 Organization Instructor: Jian-Jia Chen, jian-jia.chen@cs.uni-dortmund.de

More information

A Thread Algebra with Multi-level Strategic Interleaving

A Thread Algebra with Multi-level Strategic Interleaving Theory of Computing Systems manuscript No. (will be inserted by the editor) A Thread Algebra with Multi-level Strategic Interleaving J.A. Bergstra 1,2, C.A. Middelburg 3,1 1 Programming Research Group,

More information

The Formal Verification of a Reintegration Protocol

The Formal Verification of a Reintegration Protocol Formal Methods Group NASA Langley Research Center lee.s.pike@nasa.gov February 8, 2005 (The contents herein are not necessarily endorsed by the United States Government.) Acknowledgments The reintegration

More information

The Quasi-Synchronous Approach to Distributed Control Systems

The Quasi-Synchronous Approach to Distributed Control Systems The Quasi-Synchronous Approach to Distributed Control Systems Paul Caspi caspi@imag.fr Verimag Laboratory http://www-verimag.imag.fr Crisys Esprit Project http://borneo.gmd.de/ ap/crisys/ The Quasi-Synchronous

More information

Phil Introductory Formal Logic

Phil Introductory Formal Logic Phil 134 - Introductory Formal Logic Lecture 4: Formal Semantics In this lecture we give precise meaning to formulae math stuff: sets, pairs, products, relations, functions PL connectives as truth-functions

More information

COURSE CONTENT for Computer Science & Engineering [CSE]

COURSE CONTENT for Computer Science & Engineering [CSE] COURSE CONTENT for Computer Science & Engineering [CSE] 1st Semester 1 HU 101 English Language & Communication 2 1 0 3 3 2 PH 101 Engineering Physics 3 1 0 4 4 3 M 101 Mathematics 3 1 0 4 4 4 ME 101 Mechanical

More information

Alternating Time Temporal Logics*

Alternating Time Temporal Logics* Alternating Time Temporal Logics* Sophie Pinchinat Visiting Research Fellow at RSISE Marie Curie Outgoing International Fellowship * @article{alur2002, title={alternating-time Temporal Logic}, author={alur,

More information

MAD. Models & Algorithms for Distributed systems -- 2/5 -- download slides at

MAD. Models & Algorithms for Distributed systems -- 2/5 -- download slides at MAD Models & Algorithms for Distributed systems -- /5 -- download slides at http://people.rennes.inria.fr/eric.fabre/ 1 Today Runs/executions of a distributed system are partial orders of events We introduce

More information

7. Queueing Systems. 8. Petri nets vs. State Automata

7. Queueing Systems. 8. Petri nets vs. State Automata Petri Nets 1. Finite State Automata 2. Petri net notation and definition (no dynamics) 3. Introducing State: Petri net marking 4. Petri net dynamics 5. Capacity Constrained Petri nets 6. Petri net models

More information

A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption

A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption Rohini Krishnapura, Steve Goddard, Ala Qadi Computer Science & Engineering University of Nebraska Lincoln Lincoln, NE 68588-0115

More information

Generating Linear Temporal Logic Formulas for Pattern-Based Specifications

Generating Linear Temporal Logic Formulas for Pattern-Based Specifications Generating Linear Temporal Logic Formulas for Pattern-Based Specifications Salamah Salamah, Vladik Kreinovich, and Ann Q. Gates Dept. of Computer Science, University of Texas at El Paso El Paso, TX 79968,

More information

Temporal Logic. M φ. Outline. Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness. Ralf Huuck. Kripke Structure

Temporal Logic. M φ. Outline. Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness. Ralf Huuck. Kripke Structure Outline Temporal Logic Ralf Huuck Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness Model Checking Problem model, program? M φ satisfies, Implements, refines property, specification

More information

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino Formal Verification Techniques Riccardo Sisto, Politecnico di Torino State exploration State Exploration and Theorem Proving Exhaustive exploration => result is certain (correctness or noncorrectness proof)

More information

Software Verification

Software Verification Software Verification Grégoire Sutre LaBRI, University of Bordeaux, CNRS, France Summer School on Verification Technology, Systems & Applications September 2008 Grégoire Sutre Software Verification VTSA

More information

Model checking, verification of CTL. One must verify or expel... doubts, and convert them into the certainty of YES [Thomas Carlyle]

Model checking, verification of CTL. One must verify or expel... doubts, and convert them into the certainty of YES [Thomas Carlyle] Chater 5 Model checking, verification of CTL One must verify or exel... doubts, and convert them into the certainty of YES or NO. [Thomas Carlyle] 5. The verification setting Page 66 We introduce linear

More information

Using Patterns and Composite Propositions to Automate the Generation of Complex LTL Specifications

Using Patterns and Composite Propositions to Automate the Generation of Complex LTL Specifications Using Patterns and Composite Propositions to Automate the Generation of Complex LTL Specifications Salamah Salamah, Ann Q. Gates, Vladik Kreinovich, and Steve Roach Dept. of Computer Science, University

More information

Failure Diagnosis of Discrete Event Systems With Linear-Time Temporal Logic Specifications

Failure Diagnosis of Discrete Event Systems With Linear-Time Temporal Logic Specifications Failure Diagnosis of Discrete Event Systems With Linear-Time Temporal Logic Specifications Shengbing Jiang and Ratnesh Kumar Abstract The paper studies failure diagnosis of discrete event systems with

More information

Contract-based modeling and verification of timed safety requirements within SysML

Contract-based modeling and verification of timed safety requirements within SysML Contract-based modeling and verification of timed safety requirements within SysML Iulia Dragomir, Iulian Ober, Christian Percebois To cite this version: Iulia Dragomir, Iulian Ober, Christian Percebois.

More information

Design Patterns and Refactoring

Design Patterns and Refactoring Singleton Oliver Haase HTWG Konstanz 1 / 19 Description I Classification: object based creational pattern Puropse: ensure that a class can be instantiated exactly once provide global access point to single

More information

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues Content What are Events? Examples for Problematic Event Semantics Inhibit, Enabler / Conditioning

More information

Time and Schedulability Analysis of Stateflow Models

Time and Schedulability Analysis of Stateflow Models Time and Schedulability Analysis of Stateflow Models Marco Di Natale Scuola Superiore S. Anna Haibo Zeng Mc Gill University Outline Context: MBD of Embedded Systems Relationship with PBD An Introduction

More information

arxiv: v2 [cs.lo] 8 Feb 2018

arxiv: v2 [cs.lo] 8 Feb 2018 The Refinement Calculus of Reactive Systems Viorel Preoteasa Iulia Dragomir Stavros Tripakis August 28, 2018 arxiv:1710.03979v2 [cs.lo] 8 Feb 2018 Abstract The Refinement Calculus of Reactive Systems (RCRS)

More information

An On-the-fly Tableau Construction for a Real-Time Temporal Logic

An On-the-fly Tableau Construction for a Real-Time Temporal Logic #! & F $ F ' F " F % An On-the-fly Tableau Construction for a Real-Time Temporal Logic Marc Geilen and Dennis Dams Faculty of Electrical Engineering, Eindhoven University of Technology P.O.Box 513, 5600

More information

CSE 311: Foundations of Computing I. Lecture 1: Propositional Logic

CSE 311: Foundations of Computing I. Lecture 1: Propositional Logic CSE 311: Foundations of Computing I Lecture 1: Propositional Logic About CSE 311 Some Perspective Computer Science and Engineering Programming CSE 14x Theory Hardware CSE 311 About the Course We will study

More information

Verification Using Temporal Logic

Verification Using Temporal Logic CMSC 630 February 25, 2015 1 Verification Using Temporal Logic Sources: E.M. Clarke, O. Grumberg and D. Peled. Model Checking. MIT Press, Cambridge, 2000. E.A. Emerson. Temporal and Modal Logic. Chapter

More information

Process Scheduling for RTS. RTS Scheduling Approach. Cyclic Executive Approach

Process Scheduling for RTS. RTS Scheduling Approach. Cyclic Executive Approach Process Scheduling for RTS Dr. Hugh Melvin, Dept. of IT, NUI,G RTS Scheduling Approach RTS typically control multiple parameters concurrently Eg. Flight Control System Speed, altitude, inclination etc..

More information

Formal Methods in Software Engineering

Formal Methods in Software Engineering Formal Methods in Software Engineering Modeling Prof. Dr. Joel Greenyer October 21, 2014 Organizational Issues Tutorial dates: I will offer two tutorial dates Tuesdays 15:00-16:00 in A310 (before the lecture,

More information

A unified view of some representations of imprecise probabilities

A unified view of some representations of imprecise probabilities A unified view of some representations of imprecise probabilities S. Destercke and D. Dubois Institut de recherche en informatique de Toulouse (IRIT) Université Paul Sabatier, 118 route de Narbonne, 31062

More information

Embedded Systems Development

Embedded Systems Development Embedded Systems Development Lecture 3 Real-Time Scheduling Dr. Daniel Kästner AbsInt Angewandte Informatik GmbH kaestner@absint.com Model-based Software Development Generator Lustre programs Esterel programs

More information

Automatic Generation of Safe Handlers for Multi-Task Systems

Automatic Generation of Safe Handlers for Multi-Task Systems Automatic Generation of Safe Handlers for Multi-Task Systems Eric Rutten INRIA Grenoble - Rhône-Alpes Inovallée, 655 av. de l Europe, MONTBONNOT, 38334 ST ISMIER Cedex, FRANCE tel:+33 4 76 61 55 50, fax:+33

More information

A logical framework to deal with variability

A logical framework to deal with variability A logical framework to deal with variability (research in progress) M.H. ter Beek joint work with P. Asirelli, A. Fantechi and S. Gnesi ISTI CNR Università di Firenze XXL project meeting Pisa, 21 June

More information

Improved cellular models with parallel Cell-DEVS

Improved cellular models with parallel Cell-DEVS Improved cellular models with parallel Cell-DEVS Gabriel A. Wainer Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón I - Ciudad Universitaria Buenos

More information

A Brief Introduction to Model Checking

A Brief Introduction to Model Checking A Brief Introduction to Model Checking Jan. 18, LIX Page 1 Model Checking A technique for verifying finite state concurrent systems; a benefit on this restriction: largely automatic; a problem to fight:

More information

A Theory for Composing Distributed Components, Based on Temporary Interference

A Theory for Composing Distributed Components, Based on Temporary Interference A Theory for Composing Distributed Components, Based on Temporary Interference I.S.W.B. Prasetya T.E.J. Vos S.D. Swierstra B. Widjaja Abstract Compositionality provides the foundation of software modularity,

More information

A BOUNDARY NOTATION FOR VISUAL MATHEMATICS Jeffrey James and William Bricken September Published in IEEE Visual Languages'92 ABSTRACT

A BOUNDARY NOTATION FOR VISUAL MATHEMATICS Jeffrey James and William Bricken September Published in IEEE Visual Languages'92 ABSTRACT A BOUNDARY NOTATION FOR VISUAL MATHEMATICS Jeffrey James and William Bricken September 1992 Published in IEEE Visual Languages'92 ABSTRACT Instead of traditional mathematical notation, we can describe

More information

TESTING is one of the most important parts of the

TESTING is one of the most important parts of the IEEE TRANSACTIONS 1 Generating Complete Controllable Test Suites for Distributed Testing Robert M. Hierons, Senior Member, IEEE Abstract A test suite is m-complete for finite state machine (FSM) M if it

More information

Approximation of δ-timeliness

Approximation of δ-timeliness Approximation of δ-timeliness Carole Delporte-Gallet 1, Stéphane Devismes 2, and Hugues Fauconnier 1 1 Université Paris Diderot, LIAFA {Carole.Delporte,Hugues.Fauconnier}@liafa.jussieu.fr 2 Université

More information

Sanjit A. Seshia EECS, UC Berkeley

Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Computer-Aided Verification Explicit-State Model Checking: Additional Material Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: G. Holzmann Checking if M satisfies : Steps 1. Compute Buchi

More information

Towards a Mechanised Denotational Semantics for Modelica

Towards a Mechanised Denotational Semantics for Modelica Towards a Mechanised Denotational Semantics for Modelica Simon Foster Bernhard Thiele Jim Woodcock Peter Fritzson Department of Computer Science, University of York PELAB, Linköping University 3rd February

More information

CS221: Digital Design. Dr. A. Sahu. Indian Institute of Technology Guwahati

CS221: Digital Design. Dr. A. Sahu. Indian Institute of Technology Guwahati CS221: Digital Design FiniteStateMachine Dr. A. Sahu DeptofComp.Sc.&Engg. Indian Institute of Technology Guwahati Outline Finite State Machine Describe the sequential behavior using a FSM Example of FSM

More information

Bridging the Gap between Reactive Synthesis and Supervisory Control

Bridging the Gap between Reactive Synthesis and Supervisory Control Bridging the Gap between Reactive Synthesis and Supervisory Control Stavros Tripakis University of California, Berkeley Joint work with Ruediger Ehlers (Berkeley, Cornell), Stéphane Lafortune (Michigan)

More information

Communication in Petri nets

Communication in Petri nets Communication in Petri nets Kamal Lodaya work in progress with Ramchandra Phawade The Institute of Mathematical Sciences, Chennai February 2010 Petri nets - introduction Mathematical model. Widely used

More information

Alan Bundy. Automated Reasoning LTL Model Checking

Alan Bundy. Automated Reasoning LTL Model Checking Automated Reasoning LTL Model Checking Alan Bundy Lecture 9, page 1 Introduction So far we have looked at theorem proving Powerful, especially where good sets of rewrite rules or decision procedures have

More information