Differentiation 9 examples using the product and quotient rules

Size: px
Start display at page:

Download "Differentiation 9 examples using the product and quotient rules"

Transcription

1 1 Differentiation 9 eamples using the proct and quotient rules J A Rossiter Slides Anthon Rossiter

2 Introction The preious ideos hae gien a definition and concise deriation of differentiation from first principles. The aim no is to gie a numer of orked eamples for more challenging cases. Here the focus is on comining the proct and quotient rules, hile also utilising a tale of results for simple functions. ( u d Slides Anthon Rossiter ( u d

3 Tale of common results Slides Anthon Rossiter 3 a a 1 n n na a cos( sin( sin( cos( ( sec tan( c c ce e 1 log cosh( sinh( sinh( cosh( ( sin cos( ( cos ec ( cos cot( ec ( cos sin( sec(

4 4 NUMERICAL EXAMPLES KEY TECHNIQUES 1. Define all functions used in the proct and quotient rules, ith their associated deriaties, clearl.. Ensure the laout of the ork is uncluttered and unamiguous. This ill aoid man tpos. 3. Use knon results from a tale hereer possile. Slides Anthon Rossiter

5 Eample 1 5 Find the deriatie of: f log( ( ( ( u d u (log 3log p( t( ; p dt t dp Here is a proct of to functions, so e need the proct rule to differentiate this. p( ; t( (log 3log ; dp ; Slides Anthon Rossiter dt 3 3 (log 3log

6 Eample 1 - continued Find the deriatie of: f log( ( ( (log 3log Sustitute into quotient formulae ( 5 4 1; d u d 6 Slides Anthon Rossiter

7 Eample 7 Find the deriatie of: h g ( 4e sec(3 ( dh u d sec(3 p( t( ; d p dt t dp Here ( is a proct of to functions, so e need the proct rule to differentiate this. p( dp Slides Anthon Rossiter ; ; t( dt sec(3; 3sin(3 cos (3 Straight from the tale of knon results.

8 Eample - continued Find the deriatie of: h d u 4e u dh g( sec(3 ( 4e ; 3sin(3 cos (3 8e sec(3; ; From preious page. Straight from the tale of knon results. Sustitute into quotient formulae d 8 Slides Anthon Rossiter

9 Eample 3 Find the deriatie of: 6sin(0.5cos(0.5log(3 h g( e tan(0. ( dh u 9 d Here is a proct of three functions and ( is a proct of to functions, so e need the proct rule for oth. Hoeer, using tales of knon results, students ill see a possile doule angle formulae in the numerator hich ill simplif the oerall function. 3sin( log(3 h g( e tan(0. Slides Anthon Rossiter ( Net, use proct rule to find deriaties of and (.

10 Eample 3 3sin( log(3 h g( e tan(0. ( Find deriaties of and ( using the proct rule. 10 u 3sin( log(3 p( t( ; dt dp p( 3sin( ; p t dp cos( ; e tan(0. q( r( ; d q dr Slides Anthon Rossiter r dq q( dq e e ; ; t( dt r( dr log(3; 1 tan(0.; 0.sec Straight from the tale of knon results. (0.

11 Eample 3 3sin( log(3 h g( e tan(0. d ( 1 3sin( cos( log(3 e 0.sec (0. tan(0. Using results of preious page. e Finall, sustitute into quotient formulae. dh u d 11 Slides Anthon Rossiter

12 Summar 1 This ideo has demonstrated the differentiation of commonplace functions using a lookup tale in comination ith the proct and quotient rules. Vieers ill see that the most important points are: Keep clear definitions of functions used in the proct and quotient rules and their deriaties efore sustituting into the formulae. Use a lookup tale for common results. Don t orr if the algera gets mess, ut make sure the laout is clear and ell organised. Slides Anthon Rossiter

13 Anthon Rossiter Department of Automatic Control and Sstems Engineering Uniersit of Sheffield.shef.ac.uk/acse 016 Uniersit of Sheffield This ork is licensed under the Creatie Commons Attriution.0 UK: England & Wales Licence. To ie a cop of this licence, isit or send a letter to: Creatie Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA. It should e noted that some of the materials contained ithin this resource are suject to third part rights and an copright notices must remain ith these materials in the eent of reuse or repurposing. If there are third part images ithin the resource please do not remoe or alter an of the copright notices or esite details shon elo the image. (Please list details of the third part rights contained ithin this ork. If ou include our institutions logo on the coer please include reference to the fact that it is a trade mark and all copright in that image is resered.

Differentiation 2 first principles

Differentiation 2 first principles Differentiation first principles J A Rossiter Slides b Anthon Rossiter Introduction The previous video introduces the concept of differentiation and the term derivative. Net we need to look at how differentiation

More information

Differentiation 1 concepts

Differentiation 1 concepts Differentiation concepts J A Rossiter Introduction The first video introduces the concept of differentiation. What does it mean to differentiate? What is a derivative? What notation is used for differentiation?

More information

Simultaneous equations 8 Introduction to advanced methods

Simultaneous equations 8 Introduction to advanced methods 1 Simultaneous equations 8 Introduction to advanced methods J A Rossiter For a neat organisation of all videos and resources http://controleducation.group.shef.ac.uk/indexwebbook.html Slides by Anthony

More information

State-space models 2 2 nd order ODEs

State-space models 2 2 nd order ODEs 1 State-space models 2 2 nd order ODEs J A Rossiter Introduction This resource focuses on derivations of state space model equivalents for systems described by ODEs. Here we consider 2 nd order ODEs (see

More information

An example of Lagrangian for a non-holonomic system

An example of Lagrangian for a non-holonomic system Uniersit of North Georgia Nighthaks Open Institutional Repositor Facult Publications Department of Mathematics 9-9-05 An eample of Lagrangian for a non-holonomic sstem Piotr W. Hebda Uniersit of North

More information

Chain Rule To differentiate composite functions we have to use the Chain rule. Composite functions are functions of a function.

Chain Rule To differentiate composite functions we have to use the Chain rule. Composite functions are functions of a function. Differentiation Workshop: Differentiation the basics Topics Coered: Chain rule Proct rule Quotient rule Combinations Recap on Differentiation y n, n n, where n is any real number y k, 0, where k is a constant

More information

Exploring the relationship between a fluid container s geometry and when it will balance on edge

Exploring the relationship between a fluid container s geometry and when it will balance on edge Exploring the relationship eteen a fluid container s geometry and hen it ill alance on edge Ryan J. Moriarty California Polytechnic State University Contents 1 Rectangular container 1 1.1 The first geometric

More information

Higher. Integration 1

Higher. Integration 1 Higher Mathematics Contents Indefinite Integrals RC Preparing to Integrate RC Differential Equations A Definite Integrals RC 7 Geometric Interpretation of A 8 Areas between Curves A 7 Integrating along

More information

Here is a general Factoring Strategy that you should use to factor polynomials. 1. Always factor out the GCF(Greatest Common Factor) first.

Here is a general Factoring Strategy that you should use to factor polynomials. 1. Always factor out the GCF(Greatest Common Factor) first. 1 Algera and Trigonometry Notes on Topics that YOU should KNOW from your prerequisite courses! Here is a general Factoring Strategy that you should use to factor polynomials. 1. Always factor out the GCF(Greatest

More information

Chapter 8: MULTIPLE CONTINUOUS RANDOM VARIABLES

Chapter 8: MULTIPLE CONTINUOUS RANDOM VARIABLES Charles Boncelet Probabilit Statistics and Random Signals" Oord Uniersit Press 06. ISBN: 978-0-9-0005-0 Chapter 8: MULTIPLE CONTINUOUS RANDOM VARIABLES Sections 8. Joint Densities and Distribution unctions

More information

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes Differentiating ProductsandQuotients 11.4 Introduction We have seen, in the first three Sections, how standard functions like n, e a, sin a, cos a, ln a may be differentiated. In this Section we see how

More information

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x)

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x) L Hôpital s Rule In this note we will evaluate the its of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0 f() Suppose a f() = 0 and a g() = 0. Then a g() the indeterminate

More information

Worksheet Week 7 Section

Worksheet Week 7 Section Worksheet Week 7 Section 8.. 8.4. This worksheet is for improvement of your mathematical writing skill. Writing using correct mathematical epression and steps is really important part of doing math. Please

More information

Logic Effort Revisited

Logic Effort Revisited Logic Effort Revisited Mark This note ill take another look at logical effort, first revieing the asic idea ehind logical effort, and then looking at some of the more sutle issues in sizing transistors..0

More information

Table of Integrals. x n dx = 1 n + 1 xn+1, n 1. 1 dx = ln x x. udv = uv. vdu. 1 ax + b dx = 1 ln ax + b. 1 (x + a) dx = 1. 2 x + a.

Table of Integrals. x n dx = 1 n + 1 xn+1, n 1. 1 dx = ln x x. udv = uv. vdu. 1 ax + b dx = 1 ln ax + b. 1 (x + a) dx = 1. 2 x + a. Tble of Integrls Bsic Forms () n d = n + n+, n () d = ln (3) udv = uv vdu (4) + b d = ln + b Integrls of Rtionl Functions (5) ( + ) d = + (6) ( + ) n d = ( + )n+, n n + (7) ( + ) n d = ( + )n+ ((n + )

More information

df dx = + Phys 23, Spring 2012a Basic Math Print LAST Name: RJ Bieniek Rec Sec Letter MiniTest Print First Name: Answers

df dx = + Phys 23, Spring 2012a Basic Math Print LAST Name: RJ Bieniek Rec Sec Letter MiniTest Print First Name: Answers Phs 23, Spring 2012a asic Math Print ST Name: RJ ieniek Rec Sec etter MiniTest Print First Name: nswers When ou answer, put the requested quantit on the left side of an equal sign & O it and our answer

More information

Worksheet 9. Math 1B, GSI: Andrew Hanlon. 1 Ce 3t 1/3 1 = Ce 3t. 4 Ce 3t 1/ =

Worksheet 9. Math 1B, GSI: Andrew Hanlon. 1 Ce 3t 1/3 1 = Ce 3t. 4 Ce 3t 1/ = Worksheet 9 Math B, GSI: Andrew Hanlon. Show that for each of the following pairs of differential equations and functions that the function is a solution of a differential equation. (a) y 2 y + y 2 ; Ce

More information

Math 20C. Lecture Examples.

Math 20C. Lecture Examples. Math 20C. Lecture Eamples. (8//08) Section 2.. Vectors in the plane Definition A ector represents a nonnegatie number and, if the number is not zero, a direction. The number associated ith the ector is

More information

Derivatives of Trig and Inverse Trig Functions

Derivatives of Trig and Inverse Trig Functions Derivatives of Trig and Inverse Trig Functions Math 102 Section 102 Mingfeng Qiu Nov. 28, 2018 Office hours I m planning to have additional office hours next week. Next Monday (Dec 3), which time works

More information

Velocity, Acceleration and Equations of Motion in the Elliptical Coordinate System

Velocity, Acceleration and Equations of Motion in the Elliptical Coordinate System Aailable online at www.scholarsresearchlibrary.com Archies of Physics Research, 018, 9 (): 10-16 (http://scholarsresearchlibrary.com/archie.html) ISSN 0976-0970 CODEN (USA): APRRC7 Velocity, Acceleration

More information

Higher. Polynomials and Quadratics. Polynomials and Quadratics 1

Higher. Polynomials and Quadratics. Polynomials and Quadratics 1 Higher Mathematics Polnomials and Quadratics Contents Polnomials and Quadratics 1 1 Quadratics EF 1 The Discriminant EF Completing the Square EF Sketching Paraolas EF 7 5 Determining the Equation of a

More information

AP Calculus (AB/BC) Prerequisite Packet Paint Branch High School Math Department

AP Calculus (AB/BC) Prerequisite Packet Paint Branch High School Math Department Updated 6/015 The problems in this packet are designed to help ou review topics from previous math courses that are important to our success in AP Calculus AB / BC. It is important that ou take time during

More information

FUNCTIONS. Note: Example of a function may be represented diagrammatically. The above example can be written diagrammatically as follows.

FUNCTIONS. Note: Example of a function may be represented diagrammatically. The above example can be written diagrammatically as follows. FUNCTIONS Def : A relation f from a set A into a set is said to be a function or mapping from A into if for each A there eists a unique such that (, ) f. It is denoted b f : A. Note: Eample of a function

More information

INSTRUCTOR S SOLUTIONS MANUAL SECTION 17.1 (PAGE 902)

INSTRUCTOR S SOLUTIONS MANUAL SECTION 17.1 (PAGE 902) INSTRUCTOR S SOLUTIONS MANUAL SECTION 7 PAGE 90 CHAPTER 7 ORDINARY DIFFEREN- TIAL EQUATIONS Section 7 Classifing Differential Equations page 90 = 5: st order, linear, homogeneous d d + = : nd order, linear,

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson, you Learn the terminology associated with polynomials Use the finite differences method to determine the degree of a polynomial

More information

CHAPTER 4: DYNAMICS: FORCE AND NEWTON S LAWS OF MOTION

CHAPTER 4: DYNAMICS: FORCE AND NEWTON S LAWS OF MOTION CHAPTE 4: DYNAMICS: FOCE AND NEWTON S LAWS OF MOTION 4. NEWTON S SECOND LAW OF MOTION: CONCEPT OF A SYSTEM. A 6.- kg sprinter starts a race ith an acceleration of external force on him? 4. m/s. What is

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.3 The Fundamental Theorem of Calculus Sec. 5.3: The Fundamental Theorem of Calculus Fundamental Theorem of Calculus: Sec. 5.3: The Fundamental Theorem of Calculus Fundamental

More information

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS Page of 6 FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS 6. HYPERBOLIC FUNCTIONS These functions which are defined in terms of e will be seen later to be related to the trigonometic functions via comple

More information

Heat Transfer Analysis of a Space Radiating Fin with Variable Thermal Conductivity

Heat Transfer Analysis of a Space Radiating Fin with Variable Thermal Conductivity Heat Transfer Analysis of a Space Radiating Fin ith Variale Thermal Conductivity Farzad Bazdidi-Tehrani, azdid@iust.ac.ir Department of Mechanical ngineering, Iran University of Science and Technology,

More information

Rising HONORS Algebra 2 TRIG student Summer Packet for 2016 (school year )

Rising HONORS Algebra 2 TRIG student Summer Packet for 2016 (school year ) Rising HONORS Algebra TRIG student Summer Packet for 016 (school ear 016-17) Welcome to Algebra TRIG! To be successful in Algebra Trig, ou must be proficient at solving and simplifing each tpe of problem

More information

MATH section 3.1 Maximum and Minimum Values Page 1 of 7

MATH section 3.1 Maximum and Minimum Values Page 1 of 7 MATH section. Maimum and Minimum Values Page of 7 Definition : Let c be a number in the domain D of a function f. Then c ) is the Absolute maimum value of f on D if ) c f() for all in D. Absolute minimum

More information

6.1 Reciprocal, Quotient, and Pythagorean Identities.notebook. Chapter 6: Trigonometric Identities

6.1 Reciprocal, Quotient, and Pythagorean Identities.notebook. Chapter 6: Trigonometric Identities Chapter 6: Trigonometric Identities 1 Chapter 6 Complete the following table: 6.1 Reciprocal, Quotient, and Pythagorean Identities Pages 290 298 6.3 Proving Identities Pages 309 315 Measure of

More information

Differentiation 9F. tan 3x. Using the result. The first term is a product with. 3sec 3. 2 x and sec x. Using the product rule for the first term: then

Differentiation 9F. tan 3x. Using the result. The first term is a product with. 3sec 3. 2 x and sec x. Using the product rule for the first term: then Differentiation 9F a tan Using the reslt tan k k sec k sec 4tan Let tan ; then 4 sec and sec tan sec d tan tan The first term is a proct with and v tan and sec Using the proct rle for the first term: sec

More information

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17.

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17. MTH0 Spring 07 HW Assignment : Sec. 6: #6,7; Sec. : #5,7; Sec. 8: #8; Sec. 0: # The due date for this assignment is //7. Sec. 6: #6. Use results in Sec. to verify that the function g z = ln r + iθ r >

More information

EXERCISES Chapter 7: Transcendental Functions. Hyperbolic Function Values and Identities

EXERCISES Chapter 7: Transcendental Functions. Hyperbolic Function Values and Identities 54 Chapter 7: ranscendental Functions EXERCISES 7.8 perbolic Function Values and Identities Each of Eercises 4 gives a value of sinh or cosh. Use the definitions and the identit cosh - sinh = to find the

More information

Electromagnetics I Exam No. 3 December 1, 2003 Solution

Electromagnetics I Exam No. 3 December 1, 2003 Solution Electroagnetics Ea No. 3 Deceber 1, 2003 Solution Please read the ea carefull. Solve the folloing 4 probles. Each proble is 1/4 of the grade. To receive full credit, ou ust sho all ork. f cannot understand

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

7.5 Solve Special Types of

7.5 Solve Special Types of 75 Solve Special Tpes of Linear Sstems Goal p Identif the number of of a linear sstem Your Notes VOCABULARY Inconsistent sstem Consistent dependent sstem Eample A linear sstem with no Show that the linear

More information

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2)

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2) Dynamics ( 동역학 ) Ch. Motion of Translating Bodies (. &.) Motion of Translating Bodies This chapter is usually referred to as Kinematics of Particles. Particles: In dynamics, a particle is a body without

More information

Linear Algebra Math 221

Linear Algebra Math 221 Linea Algeba Math Open Book Eam Open Notes Sept Calculatos Pemitted Sho all ok (ecept #). ( pts) Gien the sstem of equations a) ( pts) Epess this sstem as an augmented mati. b) ( pts) Bing this mati to

More information

Solutions to Problem Sheet for Week 6

Solutions to Problem Sheet for Week 6 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week 6 MATH90: Differential Calculus (Advanced) Semester, 07 Web Page: sydney.edu.au/science/maths/u/ug/jm/math90/

More information

Higher. Specimen NAB Assessment

Higher. Specimen NAB Assessment hsn.uk.net Higher Mathematics UNIT Specimen NAB Assessment HSN0 This document was produced speciall for the HSN.uk.net website, and we require that an copies or derivative works attribute the work to Higher

More information

is on the graph of y = f 1 (x).

is on the graph of y = f 1 (x). Objective 2 Inverse Functions Illustrate the idea of inverse functions. f() = 2 + f() = Two one-to-one functions are inverses of each other if (f g)() = of g, and (g f)() = for all in the domain of f.

More information

67. (a) Use a computer algebra system to find the partial fraction CAS. 68. (a) Find the partial fraction decomposition of the function CAS

67. (a) Use a computer algebra system to find the partial fraction CAS. 68. (a) Find the partial fraction decomposition of the function CAS SECTION 7.5 STRATEGY FOR INTEGRATION 483 6. 2 sin 2 2 cos CAS 67. (a) Use a computer algebra sstem to find the partial fraction decomposition of the function 62 63 Find the area of the region under the

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION IMPLICIT DIFFERENTIATION Section.5 Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 1:47 AM.5: Implicit Differentiation 1 REVIEW Solve or d of 4 + 3 = 6 4 3 6 4 3 6 4 3 4 ' 3 3 7/30/018 1:47

More information

EVALUATE: If the angle 40 is replaces by (cable B is vertical), then T = mg and

EVALUATE: If the angle 40 is replaces by (cable B is vertical), then T = mg and 58 IDENTIY: ppl Newton s 1st law to the wrecing ball Each cable eerts a force on the ball, directed along the cable SET UP: The force diagram for the wrecing ball is setched in igure 58 (a) T cos 40 mg

More information

4.317 d 4 y. 4 dx d 2 y dy. 20. dt d 2 x. 21. y 3y 3y y y 6y 12y 8y y (4) y y y (4) 2y y 0. d 4 y 26.

4.317 d 4 y. 4 dx d 2 y dy. 20. dt d 2 x. 21. y 3y 3y y y 6y 12y 8y y (4) y y y (4) 2y y 0. d 4 y 26. 38 CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS sstems are also able, b means of their dsolve commands, to provide eplicit solutions of homogeneous linear constant-coefficient differential equations.

More information

Fitting Integrands to Basic Rules. x x 2 9 dx. Solution a. Use the Arctangent Rule and let u x and a dx arctan x 3 C. 2 du u.

Fitting Integrands to Basic Rules. x x 2 9 dx. Solution a. Use the Arctangent Rule and let u x and a dx arctan x 3 C. 2 du u. 58 CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8 Basic Integration Rules Review proceres for fitting an integrand to one of the basic integration rules Fitting Integrands

More information

Solving Systems of Linear Equations Symbolically

Solving Systems of Linear Equations Symbolically " Solving Systems of Linear Equations Symolically Every day of the year, thousands of airline flights crisscross the United States to connect large and small cities. Each flight follows a plan filed with

More information

b. Create a graph that gives a more complete representation of f.

b. Create a graph that gives a more complete representation of f. or Use Onl in Pilot Program F 96 Chapter Limits 6 7. Steep secant lines a. Given the graph of f in the following figures, find the slope of the secant line that passes through, and h, f h in terms of h,

More information

Math Dr. Melahat Almus. OFFICE HOURS (610 PGH) MWF 9-9:45 am, 11-11:45am, OR by appointment.

Math Dr. Melahat Almus.   OFFICE HOURS (610 PGH) MWF 9-9:45 am, 11-11:45am, OR by appointment. Math 43 Dr. Melahat Almus almus@math.uh.edu http://www.math.uh.edu/~almus OFFICE HOURS (60 PGH) MWF 9-9:45 am, -:45am, OR by appointment. COURSE WEBSITE: http://www.math.uh.edu/~almus/43_fall5.html Visit

More information

1 The Derivative and Differrentiability

1 The Derivative and Differrentiability 1 The Derivative and Differrentiability 1.1 Derivatives and rate of change Exercise 1 Find the equation of the tangent line to f (x) = x 2 at the point (1, 1). Exercise 2 Suppose that a ball is dropped

More information

LESSON 4: INTEGRATION BY PARTS (I) MATH FALL 2018

LESSON 4: INTEGRATION BY PARTS (I) MATH FALL 2018 LESSON 4: INTEGRATION BY PARTS (I) MATH 6 FALL 8 ELLEN WELD. Integration by Parts We introduce another method for ealuating integrals called integration by parts. The key is the following : () u d = u

More information

be a deterministic function that satisfies x( t) dt. Then its Fourier

be a deterministic function that satisfies x( t) dt. Then its Fourier Lecture Fourier ransforms and Applications Definition Let ( t) ; t (, ) be a deterministic function that satisfies ( t) dt hen its Fourier it ransform is defined as X ( ) ( t) e dt ( )( ) heorem he inverse

More information

x 2. By rewriting f as f (x) = 4x 1 and using the Product Rule, x 2 = 4 f = 2e x csc x csc x csc x = 2e x ( csc x cot x) + 2e x csc x + cot x) sin 1 x

x 2. By rewriting f as f (x) = 4x 1 and using the Product Rule, x 2 = 4 f = 2e x csc x csc x csc x = 2e x ( csc x cot x) + 2e x csc x + cot x) sin 1 x MTH 07 Final Eam Study Questions: Derivatives, KEY 1. Find the derivative of f = 4 using the Quotient Rule. Fin using the Proct Rule. Fin without using either rule. Solution: Using the Quotient rule, f

More information

A-level Mathematics. MM03 Mark scheme June Version 1.0: Final

A-level Mathematics. MM03 Mark scheme June Version 1.0: Final -leel Mathematics MM0 Mark scheme 660 June 0 Version.0: Final Mark schemes are prepared by the Lead ssessment Writer and considered, together with the releant questions, by a panel of subject teachers.

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algera 1.4 THE MATRIX EQUATION A MATRIX EQUATION A mn Definition: If A is an matri, with columns a 1,, a n, and if is in R n, then the product of A and, denoted y A, is the

More information

1 :: Mathematical notation

1 :: Mathematical notation 1 :: Mathematical notation x A means x is a member of the set A. A B means the set A is contained in the set B. {a 1,..., a n } means the set hose elements are a 1,..., a n. {x A : P } means the set of

More information

Andrew s handout. 1 Trig identities. 1.1 Fundamental identities. 1.2 Other identities coming from the Pythagorean identity

Andrew s handout. 1 Trig identities. 1.1 Fundamental identities. 1.2 Other identities coming from the Pythagorean identity Andrew s handout Trig identities. Fundamental identities These are the most fundamental identities, in the sense that ou should probabl memorize these and use them to derive the rest (or, if ou prefer,

More information

Fitting Integrands to Basic Rules

Fitting Integrands to Basic Rules 6_8.qd // : PM Page 8 8 CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8. Basic Integration Rules Review proceres for fitting an integrand to one of the basic integration

More information

(A) when x = 0 (B) where the tangent line is horizontal (C) when f '(x) = 0 (D) when there is a sharp corner on the graph (E) None of the above

(A) when x = 0 (B) where the tangent line is horizontal (C) when f '(x) = 0 (D) when there is a sharp corner on the graph (E) None of the above AP Physics C - Problem Drill 10: Differentiability and Rules of Differentiation Question No. 1 of 10 Question 1. A derivative does not eist Question #01 (A) when 0 (B) where the tangent line is horizontal

More information

Copyrighted by Gabriel Tang B.Ed., B.Sc. Page 111.

Copyrighted by Gabriel Tang B.Ed., B.Sc. Page 111. Algera Chapter : Polnomial and Rational Functions Chapter : Polnomial and Rational Functions - Polnomial Functions and Their Graphs Polnomial Functions: - a function that consists of a polnomial epression

More information

Basic Pr actice Final Exam #3 Page 1 / 20

Basic Pr actice Final Exam #3 Page 1 / 20 Basic Practice Final Eam #3 Class Name : M Test Retake Instructor Name : Mr. Becke Student Name : Instructor Note : 1. Graph the inequalit. < 3 + 1 - - - - - - - -. Graph the sstem below and write its

More information

Announcements Wednesday, September 06

Announcements Wednesday, September 06 Announcements Wednesday, September 06 WeBWorK due on Wednesday at 11:59pm. The quiz on Friday coers through 1.2 (last eek s material). My office is Skiles 244 and my office hours are Monday, 1 3pm and

More information

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach Section Notes Page Trigonometric Functions; Unit Circle Approach A unit circle is a circle centered at the origin with a radius of Its equation is x y = as shown in the drawing below Here the letter t

More information

A SIMPLE STATIC ANALYSIS OF MOVING ROAD VEHICLE UNDER CROSSWIND

A SIMPLE STATIC ANALYSIS OF MOVING ROAD VEHICLE UNDER CROSSWIND A SIMPLE STATIC ANALYSIS OF MOVING OAD VEHICLE UNDE COSSWIND Milan Batist Marko Perkoič Uniersity of Ljubljan Faculty of Maritime studies and Transport Pot pomorščako 4, 630 Portorož, Sloeni EU milan.batista@fpp.uni-lj.si,

More information

Geometry review, part I

Geometry review, part I Geometr reie, part I Geometr reie I Vectors and points points and ectors Geometric s. coordinate-based (algebraic) approach operations on ectors and points Lines implicit and parametric equations intersections,

More information

5.3 Properties of Trigonometric Functions Objectives

5.3 Properties of Trigonometric Functions Objectives Objectives. Determine the Domain and Range of the Trigonometric Functions. 2. Determine the Period of the Trigonometric Functions. 3. Determine the Signs of the Trigonometric Functions in a Given Quadrant.

More information

Chapter 12 Exponential and Logarithmic Functions

Chapter 12 Exponential and Logarithmic Functions Chapter Eponential and Logarithmic Functions. Check Points. f( ).(.6) f ().(.6) 6.86 6 The average amount spent after three hours at a mall is $6. This overestimates the amount shown in the figure $..

More information

is on the graph of y = f 1 (x).

is on the graph of y = f 1 (x). Objective 2 Inverse Functions Illustrate the idea of inverse functions. f() = 2 + f() = Two one-to-one functions are inverses of each other if (f g)() = of g, and (g f)() = for all in the domain of f.

More information

Slope Fields and Differential Equations

Slope Fields and Differential Equations Student Stud Session Slope Fields and Differential Equations Students should be able to: Draw a slope field at a specified number of points b hand. Sketch a solution that passes through a given point on

More information

When two letters name a vector, the first indicates the and the second indicates the of the vector.

When two letters name a vector, the first indicates the and the second indicates the of the vector. 8-8 Chapter 8 Applications of Trigonometry 8.3 Vectors, Operations, and the Dot Product Basic Terminology Algeraic Interpretation of Vectors Operations with Vectors Dot Product and the Angle etween Vectors

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

Miscellaneous (dimension, angle, etc.) - black [pencil] Use different colors in diagrams. Body outline - blue [black] Vector

Miscellaneous (dimension, angle, etc.) - black [pencil] Use different colors in diagrams. Body outline - blue [black] Vector 1. Sstems of orces & s 2142111 Statics, 2011/2 Department of Mechanical Engineering, Chulalongkorn Uniersit bjecties Students must be able to Course bjectie Analze a sstem of forces and moments Chapter

More information

Chapter 3. Systems of Linear Equations: Geometry

Chapter 3. Systems of Linear Equations: Geometry Chapter 3 Systems of Linear Equations: Geometry Motiation We ant to think about the algebra in linear algebra (systems of equations and their solution sets) in terms of geometry (points, lines, planes,

More information

UNIT 5 QUADRATIC FUNCTIONS Lesson 2: Creating and Solving Quadratic Equations in One Variable Instruction

UNIT 5 QUADRATIC FUNCTIONS Lesson 2: Creating and Solving Quadratic Equations in One Variable Instruction Lesson : Creating and Solving Quadratic Equations in One Variale Prerequisite Skills This lesson requires the use of the following skills: understanding real numers and complex numers understanding rational

More information

Have a Safe and Happy Break

Have a Safe and Happy Break Math 121 Final EF: December 10, 2013 Name Directions: 1 /15 2 /15 3 /15 4 /15 5 /10 6 /10 7 /20 8 /15 9 /15 10 /10 11 /15 12 /20 13 /15 14 /10 Total /200 1. No book, notes, or ouiji boards. You may use

More information

ANALYTICAL SOLUTION OF SEISMIC ACTIVE LATERAL FORCE IN RETAINING WALLS USING STRESS FIELDS *

ANALYTICAL SOLUTION OF SEISMIC ACTIVE LATERAL FORCE IN RETAINING WALLS USING STRESS FIELDS * IJST, Transactions of Civil Engineering, Vol. 36, No. C2, pp 195-207 Printed in The Islamic Repulic of Iran, 2012 Shiraz University ANALYTICAL SOLUTION OF SEISMIC ACTIVE LATERAL FORCE IN RETAINING WALLS

More information

Integration by parts Integration by parts is a direct reversal of the product rule. By integrating both sides, we get:

Integration by parts Integration by parts is a direct reversal of the product rule. By integrating both sides, we get: Integration by parts Integration by parts is a direct reversal of the proct rule. By integrating both sides, we get: u dv dx x n sin mx dx (make u = x n ) dx = uv v dx dx When to use integration by parts

More information

STEP Support Programme. Hints and Partial Solutions for Assignment 2

STEP Support Programme. Hints and Partial Solutions for Assignment 2 STEP Support Programme Hints and Partial Solutions for Assignment 2 Warm-up 1 (i) You could either expand the rackets and then factorise, or use the difference of two squares to get [(2x 3) + (x 1)][(2x

More information

Review Exercises for Chapter 2

Review Exercises for Chapter 2 Review Eercises for Chapter 367 Review Eercises for Chapter. f 1 1 f f f lim lim 1 1 1 1 lim 1 1 1 1 lim 1 1 lim lim 1 1 1 1 1 1 1 1 1 4. 8. f f f f lim lim lim lim lim f 4, 1 4, if < if (a) Nonremovable

More information

Revision Topic 5: Rearranging Formulae

Revision Topic 5: Rearranging Formulae Revision Topic 5: Rearranging Formulae Changing the suject of simple formulae Introductory example When cooking a roast, the formula that links cooking time (T) ith eight (W) can e ritten as T = 30W +

More information

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x)

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x) APPM 5 Final Eam (5 pts) Fall. The following problems are not related: (a) (5 pts, 5 pts ea.) Find the following limits or show that they do not eist: (i) lim e (ii) lim arcsin() (b) (5 pts) Find and classify

More information

Preface. Implicit Differentiation. y =

Preface. Implicit Differentiation. y = Preface Here are the solutions to the practice problems for m Calculus I notes. Some solutions will have more or less detail than other solutions. The level of detail in each solution will depend up on

More information

Concept of Stress at a Point

Concept of Stress at a Point Washkeic College of Engineering Section : STRONG FORMULATION Concept of Stress at a Point Consider a point ithin an arbitraril loaded deformable bod Define Normal Stress Shear Stress lim A Fn A lim A FS

More information

Estimation of Efficiency with the Stochastic Frontier Cost. Function and Heteroscedasticity: A Monte Carlo Study

Estimation of Efficiency with the Stochastic Frontier Cost. Function and Heteroscedasticity: A Monte Carlo Study Estimation of Efficiency ith the Stochastic Frontier Cost Function and Heteroscedasticity: A Monte Carlo Study By Taeyoon Kim Graduate Student Oklahoma State Uniersity Department of Agricultural Economics

More information

ERASMUS UNIVERSITY ROTTERDAM

ERASMUS UNIVERSITY ROTTERDAM Information concerning Colloquium doctum Mathematics level 2 for International Business Administration (IBA) and International Bachelor Economics & Business Economics (IBEB) General information ERASMUS

More information

HALF SYLLABUS TEST. Topics : Ch 01 to Ch 08

HALF SYLLABUS TEST. Topics : Ch 01 to Ch 08 Ma Marks : Topics : Ch to Ch 8 HALF SYLLABUS TEST Time : Minutes General instructions : (i) All questions are compulsory (ii) Please check that this question paper contains 9 questions (iii) Questions

More information

Integration. Section 8: Using partial fractions in integration

Integration. Section 8: Using partial fractions in integration Integration Section 8: Using partial fractions in integration Notes and Eamples These notes contain subsections on Using partial fractions in integration Putting all the integration techniques together

More information

Differential Geometry of Surfaces

Differential Geometry of Surfaces Differential Geometry of urfaces Jordan mith and Carlo équin C Diision, UC Berkeley Introduction These are notes on differential geometry of surfaces ased on reading Greiner et al. n. d.. Differential

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.5 The Substitution Rule (u-substitution) Sec. 5.5: The Substitution Rule We know how to find the derivative of any combination of functions Sum rule Difference rule Constant

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

Math Lesson 2-2 Properties of Exponents

Math Lesson 2-2 Properties of Exponents Math-00 Lesson - Properties of Eponents Properties of Eponents What is a power? Power: An epression formed b repeated multiplication of the base. Coefficient Base Eponent The eponent applies to the number

More information

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x).

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x). The Chain Rule This is a generalization of the general) power rule which we have already met in the form: If f) = g)] r then f ) = r g)] r g ). Here, g) is any differentiable function and r is any real

More information

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y 10 Differential Equations Test Form A 1. Find the general solution to the first order differential equation: y 1 yy 0. 1 (a) (b) ln y 1 y ln y 1 C y y C y 1 C y 1 y C. Find the general solution to the

More information

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2 6 FAMAT Convention Mu Integration. A. 3 3 7 6 6 3 ] 3 6 6 3. B. For quadratic functions, Simpson s Rule is eact. Thus, 3. D.. B. lim 5 3 + ) 3 + ] 5 8 8 cot θ) dθ csc θ ) dθ cot θ θ + C n k n + k n lim

More information

Lesson 3: Free fall, Vectors, Motion in a plane (sections )

Lesson 3: Free fall, Vectors, Motion in a plane (sections ) Lesson 3: Free fall, Vectors, Motion in a plane (sections.6-3.5) Last time we looked at position s. time and acceleration s. time graphs. Since the instantaneous elocit is lim t 0 t the (instantaneous)

More information

CHAPTER 2 DIFFERENTIATION 2.1 FIRST ORDER DIFFERENTIATION. What is Differentiation?

CHAPTER 2 DIFFERENTIATION 2.1 FIRST ORDER DIFFERENTIATION. What is Differentiation? BA01 ENGINEERING MATHEMATICS 01 CHAPTER DIFFERENTIATION.1 FIRST ORDER DIFFERENTIATION What is Differentiation? Differentiation is all about finding rates of change of one quantity compared to another.

More information

STRAND F: ALGEBRA. UNIT F4 Solving Quadratic Equations: Text * * Contents. Section. F4.1 Factorisation. F4.2 Using the Formula

STRAND F: ALGEBRA. UNIT F4 Solving Quadratic Equations: Text * * Contents. Section. F4.1 Factorisation. F4.2 Using the Formula UNIT F4 Solving Quadratic Equations: Tet STRAND F: ALGEBRA Unit F4 Solving Quadratic Equations Tet Contents * * Section F4. Factorisation F4. Using the Formula F4. Completing the Square UNIT F4 Solving

More information