DC Motor Position: System Modeling


 Preston Lewis
 2 years ago
 Views:
Transcription
1 1 of 7 01/03/ :07 Tips Effects TIPS ABOUT BASICS INDEX NEXT INTRODUCTION CRUISE CONTROL MOTOR SPEED MOTOR POSITION SUSPENSION INVERTED PENDULUM SYSTEM MODELING ANALYSIS DC Motor Position: System Modeling Key MATLAB commands used in this tutorial are: tf, ss CONTROL PID ROOT LOCUS FREQUENCY STATESPACE Contents Physical setup System equations Design requirements MATLAB representation DIGITAL Physical setup SIMULINK MODELING A common actuator in control systems is the DC motor. It directly provides rotary motion and, coupled with wheels or drums and cables, can provide translational motion. The electric equivalent circuit of the armature and the freebody diagram of the rotor are shown in the following figure. CONTROL
2 2 of 7 01/03/ :07 For this example, we will assume the following values for the physical parameters. These values were derived by experiment from an actual motor in Carnegie Mellon's undergraduate controls lab. (J) moment of inertia of the rotor E6 kg.m^2 (b) motor viscous friction constant E6 N.m.s (Kb) electromotive force constant V/rad/sec (Kt) motor torque constant N.m/Amp (R) electric resistance 4 Ohm (L) electric inductance 2.75E6H In this example, we assume that the input of the system is the voltage source (V) applied to the motor's armature, while the output is the position of the shaft (theta). The rotor and shaft are assumed to be rigid. We further assume a viscous friction model, that is, the friction torque is proportional to shaft angular velocity. System equations In general, the torque generated by a DC motor is proportional to the armature current and the strength of the magnetic field. In this
3 3 of 7 01/03/ :07 example we will assume that the magnetic field is constant and, therefore, that the motor torque is proportional to only the armature current i by a constant factor Kt as shown in the equation below. This is referred to as an armaturecontrolled motor. The back emf, e, is proportional to the angular velocity of the shaft by a constant factor Kb. (1) (2) In SI units, the motor torque and back emf constants are equal, that is, Kt = Ke; therefore, we will use K to represent both the motor torque constant and the back emf constant. From the figure above, we can derive the following governing equations based on Newton's 2nd law and Kirchhoff's voltage law. (3) (4) 1. Transfer Function Applying the Laplace transform, the above modeling equations can be expressed in terms of the Laplace variable s. (5) (6) We arrive at the following openloop transfer function by eliminating I(s) between the two above equations, where the rotational speed is considered the output and the armature voltage is considered the input. (7) However, during this example we will be looking at the position as the output. We can obtain the position by integrating the speed, therefore, we just need to divide the above transfer function by s.
4 4 of 7 01/03/ :07 (8) 2. StateSpace The differential equations from above can also be expressed in statespace form by choosing the motor position, motor speed and armature current as the state variables. Again the armature voltage is treated as the input and the rotational position is chosen as the output. (9) (10) Design requirements We will want to be able to position the motor very precisely, thus the steadystate error of the motor position should be zero when given a commanded position. We will also want the steadystate error due to a constant disturbance to be zero as well. The other performance requirement is that the motor reaches its final position very quickly without excessive overshoot. In this case, we want the system to have a settling time of 40 ms and an overshoot smaller than 16%. If we simulate the reference input by a unit step input, then the motor position output should have: Settling time less than 40 milliseconds Overshoot less than 16% No steadystate error, even in the presence of a step disturbance input MATLAB representation
5 5 of 7 01/03/ :07 1. Transfer Function We can represent the above openloop transfer function of the motor in MATLAB by defining the parameters and transfer function as follows. Running this code in the command window produces the output shown below. J = E6; b = E6; K = ; R = 4; L = 2.75E6; s = tf('s'); P_motor = K/(s*((J*s+b)*(L*s+R)+K^2)) P_motor = e12 s^ e05 s^ s Continuoustime transfer function. 2. State Space We can also represent the system using the statespace equations. The following additional MATLAB commands create a statespace model of the motor and produce the output shown below when run in the MATLAB command window. A = [ b/j K/J
6 6 of 7 01/03/ :07 0 K/L R/L]; B = [0 ; 0 ; 1/L]; C = [1 0 0]; D = [0]; motor_ss = ss(a,b,c,d) motor_ss = a = x1 x2 x3 x x x e+06 b = u1 x1 0 x2 0 x e+05 c = x1 x2 x3 y d = u1
7 7 of 7 01/03/ :07 y1 0 Continuoustime statespace model. The above statespace model can also be generated by converting your existing transfer function model into statespace form. This is again accomplished with the ss command as shown below. motor_ss = ss(p_motor); Published with MATLAB 7.14 Copyright 2012 All rights reserved. No part of this publication may be reproduced or transmitted without the express written consent of the authors.
Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and OpenLoop Response
Page 1 of 5 Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and OpenLoop Response Physical Setup A common actuator in control systems is the
More informationExample: DC Motor Speed Modeling
Page 1 of 5 Example: DC Motor Speed Modeling Physical setup and system equations Design requirements MATLAB representation and openloop response Physical setup and system equations A common actuator in
More informationSystem Modeling: Motor position, θ The physical parameters for the dc motor are:
Dept. of EEE, KUET, Sessional on EE 3202: Expt. # 2 2k15 Batch Experiment No. 02 Name of the experiment: Modeling of Physical systems and study of their closed loop response Objective: (i) (ii) (iii) (iv)
More informationKing Saud University
motor speed (rad/sec) Closed Loop Step Response ing Saud University College of Engineering, Electrical Engineering Department Labwork Manual EE 356 Control and Instrumentation Laboratory (كهر 356 معمل
More informationMechatronics Engineering. Li Wen
Mechatronics Engineering Li Wen Bioinspired robotdc motor drive Unstable system Mirko Kovac,EPFL Modeling and simulation of the control system Problems 1. Why we establish mathematical model of the control
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationMATHEMATICAL MODELING OF OPEN LOOP PMDC MOTOR USING MATLAB/SIMULINK
MATHEMATICAL MODELING OF OPEN LOOP PMDC MOTOR USING MATLAB/SIMULINK 1 Mr.Dhaval K.Patel 1 Assistant Professor, Dept. of Electrical Engineering. Gidc Degree Engineering College Abrama, Navsari. ABSTRACT:
More informationInternational Journal of Advance Research in Computer Science and Management Studies
Volume 2, Issue 9, September 2014 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
More informationDept. of EEE, KUET, Sessional on EE 3202: Expt. # 1 2k15 Batch
Experiment No. 01 Name of the experiment Modeling of Physical systems and study of their open loop response Objectie (i) (ii) (iii) The objectie of this experiment is the modeling of physical systems and
More informationSRV02Series Rotary Experiment # 1. Position Control. Student Handout
SRV02Series Rotary Experiment # 1 Position Control Student Handout SRV02Series Rotary Experiment # 1 Position Control Student Handout 1. Objectives The objective in this experiment is to introduce the
More informationME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics
ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics Introduction Often, due to budget constraints or convenience, engineers must use whatever tools are available to create new or improved
More informationMechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation
Mechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation Dr. Kevin Craig Greenheck Chair in Engineering Design & Professor of Mechanical Engineering Marquette University K.
More informationThe basic principle to be used in mechanical systems to derive a mathematical model is Newton s law,
Chapter. DYNAMIC MODELING Understanding the nature of the process to be controlled is a central issue for a control engineer. Thus the engineer must construct a model of the process with whatever information
More information3 Lab 3: DC Motor Transfer Function Estimation by Explicit Measurement
3 Lab 3: DC Motor Transfer Function Estimation by Explicit Measurement 3.1 Introduction There are two common methods for determining a plant s transfer function. They are: 1. Measure all the physical parameters
More informationSchool of Mechanical Engineering Purdue University. ME375 ElectroMechanical  1
ElectroMechanical Systems DC Motors Principles of Operation Modeling (Derivation of fg Governing Equations (EOM)) Block Diagram Representations Using Block Diagrams to Represent Equations in s  Domain
More informationLab 3: Quanser Hardware and Proportional Control
Lab 3: Quanser Hardware and Proportional Control The worst wheel of the cart makes the most noise. Benjamin Franklin 1 Objectives The goal of this lab is to: 1. familiarize you with Quanser s QuaRC tools
More informationECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67
1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure
More informationBangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory
Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system
More informationVideo 5.1 Vijay Kumar and Ani Hsieh
Video 5.1 Vijay Kumar and Ani Hsieh Robo3x1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior
More informationLabVIEW 开发技术丛书 控制设计与仿真实战篇
LabVIEW 开发技术丛书 控制设计与仿真实战篇 录目录 Modeling DC Motor Position 18 Motor Position PID Control 918 Root Locus Design Method for Motor Position Control 1928 Frequency Design Method for Motor Position Control
More informationCHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System
CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages
More informationE11 Lecture 13: Motors. Professor Lape Fall 2010
E11 Lecture 13: Motors Professor Lape Fall 2010 Overview How do electric motors work? Electric motor types and general principles of operation How well does your motor perform? Torque and power output
More informationEDEXCEL NATIONALS UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3  ELECTRO MAGNETIC INDUCTION
EDEXCEL NATIONALS UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No. 3  ELECTRO MAGNETIC INDUCTION NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted
More informationRotary Motion Servo Plant: SRV02. Rotary Experiment #01: Modeling. SRV02 Modeling using QuaRC. Student Manual
Rotary Motion Servo Plant: SRV02 Rotary Experiment #01: Modeling SRV02 Modeling using QuaRC Student Manual SRV02 Modeling Laboratory Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1
More informationModel of a DC Generator Driving a DC Motor (which propels a car)
Model of a DC Generator Driving a DC Motor (which propels a car) John Hung 5 July 2011 The dc is connected to the dc as illustrated in Fig. 1. Both machines are of permanent magnet type, so their respective
More informationQuanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual
Quanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant
More informationMathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment
Mathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment K. Kalaiselvi 1, K.Abinaya 2, P. Ramesh Babu 3 1,2 Under Graduate Scholar, Department of EEE, Saranathan College
More information(a) Torsional springmass system. (b) Spring element.
m v s T s v a (a) T a (b) T a FIGURE 2.1 (a) Torsional springmass system. (b) Spring element. by ky Wall friction, b Mass M k y M y r(t) Force r(t) (a) (b) FIGURE 2.2 (a) Springmassdamper system. (b)
More informationTexas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos
Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Lecture 6: Modeling of Electromechanical Systems Principles of Motor Operation
More informationLIAPUNOV S STABILITY THEORYBASED MODEL REFERENCE ADAPTIVE CONTROL FOR DC MOTOR
LIAPUNOV S STABILITY THEORYBASED MODEL REFERENCE ADAPTIVE CONTROL FOR DC MOTOR *Ganta Ramesh, # R. Hanumanth Nayak *#Assistant Professor in EEE, Gudlavalleru Engg College, JNTU, Kakinada University, Gudlavalleru
More informationET37: Modelling II(V) Electrical, Mechanical and Thermal Systems
ET37: Modelling II(V) Electrical, Mechanical and Thermal Systems Agenda of the Day 1. Resume of lesson I 2. Basic system models. 3. Models of basic electrical system elements 4. Application of Matlab/Simulink
More informationEE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Torsion Disks. (ECP SystemsModel: 205)
EE 4443/539 LAB 3: Control of Industrial Systems Simulation and Hardware Control (PID Design) The Torsion Disks (ECP SystemsModel: 05) Compiled by: Nitin Swamy Email: nswamy@lakeshore.uta.edu Email: okuljaca@lakeshore.uta.edu
More informationFull Order Observer Controller Design for DC Motor Based on State Space Approach
ISSN (Online): 2319764 Index Copernicus Value (213): 6.14 Impact Factor (214): 5.611 Full Order Observer Controller Design for DC Motor Based on State Space Approach Debabrata Pal Aksum University, College
More informationTutorial 1  Drive fundamentals and DC motor characteristics
University of New South Wales School of Electrical Engineering & elecommunications ELEC4613 ELECRIC DRIVE SYSEMS utorial 1  Drive fundamentals and DC motor characteristics 1. In the hoist drive system
More informationENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM
CHAPTER 1 BY RADU MURESAN Page 1 ENGG4420 LECTURE 7 September 21 10 2:29 PM MODELS OF ELECTRIC CIRCUITS Electric circuits contain sources of electric voltage and current and other electronic elements such
More informationR10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1
Code No: R06 R0 SET  II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry
More informationIndex. Index. More information. in this web service Cambridge University Press
Atype elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 Atype variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,
More informationDcMotor_ Model Help File
Name of Model: DcMotor_021708 Author: Vladimir L. Chervyakov Date: 20021026 Executable file name DcMotor_021708.vtm Version number: 1.0 Description This model represents a Nonlinear model of a permanent
More informationOverview of motors and motion control
Overview of motors and motion control. Elements of a motioncontrol system Power upply Highlevel controller owlevel controller Driver Motor. Types of motors discussed here; Brushed, PM DC Motors Cheap,
More informationEigenvalues and eigenvectors System Theory: electricmotor
Eigenvalues and eigenvectors System Theory: electricmotor Alireza Abouhossein Ph.D. Alireza.abouhossein@unibo.it 1 Example1 Can you calculate A^2, A 1 I? without multiplying A or finding the inverse
More informationLaboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint
Laboratory 11 State Feedback Controller for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full state feedback controller for endpoint position control
More informationEE 410/510: Electromechanical Systems Chapter 4
EE 410/510: Electromechanical Systems Chapter 4 Chapter 4. Direct Current Electric Machines and Motion Devices Permanent Magnet DC Electric Machines Radial Topology Simulation and Experimental Studies
More informationUNIVERSITY OF WASHINGTON Department of Aeronautics and Astronautics
UNIVERSITY OF WASHINGTON Department of Aeronautics and Astronautics Modeling and Design of a DC Motor Control System February 21, 2003 Christopher Lum Travis Reisner Amanda Stephens Brian Hass 1 LAB EXPERIMENT
More informationMCE380: Measurements and Instrumentation Lab. Chapter 5: Electromechanical Transducers
MCE380: Measurements and Instrumentation Lab Chapter 5: Electromechanical Transducers Part I Topics: Transducers and Impedance Magnetic Electromechanical Coupling Reference: Holman, CH 4. Cleveland State
More informationLezione 9 30 March. Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota
Control Laboratory: a.a. 2015/2016 Lezione 9 30 March Instructor: Luca Schenato Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota What is left to do is how to design the low pass pole τ L for the
More informationPredictive Cascade Control of DC Motor
Volume 49, Number, 008 89 Predictive Cascade Control of DC Motor Alexandru MORAR Abstract: The paper deals with the predictive cascade control of an electrical drive intended for positioning applications.
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOPUP SEMESTER 1 EXAMINATION 2017/2018 ADVANCED MECHATRONIC SYSTEMS
ENG08 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOPUP SEMESTER EXAMINATION 07/08 ADVANCED MECHATRONIC SYSTEMS MODULE NO: MEC600 Date: 7 January 08 Time: 0.00.00 INSTRUCTIONS TO
More informationIntroduction to Control (034040) lecture no. 2
Introduction to Control (034040) lecture no. 2 Leonid Mirkin Faculty of Mechanical Engineering Technion IIT Setup: Abstract control problem to begin with y P(s) u where P is a plant u is a control signal
More informationChapter three. Mathematical Modeling of mechanical end electrical systems. Laith Batarseh
Chapter three Mathematical Modeling of mechanical end electrical systems Laith Batarseh 1 Next Previous Mathematical Modeling of mechanical end electrical systems Dynamic system modeling Definition of
More informationModelling and Control of DWR 1.0 A Two Wheeled Mobile Robot
APPLICAIONS OF MODELLING AND SIMULAION http://www.amsmss.org eissn 6008084 VOL 1, NO. 1, 017, 935 Modelling and Control of DW 1.0 A wo Wheeled Mobile obot Nurhayati Baharudin, Mohamad Shukri Zainal
More informationMECH 3140 Final Project
MECH 3140 Final Project Final presentation will be held December 78. The presentation will be the only deliverable for the final project and should be approximately 2025 minutes with an additional 10
More informationModelling of Ball and Plate System Based on First Principle Model and Optimal Control
2017 21st International Conference on Process Control (PC) June 6 9, 2017, Štrbské Pleso, Slovakia Modelling of Ball and Plate System Based on First Principle Model and Optimal Control František Dušek,
More informationRotary Motion Servo Plant: SRV02. Rotary Experiment #11: 1DOF Torsion. 1DOF Torsion Position Control using QuaRC. Student Manual
Rotary Motion Servo Plant: SRV02 Rotary Experiment #11: 1DOF Torsion 1DOF Torsion Position Control using QuaRC Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1 3. OVERVIEW OF
More informationPID Controller Design for DC Motor
Contemporary Engineering Sciences, Vol. 11, 2018, no. 99, 49134920 HIKARI Ltd, www.mhikari.com https://doi.org/10.12988/ces.2018.810539 PID Controller Design for DC Motor Juan Pablo Trujillo Lemus Department
More informationFeedback Control Systems
ME Homework #0 Feedback Control Systems Last Updated November 06 Text problem 67 (Revised Chapter 6 Homework Problems attached) 65 Chapter 6 Homework Problems 65 Transient Response of a Second Order Model
More information) of the mechanical systems shown below.
1. Obtain mathematical models ( ) of the mechanical systems shown below. Solution a) Here, the input is u(t) and the output is the displacement x as shown in the figure. the rollers under the mass means
More informationProject Lab Report. Michael Hall. Hao Zhu. Neil Nevgi. Station 6. Ta: Yan Cui
Project Lab Report Michael Hall Hao Zhu Neil Nevgi Station 6 Ta: Yan Cui Nov. 12 th 2012 Table of Contents: Executive Summary 3 Modeling Report.47 System Identification 711 Control Design..1115 Simulation
More informationEqual Pitch and Unequal Pitch:
Equal Pitch and Unequal Pitch: EqualPitch MultipleStack Stepper: For each rotor stack, there is a toothed stator segment around it, whose pitch angle is identical to that of the rotor (θs = θr). A stator
More informationInverted Pendulum: StateSpace Methods for Controller Design
1 de 12 18/10/2015 22:45 Tips Effects TIPS ABOUT BASICS HARDWARE INDEX NEXT INTRODUCTION CRUISE CONTROL MOTOR SPEED MOTOR POSITION SYSTEM MODELING ANALYSIS Inverted Pendulum: StateSpace Methods for Controller
More informationSystem Parameters and Frequency Response MAE 433 Spring 2012 Lab 2
System Parameters and Frequency Response MAE 433 Spring 2012 Lab 2 Prof. Rowley, Prof. Littman AIs: Brandt Belson, Jonathan Tu Technical staff: Jonathan Prévost Princeton University Feb. 2124, 2012 1
More informationME 375 Final Examination Thursday, May 7, 2015 SOLUTION
ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled
More informationLab 5a: Pole Placement for the Inverted Pendulum
Lab 5a: Pole Placement for the Inverted Pendulum November 1, 2011 1 Purpose The objective of this lab is to achieve simultaneous control of both the angular position of the pendulum and horizontal position
More informationLiapunov s Stability Theorybased Model Reference Adaptive control for DC Motor
Liapunov s Stability Theorybased Mol Reference Adaptive control for DC Motor R. Hanumanth nayak Assistant Professor in EEE Chalapathi institute of technology JNTU Kakinada university, AP Ganta Ramesh
More informationAppendix W. Dynamic Models. W.2 4 Complex Mechanical Systems. Translational and Rotational Systems W.2.1
Appendix W Dynamic Models W.2 4 Complex Mechanical Systems W.2.1 Translational and Rotational Systems In some cases, mechanical systems contain both translational and rotational portions. The procedure
More information2002 Prentice Hall, Inc. Gene F. Franklin, J. David Powell, Abbas EmamiNaeini Feedback Control of Dynamic Systems, 4e
u Figure 2.1 Cruisecontrol model x Friction force bx m x u Figure 2.2 Freebody diagram for cruise control S P 278 Figure 2.3 Automobile suspension y m 2 k s b v car x m 1 k w Road surface r Inertial
More informationTHE REACTION WHEEL PENDULUM
THE REACTION WHEEL PENDULUM By Ana Navarro YuHan Sun Final Report for ECE 486, Control Systems, Fall 2013 TA: Dan Soberal 16 December 2013 Thursday 36pm Contents 1. Introduction... 1 1.1 Sensors (Encoders)...
More informationAP Physics 1. Course Overview
Radnor High School Course Syllabus AP Physics 1 Credits: Grade Weighting: Yes Prerequisites: Corequisites: Length: Format: 1.0 Credit, weighted Honors chemistry or Advanced Chemistry Honors Precalculus
More informationINC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II
INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II Asst. Prof. Dr.Ing. Sudchai Boonto Department of Control Systems and Instrumentation Engineering King Mongkut s University
More informationA FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS. 1 Introduction
A FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS Abhinav A. Kalamdani Dept. of Instrumentation Engineering, R. V. College of Engineering, Bangalore, India. kalamdani@ieee.org Abstract: A new
More informationET37: Modelling I(V) Introduction and Objectives. Electrical, Mechanical and Thermal Systems
ET37: Modelling I(V) Introduction and Objectives Electrical, Mechanical and Thermal Systems Objectives analyse and model basic linear dynamic systems Electrical Mechanical Thermal Recognise the analogies
More informationPositioning Servo Design Example
Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pickandplace robot to move the link of a robot between two positions. Usually
More informationAppendix A Prototypes Models
Appendix A Prototypes Models This appendix describes the model of the prototypes used in Chap. 3. These mathematical models can also be found in the Student Handout by Quanser. A.1 The QUANSER SRV02 Setup
More informationExercise 5  Hydraulic Turbines and Electromagnetic Systems
Exercise 5  Hydraulic Turbines and Electromagnetic Systems 5.1 Hydraulic Turbines Whole courses are dedicated to the analysis of gas turbines. For the aim of modeling hydraulic systems, we analyze here
More informationAutomatic Control Systems. Lecture Note 15
Lecture Note 15 Modeling of Physical Systems 5 1/52 AC Motors AC Motors Classification i) Induction Motor (Asynchronous Motor) ii) Synchronous Motor 2/52 Advantages of AC Motors i) Costeffective ii)
More informationDesign and Implementation of Control System for Inverted Pendulum
FINAL YEAR PROJECT REPORT Design and Implementation of Control System for Inverted Pendulum Project Advisor Asst. Prof. Saleem Ata CoAdvisor Asst. Prof. Jameel Ahmad Submitted by (Raheel Tariq ID: 0810089)
More informationMechatronics Modeling and Analysis of Dynamic Systems CaseStudy Exercise
Mechatronics Modeling and Analysis of Dynamic Systems CaseStudy Exercise Goal: This exercise is designed to take a realworld problem and apply the modeling and analysis concepts discussed in class. As
More informationFUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT
http:// FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT 1 Ms.Mukesh Beniwal, 2 Mr. Davender Kumar 1 M.Tech Student, 2 Asst.Prof, Department of Electronics and Communication
More informationR a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies.
SET  1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies..
More informationLaboratory Exercise 1 DC servo
Laboratory Exercise DC servo PerOlof Källén ø 0,8 POWER SAT. OVL.RESET POS.RESET Moment Reference ø 0,5 ø 0,5 ø 0,5 ø 0,65 ø 0,65 Int ø 0,8 ø 0,8 Σ k Js + d ø 0,8 s ø 0 8 Off Off ø 0,8 Ext. Int. + x0,
More informationModeling and Simulation of the Nonlinear Computed Torque Control in Simulink/MATLAB for an Industrial Robot
Copyright 2013 Tech Science Press SL, vol.10, no.2, pp.95106, 2013 Modeling and Simulation of the Nonlinear Computed Torque Control in Simulink/MATLAB for an Industrial Robot Dǎnuţ Receanu 1 Abstract:
More informationJRE SCHOOL OF Engineering
JRE SCHOOL OF Engineering Class Test1 Examinations September 2014 Subject Name Electromechanical Energy ConversionII Subject Code EEE 501 Roll No. of Student Max Marks 30 Marks Max Duration 1 hour Date
More informationENHANCEMENT MAXIMUM POWER POINT TRACKING OF PV SYSTEMS USING DIFFERENT ALGORITHMS
Journal of Al Azhar University Engineering Sector Vol. 13, No. 49, October, 2018, 12901299 ENHANCEMENT MAXIMUM POWER POINT TRACKING OF PV SYSTEMS USING DIFFERENT ALGORITHMS Yasmin Gharib 1, Wagdy R. Anis
More informationDOUBLE ARM JUGGLING SYSTEM Progress Presentation ECSE4962 Control Systems Design
DOUBLE ARM JUGGLING SYSTEM Progress Presentation ECSE4962 Control Systems Design Group Members: John Kua Trinell Ball Linda Rivera Introduction Where are we? Bulk of Design and Build Complete Testing
More informationStepping Motors. Chapter 11 L E L F L D
Chapter 11 Stepping Motors In the synchronous motor, the combination of sinusoidally distributed windings and sinusoidally time varying current produces a smoothly rotating magnetic field. We can eliminate
More informationMo de ling, Ide nti cat ion, and Control of a DCServomotor
Mo de ling, Ide nti cat ion, and Control of a DCServomotor Concepts emphasized: Dynamic modeling, timedomain analysis, system identi cation, and positionplusvelocity feedback control. 1. Introduction
More informationIntroduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationRotational Systems, Gears, and DC Servo Motors
Rotational Systems Rotational Systems, Gears, and DC Servo Motors Rotational systems behave exactly like translational systems, except that The state (angle) is denoted with rather than x (position) Inertia
More informationSensorless Field Oriented Control of Permanent Magnet Synchronous Motor
International Journal of Current Engineering and Technology EISSN 2277 4106, PISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Sensorless
More informationEEE 184 Project: Option 1
EEE 184 Project: Option 1 Date: November 16th 2012 Due: December 3rd 2012 Work Alone, show your work, and comment your results. Comments, clarity, and organization are important. Same wrong result or same
More informationDCmotor modelling and parameter identification
DCmotor modelling and parameter identification This version: November 1, 2017 Name: LERTEKNIK REG Pnumber: Date: AU T O MA RO TI C C O N T L Passed: LINKÖPING Chapter 1 Introduction The purpose of this
More informationPARAMETER IDENTIFICATION, MODELING, AND SIMULATION OF A CART AND PENDULUM
PARAMETER IDENTIFICATION, MODELING, AND SIMULATION OF A CART AND PENDULUM Erin Bender Mechanical Engineering Erin.N.Bender@RoseHulman.edu ABSTRACT In this paper a freely rotating pendulum suspended from
More informationSensorless Control for HighSpeed BLDC Motors With Low Inductance and Nonideal Back EMF
Sensorless Control for HighSpeed BLDC Motors With Low Inductance and Nonideal Back EMF P.Suganya Assistant Professor, Department of EEE, Bharathiyar Institute of Engineering for Women Salem (DT). Abstract
More informationOpen Access Permanent Magnet Synchronous Motor Vector Control Based on Weighted Integral Gain of Sliding Mode Variable Structure
Send Orders for Reprints to reprints@benthamscienceae The Open Automation and Control Systems Journal, 5, 7, 3333 33 Open Access Permanent Magnet Synchronous Motor Vector Control Based on Weighted Integral
More informationWHAT A SINGLE JOINT IS MADE OF RA
Anthropomorphic robotics WHAT A SINGLE JOINT IS MADE OF Notation d F ( mv) mx Since links are physical objects with mass dt J J f i i J = moment of inertia F r F r Moment of inertia Around an axis m3 m1
More informationThe control of a gantry
The control of a gantry AAE 364L In this experiment we will design a controller for a gantry or crane. Without a controller the pendulum of crane will swing for a long time. The idea is to use control
More informationMODELING AND HIGHPERFORMANCE CONTROL OF ELECTRIC MACHINES
MODELING AND HIGHPERFORMANCE CONTROL OF ELECTRIC MACHINES JOHN CHIASSON IEEE PRESS ü t SERIES ON POWER ENGINEERING IEEE Press Series on Power Engineering Mohamed E. ElHawary, Series Editor The Institute
More informationContents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42
Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 OpenLoop
More informationLab 6a: Pole Placement for the Inverted Pendulum
Lab 6a: Pole Placement for the Inverted Pendulum Idiot. Above her head was the only stable place in the cosmos, the only refuge from the damnation of the Panta Rei, and she guessed it was the Pendulum
More informationSwinging Tension sensor and Control Structure for Gyroscope Fiber Winding Process
Proceedings of the 10 th ICEENG Conference, 1921 April, 2016 EE0001 Military Technical College Kobry ElKobbah, Cairo, Egypt 10 th International Conference on Electrical Engineering ICEENG 2016 Swinging
More informationFast Seek Control for Flexible Disk Drive Systems
Fast Seek Control for Flexible Disk Drive Systems with Back EMF and Inductance Chanat Laorpacharapan and Lucy Y. Pao Department of Electrical and Computer Engineering niversity of Colorado, Boulder, CO
More information