Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2)

Size: px
Start display at page:

Download "Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2)"

Transcription

1 Dynamics ( 동역학 ) Ch. Motion of Translating Bodies (. &.)

2 Motion of Translating Bodies This chapter is usually referred to as Kinematics of Particles. Particles: In dynamics, a particle is a body without considering its size or dimension. Only the motion as an entire unit will be considered Any rotational motion will be neglected. Then what is rigid body? -

3 . Straight-line Motion Consider the system shown below, a dragster (a custom built racing car) being tested on a dragstrip. We are interested in the position of the dragster at any time after the race starts. Its position along the track is shown diagrammatically below O: The start of the race : the distance from the starting position to the dragster -3

4 Straight-line Motion From the speedometer, the speed is 00 mph and the acceleration is 0.8 g. (0.8 times the acceleration of graity). (a) Speed readout; (b) acceleration readout. This situation illustrate the key questions of this section: How do we determine where something is? How fast is it moing? What s its acceleration? -4

5 Straight-line Motion A mass particle P moes along this line and is currently 4 m from the origin. Defining the current time as t, (in seconds), At some time t in the future (t =t + t), the mass has moed m further from the origin. t m t 6m 4 Mathematically, and and the difference between the two positions is indicated by. -5

6 Straight-line Motion: Displacement Define position and displacement Position: the distance of an object from a reference point Displacement: the changes in position The location of the particle relatie to the origin can be presented as a ector because we need two pieces of information to pin it down: its distance from its origin and its orientation with respect to the origin (in front or behind). For the current situation the orientation is simply represented by the sign of the answer: + means to the right and - indicates to the left of the origin. The full-blown ector representation is r P/O where P/O stands for P with respect to O. -6

7 Straight-line Motion: elocity The position of the particle is defined as r P O To find the particle s aerage elocity from t to t ag. t Velocity is the rate of change in time of the displacement When t is 0 and t is 4 seconds, then m ag 0.5m / s 4s Velocity is also a ector quantity, need the direction and magnitude -7

8 Straight-line motion: Acceleration To find the elocity at time t (instantaneous elocity) All we hae to do is take the limit as t goes to zero: P t lim t0 t0 t t t t t lim t t t0 t t t d lim t Instantaneous elocity may be positie or negatie. elocity is referred to as particle speed.. Magnitude of The particle s acceleration is simply its rate of change of elocity, requires both a magnitude and direction (relatie to some coordinates). a P t t t t P P d lim lim t0 0 t t t.3-8

9 Straight-line motion The motion of a particle is known if the position coordinate for particle is known for eery alue of time t. Consider particle with motion gien by 3 6t t d t 3t a d d t 6 at t = 0, = 0, = 0, a = m/s at t = s, = 6 m, = ma = m/s, a = 0 at t = 4 s, = ma = 3 m, = 0, a = - m/s at t = 6 s, = 0, = -36 m/s, a = - 4 m/s -9

10 Acceleration Instantaneous acceleration may be: - positie: increasing positie elocity or decreasing negatie elocity - negatie: decreasing positie elocity or increasing negatie elocity. -0

11 Straight-line Motion Figures.5,.6, and.7 illustrate what these plots look like when the particles motion is gien by (for which sin t and cos t ) t cost -

12 Straight-line Motion A typical dynamic problem requires Requires to sole for the acceleration of a particle and then, Wants to determine its elocity and position oer time, which requires integration, whether analytically or with the computer. Mathematically, for any two alues of time t and t, we hae t t t.4 t t t t.5 t -

13 Eample.: Speed Determination ia Integration A piston P with an initial speed of 0 = 3 cm/s eperiences an acceleration defined by = (a + a t) for one second (a =cm/s and a = - cm/s 3 ). What is the piston s final speed? GOAL Determine the speed of the piston. GIVEN Piston s initial speed and acceleration profile DRAW Figure.0 shows our system ASSUME No additional assumptions are needed FORMULATE EQUATIONS SOLVE.4 a a t 0 a 0 at t cm / s cm / s 4cm / s -3

14 Eample. You re traeling at 48 km/h and hae only 6.7 m in which to stop. What constant deceleration is needed to aoid a collision? 6.7 m GOAL Determine the constant deceleration magnitude that will reduce your speed from 48 km/h to zero in 6.7 m. GIVEN Initial and final speed as well as distance traeled. DRAW Figure. shows our one-dimensional situation. gies the position of the bicyclist, who starts at (0) = 0 (t = 0) and comes to a complete stop at (t) = 6.7 m. let 0 (0) and 0 (0). -4

15 Eample. ASSUME Acceleration is constant. FORMULATE EQUATIONS We ll use to represent the aerage acceleration. t.4 t 0 a 0 at More generally, for any final time t, we hae t a.6 0 t Using (.6) in (.5) and ealuating from 0 to t gies us t t a t a 0-5

16 Eample. SOLVE We know that 0 = 0 and 0 = 48 km/h= 3.3 m/s. using this data along with the known distance to the mammoth in (.7) yields at 6.7m 3.3m / st.8 where t is the time at which the cyclist reaches =6.7m.This equation has two unknowns ( a and t ), and so we ll inoke (.6), ealuated at t = t : 0 3.3m / s at Using this alue for a a in (.8) gies us 3.3m / s t 3.3m / s t 6.7m 3.3m / st t. 00s Used in (.9), this yields a 3.3m / s. 37g.9-6

17 Eample. CHECK We can work backwards and ask how long it takes to reach 3.3 m/s if we accelerate at 3.3m/s. Clearly, the answer is one second, matching the result just found. In one second, starting from rest and assuming a constant acceleration of 3.3m/s, we would trael a distance 3.3m / s s 6. 7m -7

18 Determination of the Motion of a Particle Recall, motion of a particle is known if the position is known for all time t. Typically, conditions of motion are specified by the type of acceleration eperienced by the particle. Determination of elocity and position requires two successie integrations. Three classes of motion may be defined for: - Case : acceleration gien as a function of time, a = f(t) - Case : acceleration gien as a function of position, a = f() - Case 3: acceleration gien as a function of elocity, a = f() Recall that Kinematics is a math. Don t get confused or don t spend too much time here. All you need to know is the mathematical relationship between acceleration, elocity, and position. -8

19 Case: When Acceleration is constant (or gien as a function of a time) Consider when acceleration is constant first. Then recall in the preious slides and just integrate. t t t t a t a t at t.0 Letting t start at zero, denoting (0) as 0 and letting t be replaced by the general t gies us where. t Integrating once again will yield the particle s position as a function of time: where 0 indicates the position at t =0. these results are alid ONLY if the acceleration is CONSTANT! t t 0 at. a t t t

20 Case: When Acceleration is constant (or gien as a function of a time) If the acceleration isn t constant but depends eplicitly on t, youcan still integrate by hand to find elocity and position (as long as the time dependence is relatiely simple). But if you hae something annoyingly comple such as g.3 then you need to use a computer Recall that the acceleration is just the time rate of change of speed: d a.4 Net, consider what elocity is, namely, the time rate of change of position, d.5-0

21 Case: When Acceleration is constant (or gien as a function of a time) Soling both equations for gies d a d Equate these two epressions for and you will get d d a Which, when rearranged, becomes dad Time doesn t show up eplicitly in (.6). That s one of the interesting things about this relationship. It shows another way of looking at position, speed, and acceleration and how they relate to one another. d a d.6 -

22 Case: When Acceleration is constant (or gien as a function of a time) Now let s see what we can get by letting the acceleration be constant. Because both the left- and right-hand sides of (.6) are eact differentials, meaning that we can immediately integrate them: d a d Because ais constant, carrying through the integration gies us which can be epressed more simply as a a.7 -

23 Case: When Acceleration Depends on Position This situation occurs, for instance, when the body is attached to a spring. We can rewrite (.6) to show this dependency: d a d (.9 ) What we hae now are two eact differentials, which means we can integrate both sides without haing to find any sort of integrating factor: d a d ad.0 a d. -3

24 Case 3: When Acceleration Depends on Speed This is the case, for eample, when a particle is eperiencing a drag force that depends on speed, as most do. Again we need to use our acceleration/speed relationships. and a d d d a Taken together, these relationships imply that d d d a a d d d a..3-4

25 EXAMPLE.3 Constant Acceleration / Speed / Distance Relation In one time trial, you see that the car, starting from rest, has moed eactly 00 m at the point where it hits 00 km/hr. You did not time the trial. You need to get the (aerage) acceleration information. GOAL GIVEN DRAW Find the magnitude of the car s aerage acceleration. Speed and distance traeled. ASSUME Acceleration is constant -5

26 FORMULATE EQUATIONS First, conert km/hr to m/s: 000m / km 3600s / h 00km / h 7.7m / s Because you re looking for the aerage acceleration, all you need to find is the magnitude of the constant acceleration that, oer 00 m, brings the car to 00 km/hr. Equation (.7) is ideally suited for the task. Using (.7) you will hae a SOLVE 7.7m / s 0 a00m 0 7.7m / s a 3.86m / s 0. 39g 00m -6

27 . Cartesian Coordinates The motions of a particle is a ector quantity. They must be described in both direction and magnitude. Therefore, they must be defined in relation to a coordinate. Coordinate system: A reference frame that describes an eact position of an object to define where an object is in space now and how to get to where it moes net. The first set of coordinates is the simplest form Cartesian coordinates and is also known as rectangular coordinates. -7

28 Therefore we can epress P's position ector as r P O i yj (.7) The position ector is written r P/O rather than just r P to make it clear that it's the position P of with respect to a specific point, namely, the origin O. There are two different types of reference frame: a fied reference frame and a moing reference frame. -8

29 We need to relate these two sets of unit ectors. -9

30 We hae and b cos i sin j b sin i cos j.8.9 These equations can easily be represented in an array called a coordinate transformation array: i j b b cos sin i cos θ sin θ b -sin θ cos θ b sin cos j In addition, the inerse transformation is also possible i j sin cos cos b sin b -30

31 The elocity of the particle in Cartesian system inoles differentiating its position ector with respect to time. P d rp d d i O i yj from (.7).3 di dy j y dj ( product rule ) The unit ectors are not time dependent. So their time deriaties are zero. Then, P i yj.3 i yj.33 a P In 3 dimensional space, r a P O P P i i i yj zk yj zk yj zk -3

Displacement, Time, Velocity

Displacement, Time, Velocity Lecture. Chapter : Motion along a Straight Line Displacement, Time, Velocity 3/6/05 One-Dimensional Motion The area of physics that we focus on is called mechanics: the study of the relationships between

More information

PHYS 1443 Section 004 Lecture #4 Thursday, Sept. 4, 2014

PHYS 1443 Section 004 Lecture #4 Thursday, Sept. 4, 2014 PHYS 1443 Section 004 Lecture #4 Thursday, Sept. 4, 014 One Dimensional Motion Motion under constant acceleration One dimensional Kinematic Equations How do we sole kinematic problems? Falling motions

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

DYNAMICS. Kinematics of Particles Engineering Dynamics Lecture Note VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER

DYNAMICS. Kinematics of Particles Engineering Dynamics Lecture Note VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER 27 The McGraw-Hill Companies, Inc. All rights resered. Eighth E CHAPTER 11 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinand P. Beer E. Russell Johnston, Jr. Kinematics of Particles Lecture Notes: J.

More information

Would you risk your live driving drunk? Intro

Would you risk your live driving drunk? Intro Martha Casquete Would you risk your lie driing drunk? Intro Motion Position and displacement Aerage elocity and aerage speed Instantaneous elocity and speed Acceleration Constant acceleration: A special

More information

Lesson 2: Kinematics (Sections ) Chapter 2 Motion Along a Line

Lesson 2: Kinematics (Sections ) Chapter 2 Motion Along a Line Lesson : Kinematics (Sections.-.5) Chapter Motion Along a Line In order to specify a position, it is necessary to choose an origin. We talk about the football field is 00 yards from goal line to goal line,

More information

MCAT Physics - Problem Drill 06: Translational Motion

MCAT Physics - Problem Drill 06: Translational Motion MCAT Physics - Problem Drill 06: Translational Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. An object falls from rest

More information

Kinematics of Particles

Kinematics of Particles nnouncements Recitation time is set to 8am eery Monday. Participation i credit will be gien to students t who uploads a good question or good answer to the Q& bulletin board. Suggestions? T s and I will

More information

Feb 6, 2013 PHYSICS I Lecture 5

Feb 6, 2013 PHYSICS I Lecture 5 95.141 Feb 6, 213 PHYSICS I Lecture 5 Course website: faculty.uml.edu/pchowdhury/95.141/ www.masteringphysics.com Course: UML95141SPRING213 Lecture Capture h"p://echo36.uml.edu/chowdhury213/physics1spring.html

More information

1. Linear Motion. Table of Contents. 1.1 Linear Motion: Velocity Time Graphs (Multi Stage) 1.2 Linear Motion: Velocity Time Graphs (Up and Down)

1. Linear Motion. Table of Contents. 1.1 Linear Motion: Velocity Time Graphs (Multi Stage) 1.2 Linear Motion: Velocity Time Graphs (Up and Down) . LINEAR MOTION www.mathspoints.ie. Linear Motion Table of Contents. Linear Motion: Velocity Time Graphs (Multi Stage). Linear Motion: Velocity Time Graphs (Up and Down).3 Linear Motion: Common Initial

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-1D Spring 013 Motion in Two and Three Dimensions Lectures 5,6,7 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

III. Relative Velocity

III. Relative Velocity Adanced Kinematics I. Vector addition/subtraction II. Components III. Relatie Velocity IV. Projectile Motion V. Use of Calculus (nonuniform acceleration) VI. Parametric Equations The student will be able

More information

Chapter 1: Kinematics of Particles

Chapter 1: Kinematics of Particles Chapter 1: Kinematics of Particles 1.1 INTRODUCTION Mechanics the state of rest of motion of bodies subjected to the action of forces Static equilibrium of a body that is either at rest or moes with constant

More information

Physics 111. Help sessions meet Sunday, 6:30-7:30 pm in CLIR Wednesday, 8-9 pm in NSC 098/099

Physics 111. Help sessions meet Sunday, 6:30-7:30 pm in CLIR Wednesday, 8-9 pm in NSC 098/099 ics Announcements day, ember 7, 2007 Ch 2: graphing - elocity s time graphs - acceleration s time graphs motion diagrams - acceleration Free Fall Kinematic Equations Structured Approach to Problem Soling

More information

Note: the net distance along the path is a scalar quantity its direction is not important so the average speed is also a scalar.

Note: the net distance along the path is a scalar quantity its direction is not important so the average speed is also a scalar. PHY 309 K. Solutions for the first mid-term test /13/014). Problem #1: By definition, aerage speed net distance along the path of motion time. 1) ote: the net distance along the path is a scalar quantity

More information

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2.

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2. Chapter 3. Since the trip consists of two parts, let the displacements during first and second parts of the motion be x and x, and the corresponding time interals be t and t, respectiely. Now, because

More information

Note on Posted Slides. Motion Is Relative

Note on Posted Slides. Motion Is Relative Note on Posted Slides These are the slides that I intended to show in class on Tue. Jan. 9, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably not

More information

Chapter 2: 1D Kinematics Tuesday January 13th

Chapter 2: 1D Kinematics Tuesday January 13th Chapter : D Kinematics Tuesday January 3th Motion in a straight line (D Kinematics) Aerage elocity and aerage speed Instantaneous elocity and speed Acceleration Short summary Constant acceleration a special

More information

DO PHYSICS ONLINE. WEB activity: Use the web to find out more about: Aristotle, Copernicus, Kepler, Galileo and Newton.

DO PHYSICS ONLINE. WEB activity: Use the web to find out more about: Aristotle, Copernicus, Kepler, Galileo and Newton. DO PHYSICS ONLINE DISPLACEMENT VELOCITY ACCELERATION The objects that make up space are in motion, we moe, soccer balls moe, the Earth moes, electrons moe, - - -. Motion implies change. The study of the

More information

PHYS 1441 Section 002 Lecture #6

PHYS 1441 Section 002 Lecture #6 PHYS 1441 Section 00 Lecture #6 Monday, Feb. 4, 008 Examples for 1-Dim kinematic equations Free Fall Motion in Two Dimensions Maximum ranges and heights Today s homework is homework #3, due 9pm, Monday,

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-A Fall 014 Motion in Two and Three Dimensions Lectures 4,5 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

Status: Unit 2, Chapter 3

Status: Unit 2, Chapter 3 1 Status: Unit, Chapter 3 Vectors and Scalars Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication by a Scalar Adding Vectors by Components Unit Vectors Vector Kinematics Projectile

More information

Physics 1: Mechanics

Physics 1: Mechanics Physics 1: Mechanics Đào Ngọc Hạnh Tâm Office: A1.53, Email: dnhtam@hcmiu.edu.n HCMIU, Vietnam National Uniersity Acknowledgment: Most of these slides are supported by Prof. Phan Bao Ngoc credits (3 teaching

More information

Physics 4A Solutions to Chapter 4 Homework

Physics 4A Solutions to Chapter 4 Homework Physics 4A Solutions to Chapter 4 Homework Chapter 4 Questions: 4, 1, 1 Exercises & Problems: 5, 11, 3, 7, 8, 58, 67, 77, 87, 11 Answers to Questions: Q 4-4 (a) all tie (b) 1 and tie (the rocket is shot

More information

Chapter 3 Motion in a Plane

Chapter 3 Motion in a Plane Chapter 3 Motion in a Plane Introduce ectors and scalars. Vectors hae direction as well as magnitude. The are represented b arrows. The arrow points in the direction of the ector and its length is related

More information

Note on Posted Slides. Chapter 3 Pre-Class Reading Question. Chapter 3 Reading Question : The Fine Print. Suggested End of Chapter Items

Note on Posted Slides. Chapter 3 Pre-Class Reading Question. Chapter 3 Reading Question : The Fine Print. Suggested End of Chapter Items Note on Posted Slides These are the slides that I intended to show in class on Wed. Jan. 9, 2013. They contain important ideas and questions from your reading. Due to time constraints, I was probably not

More information

CHAPTER 3: Kinematics in Two Dimensions; Vectors

CHAPTER 3: Kinematics in Two Dimensions; Vectors HAPTER 3: Kinematics in Two Dimensions; Vectors Solution Guide to WebAssign Problems 3.1 [] The truck has a displacement of 18 + (16) blocks north and 1 blocks east. The resultant has a magnitude of +

More information

Review. acceleration is the rate of change of velocity (how quickly the velocity is changing) For motion in a line. v t

Review. acceleration is the rate of change of velocity (how quickly the velocity is changing) For motion in a line. v t Accelerated Motion Reiew acceleration is the rate o change o elocity (how quickly the elocity is changing) For motion in a line a i t t When an object is moing in a straight line, a positie acceleration

More information

Chapter (3) Motion. in One. Dimension

Chapter (3) Motion. in One. Dimension Chapter (3) Motion in One Dimension Pro. Mohammad Abu Abdeen Dr. Galal Ramzy Chapter (3) Motion in one Dimension We begin our study o mechanics by studying the motion o an object (which is assumed to be

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Field/Furic PHYSICS DEPARTENT PHY 2053 Exam 1 October 5, 2011 Name (print, last first): Signature: On my honor, I hae neither gien nor receied unauthorized aid on this examination. YOUR

More information

Lesson 3: Free fall, Vectors, Motion in a plane (sections )

Lesson 3: Free fall, Vectors, Motion in a plane (sections ) Lesson 3: Free fall, Vectors, Motion in a plane (sections.6-3.5) Last time we looked at position s. time and acceleration s. time graphs. Since the instantaneous elocit is lim t 0 t the (instantaneous)

More information

Chapter 11 Collision Theory

Chapter 11 Collision Theory Chapter Collision Theory Introduction. Center o Mass Reerence Frame Consider two particles o masses m and m interacting ia some orce. Figure. Center o Mass o a system o two interacting particles Choose

More information

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem WEEK-6 Recitation PHYS 3 FOCUS ON CONCEPTS Section 7. The Impulse Momentum Theorem Mar, 08. Two identical cars are traeling at the same speed. One is heading due east and the other due north, as the drawing

More information

DYNAMICS. Kinematics of Particles VECTOR MECHANICS FOR ENGINEERS: Tenth Edition CHAPTER

DYNAMICS. Kinematics of Particles VECTOR MECHANICS FOR ENGINEERS: Tenth Edition CHAPTER Tenth E CHAPTER 11 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinand P. Beer E. Russell Johnston, Jr. Phillip J. Cornwell Lecture Notes: Brian P. Self California Polytechnic State Uniersity Kinematics

More information

3. What is the minimum work needed to push a 950-kg car 310 m up along a 9.0 incline? Ignore friction. Make sure you draw a free body diagram!

3. What is the minimum work needed to push a 950-kg car 310 m up along a 9.0 incline? Ignore friction. Make sure you draw a free body diagram! Wor Problems Wor and Energy HW#. How much wor is done by the graitational force when a 280-g pile drier falls 2.80 m? W G = G d cos θ W = (mg)d cos θ W = (280)(9.8)(2.80) cos(0) W = 7683.2 W 7.7 0 3 Mr.

More information

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s),

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s), Chapter 4 Student Solutions Manual. We apply Eq. 4- and Eq. 4-6. (a) Taking the deriatie of the position ector with respect to time, we hae, in SI units (m/s), d ˆ = (i + 4t ˆj + tk) ˆ = 8tˆj + k ˆ. dt

More information

phy 3.1.notebook September 19, 2017 Everything Moves

phy 3.1.notebook September 19, 2017 Everything Moves Eerything Moes 1 2 \ Diagrams: Motion 1) Motion (picture) no reference! time lapsed photo Type Motion? 3 origin Diagrams: reference pt. Motion reference! 1) Motion (picture) diagram time lapsed photo by

More information

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017 These notes are seen pages. A quick summary: Projectile motion is simply horizontal motion at constant elocity with ertical motion at constant acceleration. An object moing in a circular path experiences

More information

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2)

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2) Beore we start the new material we will do another Newton s second law problem. A bloc is being pulled by a rope as shown in the picture. The coeicient o static riction is 0.7 and the coeicient o inetic

More information

Your Thoughts. What is the difference between elastic collision and inelastic collision?

Your Thoughts. What is the difference between elastic collision and inelastic collision? Your Thoughts This seemed pretty easy...before we got the checkpoint questions What is the difference between elastic collision and inelastic collision? The most confusing part of the pre lecture was the

More information

EF 151 Final Exam - Spring, 2016 Page 1 Copy 1

EF 151 Final Exam - Spring, 2016 Page 1 Copy 1 EF 151 Final Exam - Spring, 016 Page 1 Copy 1 Name: Section: Instructions: Sit in assigned seat; failure to sit in assigned seat results in a 0 for the exam. Put name and section on your exam. Put seating

More information

Chapter 2 Motion Along a Straight Line

Chapter 2 Motion Along a Straight Line Chapter Motion Along a Straight Line In this chapter we will study how objects moe along a straight line The following parameters will be defined: (1) Displacement () Aerage elocity (3) Aerage speed (4)

More information

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION Predict Obsere Explain Exercise 1 Take an A4 sheet of paper and a heay object (cricket ball, basketball, brick, book, etc). Predict what will

More information

Section 6: PRISMATIC BEAMS. Beam Theory

Section 6: PRISMATIC BEAMS. Beam Theory Beam Theory There are two types of beam theory aailable to craft beam element formulations from. They are Bernoulli-Euler beam theory Timoshenko beam theory One learns the details of Bernoulli-Euler beam

More information

Frames of Reference, Energy and Momentum, with

Frames of Reference, Energy and Momentum, with Frames of Reference, Energy and Momentum, with Interactie Physics Purpose: In this lab we will use the Interactie Physics program to simulate elastic collisions in one and two dimensions, and with a ballistic

More information

Linear Momentum and Collisions Conservation of linear momentum

Linear Momentum and Collisions Conservation of linear momentum Unit 4 Linear omentum and Collisions 4.. Conseration of linear momentum 4. Collisions 4.3 Impulse 4.4 Coefficient of restitution (e) 4.. Conseration of linear momentum m m u u m = u = u m Before Collision

More information

A possible mechanism to explain wave-particle duality L D HOWE No current affiliation PACS Numbers: r, w, k

A possible mechanism to explain wave-particle duality L D HOWE No current affiliation PACS Numbers: r, w, k A possible mechanism to explain wae-particle duality L D HOWE No current affiliation PACS Numbers: 0.50.-r, 03.65.-w, 05.60.-k Abstract The relationship between light speed energy and the kinetic energy

More information

The Dot Product Pg. 377 # 6ace, 7bdf, 9, 11, 14 Pg. 385 # 2, 3, 4, 6bd, 7, 9b, 10, 14 Sept. 25

The Dot Product Pg. 377 # 6ace, 7bdf, 9, 11, 14 Pg. 385 # 2, 3, 4, 6bd, 7, 9b, 10, 14 Sept. 25 UNIT 2 - APPLICATIONS OF VECTORS Date Lesson TOPIC Homework Sept. 19 2.1 (11) 7.1 Vectors as Forces Pg. 362 # 2, 5a, 6, 8, 10 13, 16, 17 Sept. 21 2.2 (12) 7.2 Velocity as Vectors Pg. 369 # 2,3, 4, 6, 7,

More information

PHYS 100: Lecture 3. r r r VECTORS. RELATIVE MOTION in 2-D. uuur uur uur SG S W. B y j x x x C B. A y j. A x i. B x i. v W. v S.

PHYS 100: Lecture 3. r r r VECTORS. RELATIVE MOTION in 2-D. uuur uur uur SG S W. B y j x x x C B. A y j. A x i. B x i. v W. v S. PHYS 100: Lecture 3 VECTORS A C B r r r C = A + B j i A i C B i B y j A y j C = A + B C = A + B y y y RELATIVE MOTION in 2- W S W W S SG uuur uur uur = + SG S W Physics 100 Lecture 3, Slide 1 Who is the

More information

Doppler shifts in astronomy

Doppler shifts in astronomy 7.4 Doppler shift 253 Diide the transformation (3.4) by as follows: = g 1 bck. (Lorentz transformation) (7.43) Eliminate in the right-hand term with (41) and then inoke (42) to yield = g (1 b cos u). (7.44)

More information

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS CHAPTER B TEST REVIEW. A rocket is fired ertically. At its highest point, it explodes. Which one of the following describes what happens

More information

4-vectors. Chapter Definition of 4-vectors

4-vectors. Chapter Definition of 4-vectors Chapter 12 4-ectors Copyright 2004 by Daid Morin, morin@physics.harard.edu We now come to a ery powerful concept in relatiity, namely that of 4-ectors. Although it is possible to derie eerything in special

More information

Pearson Physics Level 20 Unit I Kinematics: Chapter 2 Solutions

Pearson Physics Level 20 Unit I Kinematics: Chapter 2 Solutions Pearson Phsics Leel 0 Unit I Kinematics: Chapter Solutions Student Book page 71 Skills Practice Students answers will ar but ma consist of: (a) scale 1 cm : 1 m; ector will be 5 cm long scale 1 m forward

More information

( ) Momentum and impulse Mixed exercise 1. 1 a. Using conservation of momentum: ( )

( ) Momentum and impulse Mixed exercise 1. 1 a. Using conservation of momentum: ( ) Momentum and impulse Mixed exercise 1 1 a Using conseration of momentum: ( ) 6mu 4mu= 4m 1 u= After the collision the direction of Q is reersed and its speed is 1 u b Impulse = change in momentum I = (3m

More information

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1 y g j P(t) P(,y) r t0 i 4/4/006 Motion ( F.Robilliard) 1 Motion: We stdy in detail three cases of motion: 1. Motion in one dimension with constant acceleration niform linear motion.. Motion in two dimensions

More information

Conservation of Linear Momentum, Collisions

Conservation of Linear Momentum, Collisions Conseration of Linear Momentum, Collisions 1. 3 kg mass is moing with an initial elocity i. The mass collides with a 5 kg mass m, which is initially at rest. Find the final elocity of the masses after

More information

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv Solution to HW#7 CJ57.CQ.003. RASONNG AND SOLUTON a. Yes. Momentum is a ector, and the two objects hae the same momentum. This means that the direction o each object s momentum is the same. Momentum is

More information

Department of Physics PHY 111 GENERAL PHYSICS I

Department of Physics PHY 111 GENERAL PHYSICS I EDO UNIVERSITY IYAMHO Department o Physics PHY 111 GENERAL PHYSICS I Instructors: 1. Olayinka, S. A. (Ph.D.) Email: akinola.olayinka@edouniersity.edu.ng Phone: (+234) 8062447411 2. Adekoya, M. A Email:

More information

Everything should be made as simple as possible, but not simpler -A. Einstein

Everything should be made as simple as possible, but not simpler -A. Einstein r1 Eerything should be made as simple as possible, but not simpler -A. Einstein r2 SR1... -3-2 -1 0 1 2 3... Synchronizing clocks At the origin, at three o clock, the clock sends out a light signal to

More information

Power. Power is the time rate at which work W is done by a force Average power. (energy per time) P = dw/dt = (Fcosφ dx)/dt = F v cosφ= F.

Power. Power is the time rate at which work W is done by a force Average power. (energy per time) P = dw/dt = (Fcosφ dx)/dt = F v cosφ= F. Power Power is the time rate at which work W is done by a force Aerage power P ag = W/ t Instantaneous power (energy per time) P = dw/dt = (Fcosφ dx)/dt = F cosφ= F. Unit: watt 1 watt = 1 W = 1 J/s 1 horsepower

More information

ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.6 MOTION IN A CIRCLE

ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.6 MOTION IN A CIRCLE ONLINE: MAHEMAICS EXENSION opic 6 MECHANICS 6.6 MOION IN A CICLE When a particle moes along a circular path (or cured path) its elocity must change een if its speed is constant, hence the particle must

More information

Chapter 16. Kinetic Theory of Gases. Summary. molecular interpretation of the pressure and pv = nrt

Chapter 16. Kinetic Theory of Gases. Summary. molecular interpretation of the pressure and pv = nrt Chapter 16. Kinetic Theory of Gases Summary molecular interpretation of the pressure and pv = nrt the importance of molecular motions elocities and speeds of gas molecules distribution functions for molecular

More information

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION. ω = 29.6 rad/s. ω = = 36 3.

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION. ω = 29.6 rad/s. ω = = 36 3. PROLEM 15.1 The brake drum is attached to a larger flywheel that is not shown. The motion of the brake drum is defined by the relation θ = 36t 1.6 t, where θ is expressed in radians and t in seconds. Determine

More information

Purpose of the experiment

Purpose of the experiment Impulse and Momentum PES 116 Adanced Physics Lab I Purpose of the experiment Measure a cart s momentum change and compare to the impulse it receies. Compare aerage and peak forces in impulses. To put the

More information

Review of Matrices and Vectors 1/45

Review of Matrices and Vectors 1/45 Reiew of Matrices and Vectors /45 /45 Definition of Vector: A collection of comple or real numbers, generally put in a column [ ] T "! Transpose + + + b a b a b b a a " " " b a b a Definition of Vector

More information

Information. Complete Ch 6 on Force and Motion Begin Ch 7 on Work and Energy

Information. Complete Ch 6 on Force and Motion Begin Ch 7 on Work and Energy Information Lecture today Complete Ch 6 on Force and Motion Begin Ch 7 on Work and Energy Exam in one week will emphasize material up through chapter 6. Chapter 7 material (work, energy, ) will not be

More information

Version 001 HW#5 - Magnetism arts (00224) 1

Version 001 HW#5 - Magnetism arts (00224) 1 Version 001 HW#5 - Magnetism arts (004) 1 This print-out should hae 11 questions. Multiple-choice questions may continue on the net column or page find all choices before answering. Charged Particle in

More information

Lecture 12! Center of mass! Uniform circular motion!

Lecture 12! Center of mass! Uniform circular motion! Lecture 1 Center of mass Uniform circular motion Today s Topics: Center of mass Uniform circular motion Centripetal acceleration and force Banked cures Define the center of mass The center of mass is a

More information

MOTION OF FALLING OBJECTS WITH RESISTANCE

MOTION OF FALLING OBJECTS WITH RESISTANCE DOING PHYSICS WIH MALAB MECHANICS MOION OF FALLING OBJECS WIH RESISANCE Ian Cooper School of Physics, Uniersity of Sydney ian.cooper@sydney.edu.au DOWNLOAD DIRECORY FOR MALAB SCRIPS mec_fr_mg_b.m Computation

More information

CIRCULAR MOTION EXERCISE 1 1. d = rate of change of angle

CIRCULAR MOTION EXERCISE 1 1. d = rate of change of angle CICULA MOTION EXECISE. d = rate of change of angle as they both complete angle in same time.. c m mg N r m N mg r Since r A r B N A N B. a Force is always perpendicular to displacement work done = 0 4.

More information

Reversal in time order of interactive events: Collision of inclined rods

Reversal in time order of interactive events: Collision of inclined rods Reersal in time order of interactie eents: Collision of inclined rods Published in The European Journal of Physics Eur. J. Phys. 27 819-824 http://www.iop.org/ej/abstract/0143-0807/27/4/013 Chandru Iyer

More information

Algebra Based Physics. Motion in One Dimension. 1D Kinematics Graphing Free Fall 2016.notebook. August 30, Table of Contents: Kinematics

Algebra Based Physics. Motion in One Dimension. 1D Kinematics Graphing Free Fall 2016.notebook. August 30, Table of Contents: Kinematics Table of Contents: Kinematics Algebra Based Physics Kinematics in One Dimension 06 03 www.njctl.org Motion in One Dimension Aerage Speed Position and Reference Frame Displacement Aerage Velocity Instantaneous

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 4. Home Page. Title Page. Page 1 of 35.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 4. Home Page. Title Page. Page 1 of 35. Rutgers Uniersit Department of Phsics & Astronom 01:750:271 Honors Phsics I Fall 2015 Lecture 4 Page 1 of 35 4. Motion in two and three dimensions Goals: To stud position, elocit, and acceleration ectors

More information

Motion In Two Dimensions. Vectors in Physics

Motion In Two Dimensions. Vectors in Physics Motion In Two Dimensions RENE DESCARTES (1736-1806) GALILEO GALILEI (1564-1642) Vectors in Physics All physical quantities are either scalars or ectors Scalars A scalar quantity has only magnitude. In

More information

Chapter 4 Two-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 4 Two-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 4 Two-Dimensional Kinematics Units of Chapter 4 Motion in Two Dimensions Projectile Motion: Basic Equations Zero Launch Angle General Launch Angle Projectile Motion: Key Characteristics 4-1 Motion

More information

(a)!! d = 17 m [W 63 S]!! d opposite. (b)!! d = 79 cm [E 56 N] = 79 cm [W 56 S] (c)!! d = 44 km [S 27 E] = 44 km [N 27 W] metres. 3.

(a)!! d = 17 m [W 63 S]!! d opposite. (b)!! d = 79 cm [E 56 N] = 79 cm [W 56 S] (c)!! d = 44 km [S 27 E] = 44 km [N 27 W] metres. 3. Chapter Reiew, pages 90 95 Knowledge 1. (b). (d) 3. (b) 4. (a) 5. (b) 6. (c) 7. (c) 8. (a) 9. (a) 10. False. A diagram with a scale of 1 cm : 10 cm means that 1 cm on the diagram represents 10 cm in real

More information

Сollisionless damping of electron waves in non-maxwellian plasma 1

Сollisionless damping of electron waves in non-maxwellian plasma 1 http:/arxi.org/physics/78.748 Сollisionless damping of electron waes in non-mawellian plasma V. N. Soshnio Plasma Physics Dept., All-Russian Institute of Scientific and Technical Information of the Russian

More information

So now that we ve mentioned these terms : kinetic, potential, work we should try to explain them more. Let s develop a model:

So now that we ve mentioned these terms : kinetic, potential, work we should try to explain them more. Let s develop a model: Lecture 12 Energy e are now at the point where we can talk about one of the most powerful tools in physics, energy. Energy is really an abstract concept. e hae indicators of energy (temperature, elocity

More information

General Lorentz Boost Transformations, Acting on Some Important Physical Quantities

General Lorentz Boost Transformations, Acting on Some Important Physical Quantities General Lorentz Boost Transformations, Acting on Some Important Physical Quantities We are interested in transforming measurements made in a reference frame O into measurements of the same quantities as

More information

Magnetic Fields Part 3: Electromagnetic Induction

Magnetic Fields Part 3: Electromagnetic Induction Magnetic Fields Part 3: Electromagnetic Induction Last modified: 15/12/2017 Contents Links Electromagnetic Induction Induced EMF Induced Current Induction & Magnetic Flux Magnetic Flux Change in Flux Faraday

More information

PY1008 / PY1009 Physics Rotational motion

PY1008 / PY1009 Physics Rotational motion PY1008 / PY1009 Physics Rotational motion M.P. Vaughan Learning Objecties Circular motion Rotational displacement Velocity Angular frequency, frequency, time period Acceleration Rotational dynamics Centripetal

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Chapter 2 Physics Table of Contents Position and Displacement Velocity Acceleration Motion with Constant Acceleration Falling Objects The Big Idea Displacement is a change of position

More information

WAVES. Wave Equation. Waves Chap 16. So far this quarter. An example of Dynamics Conservation of Energy. Conservation theories. mass energy.

WAVES. Wave Equation. Waves Chap 16. So far this quarter. An example of Dynamics Conservation of Energy. Conservation theories. mass energy. Waes Chap 16 An example of Dynamics Conseration of Energy Conceptual starting point Forces Energy WAVES So far this quarter Conseration theories mass energy momentum angular momentum m E p L All conserations

More information

A-level Mathematics. MM03 Mark scheme June Version 1.0: Final

A-level Mathematics. MM03 Mark scheme June Version 1.0: Final -leel Mathematics MM0 Mark scheme 660 June 0 Version.0: Final Mark schemes are prepared by the Lead ssessment Writer and considered, together with the releant questions, by a panel of subject teachers.

More information

, remembering that! v i 2

, remembering that! v i 2 Section 53: Collisions Mini Inestigation: Newton s Cradle, page 34 Answers may ary Sample answers: A In Step, releasing one end ball caused the far ball on the other end to swing out at the same speed

More information

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Kinematics: Projectile Motion Science and Mathematics Education Research Group Supported by UBC Teaching

More information

qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq qwertyuiopasdfgjklzxcbnmqwerty uiopasdfgjklzxcbnmqwertyuiopasd fgjklzxcbnmqwertyuiopasdfgjklzx cbnmqwertyuiopasdfgjklzxcbnmq Projectile Motion Quick concepts regarding Projectile Motion wertyuiopasdfgjklzxcbnmqwertyui

More information

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14 Centripetal force Objecties Describe and analyze the motion of objects moing in circular motion. Apply Newton s second law to circular motion problems. Interpret free-body force diagrams. 1. A race car

More information

Higher Tier - Algebra revision

Higher Tier - Algebra revision Higher Tier - Algebra revision Contents: Indices Epanding single brackets Epanding double brackets Substitution Solving equations Solving equations from angle probs Finding nth term of a sequence Simultaneous

More information

Work and Kinetic Energy

Work and Kinetic Energy Work Work an Kinetic Energy Work (W) the prouct of the force eerte on an object an the istance the object moes in the irection of the force (constant force only). W = " = cos" (N " m = J)! is the angle

More information

SKAA 1213 Engineering Mechanics

SKAA 1213 Engineering Mechanics SKAA 113 Engineering Mechanic TOPIC 8 KINEMATIC OF PARTICLES Lecturer: Roli Anang Dr. Mohd Yunu Ihak Dr. Tan Cher Siang Outline Introduction Rectilinear Motion Curilinear Motion Problem Introduction General

More information

27 ft 3 adequately describes the volume of a cube with side 3. ft F adequately describes the temperature of a person.

27 ft 3 adequately describes the volume of a cube with side 3. ft F adequately describes the temperature of a person. VECTORS The stud of ectors is closel related to the stud of such phsical properties as force, motion, elocit, and other related topics. Vectors allow us to model certain characteristics of these phenomena

More information

Motors and Generators

Motors and Generators Physics Motors and Generators New Reised Edition Brian Shadwick Contents Use the table of contents to record your progress through this book. As you complete each topic, write the date completed, then

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 3-7: PROJECTILE MOTION IS PARABOLIC LSN 3-8: RELATIVE VELOCITY Questions From Reading Actiity? Big Idea(s): The interactions of an object with other

More information

Worksheet 9. Math 1B, GSI: Andrew Hanlon. 1 Ce 3t 1/3 1 = Ce 3t. 4 Ce 3t 1/ =

Worksheet 9. Math 1B, GSI: Andrew Hanlon. 1 Ce 3t 1/3 1 = Ce 3t. 4 Ce 3t 1/ = Worksheet 9 Math B, GSI: Andrew Hanlon. Show that for each of the following pairs of differential equations and functions that the function is a solution of a differential equation. (a) y 2 y + y 2 ; Ce

More information

Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 dimensions: Physic 231 Lecture 5 ( )

Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 dimensions: Physic 231 Lecture 5 ( ) Main points of toda s lecture: Eample: addition of elocities Trajectories of objects in dimensions: Phsic 31 Lecture 5 ( ) t g gt t t gt o 1 1 downwards 9.8 m/s g Δ Δ Δ + Δ Motion under Earth s graitational

More information

LECTURE 3 3.1Rules of Vector Differentiation

LECTURE 3 3.1Rules of Vector Differentiation LETURE 3 3.1Rules of Vector Differentiation We hae defined three kinds of deriaties inoling the operator grad( ) i j k, x y z 1 3 di(., x y z curl( i x 1 j y k z 3 d The good news is that you can apply

More information

Applications of Forces

Applications of Forces Chapter 10 Applications of orces Practice Problem Solutions Student Textbook page 459 1. (a) rame the Problem - Make a sketch of the ector. - The angle is between 0 and 90 so it is in the first quadrant.

More information

Conservation of Momentum in Two Dimensions

Conservation of Momentum in Two Dimensions Conseration of Momentum in Two Dimensions Name Section Linear momentum p is defined as the product of the mass of an object and its elocity. If there is no (or negligible) external force in a collision,

More information

To Feel a Force Chapter 13

To Feel a Force Chapter 13 o Feel a Force Chapter 13 Chapter 13:. A. Consequences of Newton's 2nd Law for a human being he forces acting on a human being are balanced in most situations, resulting in a net external force of zero.

More information