State-space models 2 2 nd order ODEs

Size: px
Start display at page:

Download "State-space models 2 2 nd order ODEs"

Transcription

1 1 State-space models 2 2 nd order ODEs J A Rossiter

2 Introduction This resource focuses on derivations of state space model equivalents for systems described by ODEs. Here we consider 2 nd order ODEs (see separate resources for detailed derivation). The state-space model is defined in terms of the derivatives of the states. If you know the derivatives of all the states, then you can capture the system behaviour. States relate to dynamic variables such as splacement, height, tension, temperature, etc. 2

3 States of a 2 nd order ODE 3 1. The first step in forming a state space model is to define the states. 2. There should be enough independent states to capture the entire system dynamics for low order systems this selection is usually obvious. 3. However, when presented with a high order fferential equation, the user may have no access (or information) relating to the definition of the original underlying states, and thus an arbitrary definition can be used.

4 Modelling a mass-spring-damper Force balance can be used to determine the overall model of behaviour. f 1 Bv ˆ f f f 2 kx dv 3 M f 1 f 2 f 3 4 dv f M Bv ˆ kx States are v and x

5 States for mass-spring-damper dv f M Bv ˆ kx It is clear that the model contains states velocity v and splacement x so these are a logical choice. 5 For a state space model, find the derivatives of each state and stack into a single vector.

6 State-space model Write the derivatives of v and x and stack in a vector. dv dv f kx M f kx Bv ˆ dx dx M v v Bv ˆ 6 dv dx Bˆ k v 1 M M M f x A z B z In compact form Az Bf

7 Resistor-inductor-capacitor in series Consider the following circuit and use Kirchhoff s voltage law to derive an appropriate model. 7 v1 ir1 R1 dq v2 1 v3 q C v v1 v2 v3 v R dq States are i and q 1 C q

8 State-space model Write the derivatives of i and q and stack in a vector. q q v ir v ir C C dq i q dq R 1 i 1 C v q A z B z In compact form Az Bv 8

9 The model can be summarised with some simple equations. Here it may be less obvious which states to choice due to the possibilities of two angles/velocities, current, back emf and torque. DC servo v ki Bw ˆ kw J dw ir 9

10 DC servo choice of state The states of interest must be defined with an equation inclung their derivative. Other states could be viewed as outputs (possible measurements) and in this case will be linearly dependent on the selected states. Two obvious choices are w and i: 10 v kw ir; ki Bw ˆ J dw

11 State-space model of DC servo Express the derivatives of the selected states in a column vector. dw v kw ir; ki Bw ˆ J v k R dw k Bˆ w i ; i w J J dw Bˆ k w J J v k R i 1 0 z Az Bv z B A 11

12 DC servo with splacement Should the user be interested in the angular position as well as the angular velocity, then an adtional state is needed. 12 d w dw J Bw ki i kw ; ˆ R; v v i w R k J k J B d dw ˆ

13 Pendulum A pendulum of length l with end mass m is able to swing freely (assume some friction constant k). A model can be derived using force balance in the tangential rection (small angles). ml mg length - l kl mass - m 13 Choose states:, w

14 Pendulum state space model State derivatives: dw d ml mg klw w length - l mass - m 14 dw d kl mg w 0 ml ml A z B f z Az Bf

15 Summary 15 Illustrated state-space model derivation for several common 2 nd order systems. It is noted that the selection of states is important, but this choice is often obvious from the underlying component and balance equations as only certain states will have their derivatives defined explicitly. The compact form has vectors of states/inputs and matrices of coefficients. x Ax Bu

16 Anthony Rossiter Department of Automatic Control and Systems Engineering University of Sheffield University of Sheffield This work is licensed under the Creative Commons Attribution 2.0 UK: England & Wales icence. To view a copy of this licence, visit or send a letter to: Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA. It should be noted that some of the materials contained within this resource are subject to third party rights and any copyright notices must remain with these materials in the event of reuse or repurposing. If there are third party images within the resource please do not remove or alter any of the copyright notices or website details shown below the image. (Please list details of the third party rights contained within this work. If you include your institutions logo on the cover please include reference to the fact that it is a trade mark and all copyright in that image is reserved.)

Differentiation 1 concepts

Differentiation 1 concepts Differentiation concepts J A Rossiter Introduction The first video introduces the concept of differentiation. What does it mean to differentiate? What is a derivative? What notation is used for differentiation?

More information

Simultaneous equations 8 Introduction to advanced methods

Simultaneous equations 8 Introduction to advanced methods 1 Simultaneous equations 8 Introduction to advanced methods J A Rossiter For a neat organisation of all videos and resources http://controleducation.group.shef.ac.uk/indexwebbook.html Slides by Anthony

More information

Differentiation 2 first principles

Differentiation 2 first principles Differentiation first principles J A Rossiter Slides b Anthon Rossiter Introduction The previous video introduces the concept of differentiation and the term derivative. Net we need to look at how differentiation

More information

Differentiation 9 examples using the product and quotient rules

Differentiation 9 examples using the product and quotient rules 1 Differentiation 9 eamples using the proct and quotient rules J A Rossiter http://controlecation.group.shef.ac.uk/mathematics.html Slides Anthon Rossiter Introction The preious ideos hae gien a definition

More information

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization Plan of the Lecture Review: control, feedback, etc Today s topic: state-space models of systems; linearization Goal: a general framework that encompasses all examples of interest Once we have mastered

More information

State-space feedback 5 Tutorial examples and use of MATLAB

State-space feedback 5 Tutorial examples and use of MATLAB State-pace feedback 5 Tutorial example and ue of MTLB J Roiter Introduction The previou video howed how tate feedback can place pole preciely a long a the ytem u fully controllable. x u x Kx Bu Thi video

More information

(Refer Slide Time: 00:01:30 min)

(Refer Slide Time: 00:01:30 min) Control Engineering Prof. M. Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 3 Introduction to Control Problem (Contd.) Well friends, I have been giving you various

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

Analog Signals and Systems and their properties

Analog Signals and Systems and their properties Analog Signals and Systems and their properties Main Course Objective: Recall course objectives Understand the fundamentals of systems/signals interaction (know how systems can transform or filter signals)

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocwmitedu 00 Dynamics and Control II Spring 00 For information about citing these materials or our Terms of Use, visit: http://ocwmitedu/terms Massachusetts Institute of Technology

More information

ET3-7: Modelling II(V) Electrical, Mechanical and Thermal Systems

ET3-7: Modelling II(V) Electrical, Mechanical and Thermal Systems ET3-7: Modelling II(V) Electrical, Mechanical and Thermal Systems Agenda of the Day 1. Resume of lesson I 2. Basic system models. 3. Models of basic electrical system elements 4. Application of Matlab/Simulink

More information

Module 24: Outline. Expt. 8: Part 2:Undriven RLC Circuits

Module 24: Outline. Expt. 8: Part 2:Undriven RLC Circuits Module 24: Undriven RLC Circuits 1 Module 24: Outline Undriven RLC Circuits Expt. 8: Part 2:Undriven RLC Circuits 2 Circuits that Oscillate (LRC) 3 Mass on a Spring: Simple Harmonic Motion (Demonstration)

More information

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations ymy/013 Building Intuition Even though there are an infinite number of differential equations, they all share common characteristics that allow intuition

More information

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS 2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM In the circuit shown above, resistors 1 and 2 of resistance R 1 and R 2, respectively, and an inductor of inductance L are connected to a battery of emf e and

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Electromagnetic Oscillations Physics for Scientists & Engineers Spring Semester 005 Lecture 8! We have been working with circuits that have a constant current a current that increases to a constant current

More information

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18 Circuit Analysis-III Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)

More information

System Modeling. Lecture-2. Emam Fathy Department of Electrical and Control Engineering

System Modeling. Lecture-2. Emam Fathy Department of Electrical and Control Engineering System Modeling Lecture-2 Emam Fathy Department of Electrical and Control Engineering email: emfmz@yahoo.com 1 Types of Systems Static System: If a system does not change with time, it is called a static

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MT OpenCourseWare http://ocwmitedu 200 Dynamics and Control Spring 200 For information about citing these materials or our Terms of Use, visit: http://ocwmitedu/terms Massachusetts nstitute of Technology

More information

Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N 2 0 1 7 Modeling Modeling is the process of representing the behavior of a real

More information

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II Physics Course Materials 2015 10. Resistors II Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Noise - irrelevant data; variability in a quantity that has no meaning or significance. In most cases this is modeled as a random variable.

Noise - irrelevant data; variability in a quantity that has no meaning or significance. In most cases this is modeled as a random variable. 1.1 Signals and Systems Signals convey information. Systems respond to (or process) information. Engineers desire mathematical models for signals and systems in order to solve design problems efficiently

More information

Handout 10: Inductance. Self-Inductance and inductors

Handout 10: Inductance. Self-Inductance and inductors 1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

More information

Harmonic Oscillator - Model Systems

Harmonic Oscillator - Model Systems 3_Model Systems HarmonicOscillators.nb Chapter 3 Harmonic Oscillator - Model Systems 3.1 Mass on a spring in a gravitation field a 0.5 3.1.1 Force Method The two forces on the mass are due to the spring,

More information

Modeling of Electromechanical Systems

Modeling of Electromechanical Systems Page 1 of 54 Modeling of Electromechanical Systems Werner Haas, Kurt Schlacher and Reinhard Gahleitner Johannes Kepler University Linz, Department of Automatic Control, Altenbergerstr.69, A 4040 Linz,

More information

RC Circuits (32.9) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 1

RC Circuits (32.9) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 1 (32.9) We have only been discussing DC circuits so far. However, using a capacitor we can create an RC circuit. In this example, a capacitor is charged but the switch is open, meaning no current flows.

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Transient Response of a Chemical Reactor Concentration of a substance in a chemical reactor

More information

CHAPTER 12 OSCILLATORY MOTION

CHAPTER 12 OSCILLATORY MOTION CHAPTER 1 OSCILLATORY MOTION Before starting the discussion of the chapter s concepts it is worth to define some terms we will use frequently in this chapter: 1. The period of the motion, T, is the time

More information

Active loads in amplifier circuits

Active loads in amplifier circuits Active loads in amplifier circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

More information

Modeling and Simulation Revision III D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Modeling and Simulation Revision III D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Modeling and Simulation Revision III D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N 0 1 4 Block Diagrams Block diagram models consist of two fundamental objects:

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

Higher Order ODE's (3A) Young Won Lim 12/27/15

Higher Order ODE's (3A) Young Won Lim 12/27/15 Higher Order ODE's (3A) Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Chapter 6. Second order differential equations

Chapter 6. Second order differential equations Chapter 6. Second order differential equations A second order differential equation is of the form y = f(t, y, y ) where y = y(t). We shall often think of t as parametrizing time, y position. In this case

More information

Lecture 39. PHYC 161 Fall 2016

Lecture 39. PHYC 161 Fall 2016 Lecture 39 PHYC 161 Fall 016 Announcements DO THE ONLINE COURSE EVALUATIONS - response so far is < 8 % Magnetic field energy A resistor is a device in which energy is irrecoverably dissipated. By contrast,

More information

The basic principle to be used in mechanical systems to derive a mathematical model is Newton s law,

The basic principle to be used in mechanical systems to derive a mathematical model is Newton s law, Chapter. DYNAMIC MODELING Understanding the nature of the process to be controlled is a central issue for a control engineer. Thus the engineer must construct a model of the process with whatever information

More information

School of Engineering Faculty of Built Environment, Engineering, Technology & Design

School of Engineering Faculty of Built Environment, Engineering, Technology & Design Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Co-ordinator/Tutor : Dr. Phang

More information

Definition of differential equations and their classification. Methods of solution of first-order differential equations

Definition of differential equations and their classification. Methods of solution of first-order differential equations Introduction to differential equations: overview Definition of differential equations and their classification Solutions of differential equations Initial value problems Existence and uniqueness Mathematical

More information

STATISTICS 407 METHODS OF MULTIVARIATE ANALYSIS TOPICS

STATISTICS 407 METHODS OF MULTIVARIATE ANALYSIS TOPICS STATISTICS 407 METHODS OF MULTIVARIATE ANALYSIS TOPICS Principal Component Analysis (PCA): Reduce the, summarize the sources of variation in the data, transform the data into a new data set where the variables

More information

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

More information

Problem Solving 8: Circuits

Problem Solving 8: Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics OBJECTIVES Problem Solving 8: Circuits 1. To gain intuition for the behavior of DC circuits with both resistors and capacitors or inductors.

More information

First-order transient

First-order transient EIE209 Basic Electronics First-order transient Contents Inductor and capacitor Simple RC and RL circuits Transient solutions Constitutive relation An electrical element is defined by its relationship between

More information

Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, RL Circuits, LC Circuits, RLC Circuits Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

More information

EE Homework 3 Due Date: 03 / 30 / Spring 2015

EE Homework 3 Due Date: 03 / 30 / Spring 2015 EE 476 - Homework 3 Due Date: 03 / 30 / 2015 Spring 2015 Exercise 1 (10 points). Consider the problem of two pulleys and a mass discussed in class. We solved a version of the problem where the mass was

More information

Engineering Fundamentals and Problem Solving, 6e

Engineering Fundamentals and Problem Solving, 6e Engineering Fundamentals and Problem Solving, 6e Chapter 17 Electrical Circuits Chapter Objectives Compute the equivalent resistance of resistors in series and in parallel Apply Ohm s law to a resistive

More information

K2-04: FARADAY'S EXPERIMENT - EME K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS

K2-04: FARADAY'S EXPERIMENT - EME K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS K2-04: FARADAY'S EXPERIMENT - EME SET - 20, 40, 80 TURN COILS K2-62: CAN SMASHER - ELECTROMAGNETIC K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS K2-44: EDDY CURRENT PENDULUM K4-06: MAGNETOELECTRIC GENERATOR

More information

2.4 Models of Oscillation

2.4 Models of Oscillation 2.4 Models of Oscillation In this section we give three examples of oscillating physical systems that can be modeled by the harmonic oscillator equation. Such models are ubiquitous in physics, but are

More information

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2 Module 25: Driven RLC Circuits 1 Module 25: Outline Resonance & Driven LRC Circuits 2 Driven Oscillations: Resonance 3 Mass on a Spring: Simple Harmonic Motion A Second Look 4 Mass on a Spring (1) (2)

More information

Ch 15 Simple Harmonic Motion

Ch 15 Simple Harmonic Motion Ch 15 Simple Harmonic Motion Periodic (Circular) Motion Point P is travelling in a circle with a constant speed. How can we determine the x-coordinate of the point P in terms of other given quantities?

More information

AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa

AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa AC Circuits III Physics 415 Lecture 4 Michael Fowler, UVa Today s Topics LC circuits: analogy with mass on spring LCR circuits: damped oscillations LCR circuits with ac source: driven pendulum, resonance.

More information

Springs and Dampers. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 2 Fall 2017

Springs and Dampers. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 2 Fall 2017 MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 2 Fall 2017 Spring Law : One End Fixed Ideal linear spring law: f = kx. What are the units of k? More generally: f = F(x) nonlinear

More information

2002 Prentice Hall, Inc. Gene F. Franklin, J. David Powell, Abbas Emami-Naeini Feedback Control of Dynamic Systems, 4e

2002 Prentice Hall, Inc. Gene F. Franklin, J. David Powell, Abbas Emami-Naeini Feedback Control of Dynamic Systems, 4e u Figure 2.1 Cruise-control model x Friction force bx m x u Figure 2.2 Free-body diagram for cruise control S P 278 Figure 2.3 Automobile suspension y m 2 k s b v car x m 1 k w Road surface r Inertial

More information

Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Circuit Analysis (EC 2) Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,

More information

Today in Physics 217: circuits

Today in Physics 217: circuits Today in Physics 217: circuits! Review of DC circuits: Kirchhoff s rules! Solving equations from Kirchhoff s rules for simple DC circuits 2 December 2002 Physics 217, Fall 2002 1 Lumped circuit elements:

More information

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

More information

Solution to Homework 2

Solution to Homework 2 Solution to Homework. Substitution and Nonexact Differential Equation Made Exact) [0] Solve dy dx = ey + 3e x+y, y0) = 0. Let u := e x, v = e y, and hence dy = v + 3uv) dx, du = u)dx, dv = v)dy = u)dv

More information

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II Physics Course Materials 2015 11. RC Circuits Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

DC Motor Position: System Modeling

DC Motor Position: System Modeling 1 of 7 01/03/2014 22:07 Tips Effects TIPS ABOUT BASICS INDEX NEXT INTRODUCTION CRUISE CONTROL MOTOR SPEED MOTOR POSITION SUSPENSION INVERTED PENDULUM SYSTEM MODELING ANALYSIS DC Motor Position: System

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

Gabriel Kron's biography here.

Gabriel Kron's biography here. Gabriel Kron, Electric Circuit Model of the Schrödinger Equation, 1945 - Component of :... Page 1 of 12 {This website: Please note: The following article is complete; it has been put into ASCII due to

More information

Chapter 8. Model of the Accelerometer. 8.1 The static model 8.2 The dynamic model 8.3 Sensor System simulation

Chapter 8. Model of the Accelerometer. 8.1 The static model 8.2 The dynamic model 8.3 Sensor System simulation Chapter 8. Model of the Accelerometer 8.1 The static model 8.2 The dynamic model 8.3 Sensor System simulation 8.3 Sensor System Simulation In order to predict the behavior of the mechanical sensor in combination

More information

Higher Order ODE's (3A) Young Won Lim 7/7/14

Higher Order ODE's (3A) Young Won Lim 7/7/14 Higher Order ODE's (3A) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Revision: June 11, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: June 11, E Main Suite D Pullman, WA (509) Voice and Fax .5.1: Second Order ircuits Revision: June 11, 010 15 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview Second order systems are, by definition, systems whose input-output relationship

More information

Capacitor and Inductor

Capacitor and Inductor Capacitor and Inductor Copyright (c) 2015 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Capacitor and Inductor

Capacitor and Inductor Capacitor and Inductor Copyright (c) 2015 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Oscillations. Tacoma Narrow Bridge: Example of Torsional Oscillation

Oscillations. Tacoma Narrow Bridge: Example of Torsional Oscillation Oscillations Mechanical Mass-spring system nd order differential eq. Energy tossing between mass (kinetic energy) and spring (potential energy) Effect of friction, critical damping (shock absorber) Simple

More information

AP Physics C. Inductance. Free Response Problems

AP Physics C. Inductance. Free Response Problems AP Physics C Inductance Free Response Problems 1. Two toroidal solenoids are wounded around the same frame. Solenoid 1 has 800 turns and solenoid 2 has 500 turns. When the current 7.23 A flows through

More information

2.4 Harmonic Oscillator Models

2.4 Harmonic Oscillator Models 2.4 Harmonic Oscillator Models In this section we give three important examples from physics of harmonic oscillator models. Such models are ubiquitous in physics, but are also used in chemistry, biology,

More information

Electricity and Light Pre Lab Questions

Electricity and Light Pre Lab Questions Electricity and Light Pre Lab Questions The pre lab questions can be answered by reading the theory and procedure for the related lab. You are strongly encouraged to answers these questions on your own.

More information

19. LC and RLC Oscillators

19. LC and RLC Oscillators University of Rhode Island Digitaloons@URI PHY 204: Eleentary Physics II Physics ourse Materials 2015 19. L and RL Oscillators Gerhard Müller University of Rhode Island, guller@uri.edu reative oons License

More information

Physics 11b Lecture #15

Physics 11b Lecture #15 Physics 11b ecture #15 and ircuits A ircuits S&J hapter 3 & 33 Administravia Midterm # is Thursday If you can t take midterm, you MUST let us (me, arol and Shaun) know in writing before Wednesday noon

More information

ELECTRONICS E # 1 FUNDAMENTALS 2/2/2011

ELECTRONICS E # 1 FUNDAMENTALS 2/2/2011 FE Review 1 ELECTRONICS E # 1 FUNDAMENTALS Electric Charge 2 In an electric circuit it there is a conservation of charge. The net electric charge is constant. There are positive and negative charges. Like

More information

Harmonic Oscillator. Mass-Spring Oscillator Resonance The Pendulum. Physics 109 Experiment Number 12

Harmonic Oscillator. Mass-Spring Oscillator Resonance The Pendulum. Physics 109 Experiment Number 12 Harmonic Oscillator Mass-Spring Oscillator Resonance The Pendulum Physics 109 Experiment Number 12 Outline Simple harmonic motion The vertical mass-spring system Driven oscillations and resonance The pendulum

More information

ECE2262 Electric Circuits. Chapter 1: Basic Concepts. Overview of the material discussed in ENG 1450

ECE2262 Electric Circuits. Chapter 1: Basic Concepts. Overview of the material discussed in ENG 1450 ECE2262 Electric Circuits Chapter 1: Basic Concepts Overview of the material discussed in ENG 1450 1 Circuit Analysis 2 Lab -ECE 2262 3 LN - ECE 2262 Basic Quantities: Current, Voltage, Energy, Power The

More information

INC 693, 481 Dynamics System and Modelling: Lagrangian Method III Dr.-Ing. Sudchai Boonto Assistant Professor

INC 693, 481 Dynamics System and Modelling: Lagrangian Method III Dr.-Ing. Sudchai Boonto Assistant Professor INC 693, 481 Dynamics System and Modelling: Lagrangian Method III Dr.-Ing. Sudchai Boonto Assistant Professor Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of

More information

1 2 U CV. K dq I dt J nqv d J V IR P VI

1 2 U CV. K dq I dt J nqv d J V IR P VI o 5 o T C T F 3 9 T K T o C 73.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC L pv nrt 3 Ktr nrt 3 CV R ideal monatomic gas 5 CV R ideal diatomic gas w/o vibration V W pdv V U Q W W Q e Q Q e Carnot

More information

AP Physics C - E & M

AP Physics C - E & M AP Physics C - E & M Current and Circuits 2017-07-12 www.njctl.org Electric Current Resistance and Resistivity Electromotive Force (EMF) Energy and Power Resistors in Series and in Parallel Kirchoff's

More information

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33 Session 33 Physics 115 General Physics II AC: RL vs RC circuits Phase relationships RLC circuits R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 6/2/14 1

More information

Capacitor Action. 3. Capacitor Action Theory Support. Electronics - AC Circuits

Capacitor Action. 3. Capacitor Action Theory Support. Electronics - AC Circuits Capacitor Action Topics covered in this presentation: Capacitors on DC Capacitors on AC Capacitor Charging Capacitor Discharging 1 of 18 Charging a Capacitor (DC) Before looking at how capacitors charge

More information

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies Induced emf - Faraday s Experiment When a magnet moves toward a loop of wire, the ammeter shows the presence of a current When

More information

MAE106 Homework 2 - Solution DC Motors & Intro to the frequency domain

MAE106 Homework 2 - Solution DC Motors & Intro to the frequency domain MAE06 Homework 2 - Solution DC Motors & Intro to the frequency domain University of California, Irvine Department of Mechanical and Aerospace Engineering Problem You are given the circuit shown in Figure.

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *3729562004* PHYSICS 9702/52 Paper 5 Planning, Analysis and Evaluation February/March 2017 1 hour 15

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information

Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be.

Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be. Chapter 4 Energy and Stability 4.1 Energy in 1D Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be T = 1 2 mẋ2 and the potential energy

More information

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents. Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in

More information

1 of 7 8/2/ :10 PM

1 of 7 8/2/ :10 PM {This website: Please note: The following article is complete; it has been put into ASCII due to a) space requirement reduction and b) for having thus the possibility to enlarge the fairly small figures.

More information

NATIONAL QUALIFICATIONS CURRICULUM SUPPORT. Physics. Electromagnetism. Questions and Solutions. James Page [REVISED ADVANCED HIGHER]

NATIONAL QUALIFICATIONS CURRICULUM SUPPORT. Physics. Electromagnetism. Questions and Solutions. James Page [REVISED ADVANCED HIGHER] NATIONAL QUALIFICATIONS CURRICULUM SUPPORT Physics Electromagnetism Questions and Solutions James Page [REVISED ADVANCED HIGHER] The Scottish Qualifications Authority regularly reviews the arrangements

More information

Harmonic Oscillator. Outline. Oscillatory Motion or Simple Harmonic Motion. Oscillatory Motion or Simple Harmonic Motion

Harmonic Oscillator. Outline. Oscillatory Motion or Simple Harmonic Motion. Oscillatory Motion or Simple Harmonic Motion Harmonic Oscillator Mass-Spring Oscillator Resonance The Pendulum Physics 109, Class Period 13 Experiment Number 11 in the Physics 121 Lab Manual (page 65) Outline Simple harmonic motion The vertical mass-spring

More information

2014 Assessment Report. Physics Level 3

2014 Assessment Report. Physics Level 3 National Certificate of Educational Achievement 2014 Assessment Report Physics Level 3 91523 Demonstrate understanding of wave systems 91524 Demonstrate understanding of mechanical systems 91526 Demonstrate

More information

Circuits Practice Websheet 18.1

Circuits Practice Websheet 18.1 Circuits Practice Websheet 18.1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How much power is being dissipated by one of the 10-Ω resistors? a. 24

More information

Modeling of Dynamic Systems: Notes on Bond Graphs Version 1.0 Copyright Diane L. Peters, Ph.D., P.E.

Modeling of Dynamic Systems: Notes on Bond Graphs Version 1.0 Copyright Diane L. Peters, Ph.D., P.E. Modeling of Dynamic Systems: Notes on Bond Graphs Version 1.0 Copyright 2015 Diane L. Peters, Ph.D., P.E. Spring 2015 2 Contents 1 Overview of Dynamic Modeling 5 2 Bond Graph Basics 7 2.1 Causality.............................

More information

General Response of Second Order System

General Response of Second Order System General Response of Second Order System Slide 1 Learning Objectives Learn to analyze a general second order system and to obtain the general solution Identify the over-damped, under-damped, and critically

More information

Chapter 5 Oscillatory Motion

Chapter 5 Oscillatory Motion Chapter 5 Oscillatory Motion Simple Harmonic Motion An object moves with simple harmonic motion whenever its acceleration is proportional to its displacement from some equilibrium position and is oppositely

More information

7.3 State Space Averaging!

7.3 State Space Averaging! 7.3 State Space Averaging! A formal method for deriving the small-signal ac equations of a switching converter! Equivalent to the modeling method of the previous sections! Uses the state-space matrix description

More information

PRACTICE EXAM 2 for Midterm 2

PRACTICE EXAM 2 for Midterm 2 PRACTICE EXAM 2 for Midterm 2 Multiple Choice Questions 1) In the circuit shown in the figure, all the lightbulbs are identical. Which of the following is the correct ranking of the brightness of the bulbs?

More information

M. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29]

M. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29] M. C. Escher: Waterfall 18/9/2015 [tsl425 1/29] Direct Current Circuit Consider a wire with resistance R = ρl/a connected to a battery. Resistor rule: In the direction of I across a resistor with resistance

More information

Lecture 3. Jan C. Willems. University of Leuven, Belgium. Minicourse ECC 2003 Cambridge, UK, September 2, 2003

Lecture 3. Jan C. Willems. University of Leuven, Belgium. Minicourse ECC 2003 Cambridge, UK, September 2, 2003 Lecture 3 The ELIMINATION Problem Jan C. Willems University of Leuven, Belgium Minicourse ECC 2003 Cambridge, UK, September 2, 2003 Lecture 3 The ELIMINATION Problem p.1/22 Problematique Develop a theory

More information

Trial Examination VCE Physics Unit 3. Written Examination. Suggested Solutions

Trial Examination VCE Physics Unit 3. Written Examination. Suggested Solutions Trial Examination 202 VCE Physics Unit 3 Written Examination Suggested Solutions Neap Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the

More information

Lecture 2 and 3: Controllability of DT-LTI systems

Lecture 2 and 3: Controllability of DT-LTI systems 1 Lecture 2 and 3: Controllability of DT-LTI systems Spring 2013 - EE 194, Advanced Control (Prof Khan) January 23 (Wed) and 28 (Mon), 2013 I LTI SYSTEMS Recall that continuous-time LTI systems can be

More information

Lecture Notes of EE 714

Lecture Notes of EE 714 Lecture Notes of EE 714 Lecture 1 Motivation Systems theory that we have studied so far deals with the notion of specified input and output spaces. But there are systems which do not have a clear demarcation

More information

A Level Physics B (Advancing Physics) H557/03 Practical skills in physics. Thursday 29 June 2017 Morning Time allowed: 1 hour 30 minutes

A Level Physics B (Advancing Physics) H557/03 Practical skills in physics. Thursday 29 June 2017 Morning Time allowed: 1 hour 30 minutes Oxford Cambridge and RSA A Level Physics B (Advancing Physics) H557/03 Practical skills in physics Thursday 29 June 2017 Morning Time allowed: 1 hour 30 minutes *6830996327* You must have: the Data, Formula

More information