phy 3.1.notebook September 19, 2017 Everything Moves

Size: px
Start display at page:

Download "phy 3.1.notebook September 19, 2017 Everything Moves"

Transcription

1 Eerything Moes 1

2 2

3 \ Diagrams: Motion 1) Motion (picture) no reference! time lapsed photo Type Motion? 3

4 origin Diagrams: reference pt. Motion reference! 1) Motion (picture) diagram time lapsed photo by inserting lines on the wall in the background you hae a "reference point" to compare the motion of the runner 4

5 Diagrams: origin reference pt. Motion reference alues 1) Motion (picture) diagram time lapsed photo A = 1 cm B =.9 cm C =.4 cm D = +.2 cm E = +.5 cm by inserting lines on the wall in the background you hae a "reference point" to compare the motion of the runner displacement A B C D E 5

6 2) Particle Model sometimes easier to see what's happening because it reduces the object to a point source and eliminates outside distractions What are the four types of motion? a Particle/Point model: when the size of the object is much less than the dist. it moes! when you can ignore the internal motions c How would a graph look????? 6

7 . y D i5 s4 t3 a 2 n 1 c e Time x 7

8 a) D i s 9 t 8a 7n 6c e y Time x

9 y 10 D i s t a n c e b).... x Time 9

10 y 10 9 c) D i s t a n c e x Time 10

11 . y 10 9 d) D i s t a n c e x Time 11

12 Little Andy rolls a ball along the ground 1) motion along the "x" axis origin Andy has arm problems! origin distance: 1 m 1 m displacement: 1 m,+ 1 m scalar tell size only ector tells size and direction 12

13 Little Andy rolls a ball along the ground 1) motion along the "x" axis using ectors to represent motion! 4.0 m Andy has arm problems! origin origin a d scale 1 cm = 0.5 m 13

14 little Andy drops a rock Andy still has arm problems!." " 1) motion along the "y" axis a) what will the particle diagram look like? b) what will the ectors look like? using ectors to represent motion! 14

15 little Andy drops a rock 1) motion along the "y" axis Andy still has arm problems! a) what will the particle diagram look like? b) what will the ectors look like? using ectors to represent motion! 15

16 little Andy drops a rock 1) motion along the "y" axis Andy still has arm problems! a) what will the particle diagram look like? b) what will the ectors look like? using ectors to represent motion! 16

17 little Andy drops a rock. 1) motion along the "y" axis a Andy still has arm problems! d a) what will the particle diagram look like? b) what will the ectors look like? using ectors to represent motion! a " " stands for aerage elocity why aerage elocity in this situation? 17

18 see Andy putt! using ectors to represent motion! Andy makes the most of his arm problems! 18

19 d phy 3.1.notebook see Andy putt! using ectors to represent motion! Andy makes the most of his arm problems!. a a a 19

20 little Andy drops a rock Here's where we're going! Andy doesn't care anymore! d = 1.88 m THE STEPS!!!!! 1) Data/diagrams? gien and understood particle and/or ector diagram 2) Type motion? rest/constant elocity, acceleration (arying el,) t = 0.63 s 3) Formulas that apply? to come later! 20

21 Motion: rest Constant elocity arying elocity acceleration _ = Δd/t = Δd t /t _ = ( )/2 the " " is critical!!!!!!!!!!!!! Note the difference between Δ and a = Δ/t a = ( 2 1 )/t 21

22 little Andy drops a rock. origin 1) Data? a Andy still has arm problems! d 2) Type motion? 3) Formulas that apply? t = 0.63 s 2 =? a d = 1.88 m 22

23 little Andy drops a rock a Andy still has arm problems! t = 0.63 s 2 =? a. d = 1.88 m d d = 1.88 m 1) Data? origin 1 = 0 2) Type motion? t = 0.63 s a (g) = 9.8 m/s 2 _ or, a 3) Formulas that apply? _ = _ = Δd t /t a = Δ/t 23

24 1 = 0 Δd = 1.88 m Δt = 0.63 s 1 = 0, 2 =? 2 =? a _ = d t /t t = 1.88 m/0.63 s = 3.0 m/s where is that? _ = ( ) 2 _ 2 = = 2( 3.0 m/s) 0 2 = 6.0 m/s a = Δ/t = ( 2 1 )/t a = ( 6.0 m/s 0)/0.63 s a = 9.5 m/s 2 m/s s ( m/s m/s m/s 1 s s ( 1 s ( s = = = = m/s s 1 s ( ( ( 24

25 formulas for arying elocity _ d = d t /t t = t t = d/ t _ = ( )/2 _ 2 = 2 1 _ 1 = 2 2 a = Δ/t = ( 2 1 )/t 2 = 1 + at 1 = 2 at t = ( 2 1 )/a 25

26 m t = 1.68s m A ball starts from rest and rolls down a ramp, what elocity does it attain at the bottom?...what is its acceleration? 1) Data/diagram? 2) Type Motion? 3) Formulas that apply? 26

27 . a a d d ll means parallel to motion m m t = 1.68 s 1) Data? 2) Type Motion? d ll = m d h = m t = 1.68 s 1 = 0 3) Formulas that apply? = a = t = d t 27

28 d ll = m m m t = 1.68 s 1) Data? 2) Type Motion? d ll = m d h = m t = 1.68 s 1 = 0 3) Formulas that apply? = d t = a = 2 t a = 2 1 t a = 1.40 m/s s a = m/s 2 = d t m = 1.68 s = m/s = = = 2(.699 m/s) 0 2 = 1.40 m/s 28

29 . Little Andy throws a rock. It leaes his hand at 12 m/s and traels for 3.0 seconds. How far does it go? 29

30 ..... d. a = 12 m/s t = 3.0 s d =? Little Andy throws a rock. It leaes his hand at 12 m/s and traels for 3.0 seconds. How far does it go? 30

31 ..... d. a = 12 m/s t = 3.0 s d =? TM? constant Little Andy throws a rock. It leaes his hand at 12 m/s and traels for 3.0 seconds. How far does it go? 31

32 a Little Andy throws a rock. It leaes his hand at 12 m/s and traels for 3.0 seconds. How far does it go? d = 12 m/s t = 3.0 s d =? TM? constant... = d/t d = t d = 12 m/s(3.0 s) d = 36 m m = m/s (s) 32

33 A 955 kg car slows from 55 mph to 35 mph in 1.3 s. What is the deceleration? How far did he trael during the decelerating? data? 33

34 1 = 55 mph 2 = 35 mph A 955 kg car slows from 55 mph to 35 mph in 1.3 s. What is the deceleration? How far did he trael during the decelerating? t = 1.3 s a =? d =? particle diagram/ectors? 34

35 d phy 3.1.notebook 1 = 55 mph 2 = 35 mph..... t = 1.3 s a =? d =? a a 35

36 1 = 55 mph 2 = 35 mph t = 1.3 s a =? d =? 25 m/s conert 16 m/s a = Δ/t = ( 2 1 )/t a = (16 m/s 25 m/s)/1.3 s a = 6.9 m/s/s = 6.9 m/s 2 55 miles/hr(1 hr/3600s)(1610 m/1mile) = 25 m/s 35 miles/hr(1 hr/3600s)(1610 m/1mile) = 16 m/s = d t /t t ( d t = t = t ( d t = 25 m/s + 16 m/s 2 d t = 27 m ( ( 1.3 s 36

37 A little girl drops a rock from rest and it hits the ground 0.46 s later. What elocity does it hit the ground at? t = 0.46 s ectors? 1 = 0 2 =? 37

38 d a a phy 3.1.notebook. t = 0.46 s 1 = 0 2 =? anything else known? 38

39 t = 0.46 s 1 = 0 2 =? a = 9.8 m/s 2 TM? a,... a = Δ/t... _ = _ = Δd t /t a = Δ/t you hae "a" and "t" and want 2 2 = 1 + at 2 = m/s 2 (.46 s) 2 = 4.5 m/s 2 39

40 from last page What distance did it fall? What's known? t = 0.46 s 1 = 0 2 =? ( 4.5 m/s) a = 9.8 m/s 2 d? equation??? 40

41 from last page _ = d t /t t What distance did it fall? _ d = t _ d = (.46s) _ = ( )/2 _ = [0 +( 4.5 m/s)]/2 _ = 2.3 m/s _ d = t d = 2.3 m/s (.46s) = 1.1 m 41

42 a d 2 = 1.5 m d a t 2 = 0.55 s This time a little girl drops a rock from rest from a height of 1.5 m. a) What elocity does it hit the ground at? b) What acceleration did it experience? a) b) 1 = 0 2 =? a =? 42

43 d 2 = 1.5 m t 2 = 0.55 s 1 = 0 2 =? a =? = d t = a = t = Δd t /t = 1.5 m/.55 s = 2.7 m/s _ 1 + = 2 2 = = 2( 2.7 m/s) 0 2 = 5.4 m/s a = Δ/t = 2 1 /t a = 5.4 m/s 0/.55 s a = 9.8 m/s 2 43

44 _ = _ = Δd t /t a = Δ/t 2 = 2 1 Δd t = t 44

45 A ball is dropped from a cliff and it takes 3.0 s to hit the ground. What elocity does it hit at?. a 1 = 0 t = 3.0 s d a 2 =? 45

46 ector directions graity is down so you list the alue as " " 46

47 1 = 16 m/s 2 = 0 t =?. Bad Billy throws a rock upward at 16 m/s. How long does it take to get to the top of it path? a d a 47

48 ball thrown upward at 16 m/s 48

49 This time bad Billy throws the rock downward at 15 m/s (from a new cliff) and it takes 3.0 s to hit the ground. a) What elocity does it hit the ground at? b) How high was the cliff? 1 = 15 m/s a a = 9.8 m/s 2 t = 3.0 s 2 =? d y =? d a 49

50 50

51 51

52 52

53 You pull back a bow 37 cm and let it go. The arrow reaches a speed of 120 m/s as it leaes the bow wow! How long did it take? 53

54 You pull back a bow 37 cm and let it go. The arrow reaches a speed of 120 m/s as it leaes the bow wow! How long did it take? Δd t = t t = Δd/ t =.37 m/60 m/s t =.0062 s d p =.37 m 1p = 0 2p = 120 m/s t =? TM?... accel, 54

55 You pull back a bow 37 cm and let it go. The arrow reaches a speed of 120 m/s wow! How long did it take? How far does it go in 0.55 s? 55

56 You pull back a bow 37 cm and let it go. The arrow reaches a speed of 120 m/s wow! How long did it take? How far does it go (after it leaes the bow) in 0.55 s? d =? 56

57 You pull back a bow 37 cm and let it go. The arrow reaches a speed of 120 m/s wow! How long did it take? How far does it go in 0.55 s? The arrow stops in 4.0 cm? 57

58 duck in air: 1 = 345 ft/s 2 = 0 t =? d a =? 58

59 2 =? t = 3.06 s 1200 ft 59

60 1200 ft 1 = 345 ft/s 105 m/s d = 1200 ft 366 m g = 9.81 m/s 2 2 =? t = 3.06 s 60

61 1 = 345 ft/s 105 m/s d = 1200 ft 366 m g = 9.81 m/s 2 2 =? 1200 ft a = /t 2 = 1 + at 2 = ( 105 m/s) + [( 9.81 m/s 2 )3.06 s] 2 = 135 m/s 61

62 duck 62

63 63

Displacement, Time, Velocity

Displacement, Time, Velocity Lecture. Chapter : Motion along a Straight Line Displacement, Time, Velocity 3/6/05 One-Dimensional Motion The area of physics that we focus on is called mechanics: the study of the relationships between

More information

1. Linear Motion. Table of Contents. 1.1 Linear Motion: Velocity Time Graphs (Multi Stage) 1.2 Linear Motion: Velocity Time Graphs (Up and Down)

1. Linear Motion. Table of Contents. 1.1 Linear Motion: Velocity Time Graphs (Multi Stage) 1.2 Linear Motion: Velocity Time Graphs (Up and Down) . LINEAR MOTION www.mathspoints.ie. Linear Motion Table of Contents. Linear Motion: Velocity Time Graphs (Multi Stage). Linear Motion: Velocity Time Graphs (Up and Down).3 Linear Motion: Common Initial

More information

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION Predict Obsere Explain Exercise 1 Take an A4 sheet of paper and a heay object (cricket ball, basketball, brick, book, etc). Predict what will

More information

Chapter 2 Kinematics in One Dimension:

Chapter 2 Kinematics in One Dimension: Chapter 2 Kinematics in One Dimension: Vector / Scaler Quantities Displacement, Velocity, Acceleration Graphing Motion Distance vs Time Graphs Velocity vs Time Graphs Solving Problems Free Falling Objects

More information

Would you risk your live driving drunk? Intro

Would you risk your live driving drunk? Intro Martha Casquete Would you risk your lie driing drunk? Intro Motion Position and displacement Aerage elocity and aerage speed Instantaneous elocity and speed Acceleration Constant acceleration: A special

More information

Chapter 2: 1D Kinematics Tuesday January 13th

Chapter 2: 1D Kinematics Tuesday January 13th Chapter : D Kinematics Tuesday January 3th Motion in a straight line (D Kinematics) Aerage elocity and aerage speed Instantaneous elocity and speed Acceleration Short summary Constant acceleration a special

More information

PHYS 1441 Section 002 Lecture #6

PHYS 1441 Section 002 Lecture #6 PHYS 1441 Section 00 Lecture #6 Monday, Feb. 4, 008 Examples for 1-Dim kinematic equations Free Fall Motion in Two Dimensions Maximum ranges and heights Today s homework is homework #3, due 9pm, Monday,

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

MCAT Physics - Problem Drill 06: Translational Motion

MCAT Physics - Problem Drill 06: Translational Motion MCAT Physics - Problem Drill 06: Translational Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. An object falls from rest

More information

PHYS 1443 Section 004 Lecture #4 Thursday, Sept. 4, 2014

PHYS 1443 Section 004 Lecture #4 Thursday, Sept. 4, 2014 PHYS 1443 Section 004 Lecture #4 Thursday, Sept. 4, 014 One Dimensional Motion Motion under constant acceleration One dimensional Kinematic Equations How do we sole kinematic problems? Falling motions

More information

Physics 111. Help sessions meet Sunday, 6:30-7:30 pm in CLIR Wednesday, 8-9 pm in NSC 098/099

Physics 111. Help sessions meet Sunday, 6:30-7:30 pm in CLIR Wednesday, 8-9 pm in NSC 098/099 ics Announcements day, ember 7, 2007 Ch 2: graphing - elocity s time graphs - acceleration s time graphs motion diagrams - acceleration Free Fall Kinematic Equations Structured Approach to Problem Soling

More information

Chapter 4 Two-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 4 Two-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 4 Two-Dimensional Kinematics Units of Chapter 4 Motion in Two Dimensions Projectile Motion: Basic Equations Zero Launch Angle General Launch Angle Projectile Motion: Key Characteristics 4-1 Motion

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0 Summary of motion graphs Object is moving to the right (in positive direction) Object at rest (not moving) Position is constant v (m/s) a (m/s 2 ) v = 0 a = 0 Constant velocity Position increases at constant

More information

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2)

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2) Dynamics ( 동역학 ) Ch. Motion of Translating Bodies (. &.) Motion of Translating Bodies This chapter is usually referred to as Kinematics of Particles. Particles: In dynamics, a particle is a body without

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS CHAPTER B TEST REVIEW. A rocket is fired ertically. At its highest point, it explodes. Which one of the following describes what happens

More information

Chapter 1: Kinematics of Particles

Chapter 1: Kinematics of Particles Chapter 1: Kinematics of Particles 1.1 INTRODUCTION Mechanics the state of rest of motion of bodies subjected to the action of forces Static equilibrium of a body that is either at rest or moes with constant

More information

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

Phys 111 Exam 1 September 22, 2015

Phys 111 Exam 1 September 22, 2015 Phys 111 Exam 1 September 22, 2015 1. The time T required for one complete oscillation of a mass m on a spring of force constant k is T = 2π m k. Find the dimension of k to be dimensionally correct for

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

( ) Momentum and impulse Mixed exercise 1. 1 a. Using conservation of momentum: ( )

( ) Momentum and impulse Mixed exercise 1. 1 a. Using conservation of momentum: ( ) Momentum and impulse Mixed exercise 1 1 a Using conseration of momentum: ( ) 6mu 4mu= 4m 1 u= After the collision the direction of Q is reersed and its speed is 1 u b Impulse = change in momentum I = (3m

More information

1-D Kinematics Problems

1-D Kinematics Problems x (m) Name: AP Physics -D Kinemics Problems 5. Answer the following based on the elocity s. time graph. 6 8 4-4 -8 - straight cured 4 6 8 a. Gie a written description of the motion. t (s) Object moes in

More information

PHYSICS MIDTERM REVIEW PACKET

PHYSICS MIDTERM REVIEW PACKET PHYSICS MIDTERM REVIEW PACKET PERIOD: TIME: DATE: ROOM: YOU NEED TO BRING: 1. #2 PENCIL W/ ERASER. 2. CALCULATOR (YOUR OWN). YOU WILL NOT BE ALLOWED TO SHARE OR BORROW!!! YOU WILL BE GIVEN: 1. FORMULA

More information

Motion Along a Straight Line

Motion Along a Straight Line PHYS 101 Previous Exam Problems CHAPTER Motion Along a Straight Line Position & displacement Average & instantaneous velocity Average & instantaneous acceleration Constant acceleration Free fall Graphical

More information

Physics 4A Solutions to Chapter 4 Homework

Physics 4A Solutions to Chapter 4 Homework Physics 4A Solutions to Chapter 4 Homework Chapter 4 Questions: 4, 1, 1 Exercises & Problems: 5, 11, 3, 7, 8, 58, 67, 77, 87, 11 Answers to Questions: Q 4-4 (a) all tie (b) 1 and tie (the rocket is shot

More information

Midterm α, Physics 1P21/1P91

Midterm α, Physics 1P21/1P91 Midterm α, Physics 1P21/1P91 Prof. D. Crandles March 1, 2013 Last Name First Name Student ID Circle your course number above No examination aids other than those specified on this examination script are

More information

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2.

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2. Chapter 3. Since the trip consists of two parts, let the displacements during first and second parts of the motion be x and x, and the corresponding time interals be t and t, respectiely. Now, because

More information

x a = Q v 2 Exam 1--PHYS 101--Fall 2016 Name: Multiple Choice Identify the choice that best completes the statement or answers the question.

x a = Q v 2 Exam 1--PHYS 101--Fall 2016 Name: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Exam 1--PHYS 101--Fall 2016 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of these best approximates the area of a twin mattress (ie, just

More information

Frames of Reference, Energy and Momentum, with

Frames of Reference, Energy and Momentum, with Frames of Reference, Energy and Momentum, with Interactie Physics Purpose: In this lab we will use the Interactie Physics program to simulate elastic collisions in one and two dimensions, and with a ballistic

More information

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem WEEK-6 Recitation PHYS 3 FOCUS ON CONCEPTS Section 7. The Impulse Momentum Theorem Mar, 08. Two identical cars are traeling at the same speed. One is heading due east and the other due north, as the drawing

More information

CHAPTER 3 ACCELERATED MOTION

CHAPTER 3 ACCELERATED MOTION Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 3 ACCELERATED MOTION Day Plans for the day Assignments for the day 1 3.1 Acceleration o Changing Velocity

More information

Note: the net distance along the path is a scalar quantity its direction is not important so the average speed is also a scalar.

Note: the net distance along the path is a scalar quantity its direction is not important so the average speed is also a scalar. PHY 309 K. Solutions for the first mid-term test /13/014). Problem #1: By definition, aerage speed net distance along the path of motion time. 1) ote: the net distance along the path is a scalar quantity

More information

Algebra Based Physics. Motion in One Dimension. 1D Kinematics Graphing Free Fall 2016.notebook. August 30, Table of Contents: Kinematics

Algebra Based Physics. Motion in One Dimension. 1D Kinematics Graphing Free Fall 2016.notebook. August 30, Table of Contents: Kinematics Table of Contents: Kinematics Algebra Based Physics Kinematics in One Dimension 06 03 www.njctl.org Motion in One Dimension Aerage Speed Position and Reference Frame Displacement Aerage Velocity Instantaneous

More information

CHAPTER 2: Describing Motion: Kinematics in One Dimension

CHAPTER 2: Describing Motion: Kinematics in One Dimension CHAPTER : Describing Motion: Kinematics in One Dimension Answers to Questions 1. A car speedometer measures only speed. It does not give any information about the direction, and so does not measure velocity..

More information

Chapter (3) Motion. in One. Dimension

Chapter (3) Motion. in One. Dimension Chapter (3) Motion in One Dimension Pro. Mohammad Abu Abdeen Dr. Galal Ramzy Chapter (3) Motion in one Dimension We begin our study o mechanics by studying the motion o an object (which is assumed to be

More information

Chapter 9 Review. Block: Date:

Chapter 9 Review. Block: Date: Science 10 Chapter 9 Review Name: Block: Date: 1. A change in velocity occurs when the of an object changes, or its of motion changes, or both. These changes in velocity can either be or. 2. To calculate

More information

Purpose of the experiment

Purpose of the experiment Impulse and Momentum PES 116 Adanced Physics Lab I Purpose of the experiment Measure a cart s momentum change and compare to the impulse it receies. Compare aerage and peak forces in impulses. To put the

More information

Chapter 2 Section 2: Acceleration

Chapter 2 Section 2: Acceleration Chapter 2 Section 2: Acceleration Motion Review Speed is the rate that an object s distance changes Distance is how far an object has travelled Speed = distance/time Velocity is rate that an object s displacement

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Field/Furic PHYSICS DEPARTENT PHY 2053 Exam 1 October 5, 2011 Name (print, last first): Signature: On my honor, I hae neither gien nor receied unauthorized aid on this examination. YOUR

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

Chapter: Basic Physics-Motion

Chapter: Basic Physics-Motion Chapter: Basic Physics-Motion The Big Idea Speed represents how quickly an object is moving through space. Velocity is speed with a direction, making it a vector quantity. If an object s velocity changes

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Graitation. Each of fie satellites makes a circular orbit about an object that is much more massie than any of the satellites. The mass and orbital radius of each satellite

More information

Some Motion Terms. Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector

Some Motion Terms. Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector Motion Some Motion Terms Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector Scalar versus Vector Scalar - magnitude only (e.g. volume, mass, time) Vector - magnitude

More information

Chapter 2 Motion Along a Straight Line

Chapter 2 Motion Along a Straight Line Chapter Motion Along a Straight Line In this chapter we will study how objects moe along a straight line The following parameters will be defined: (1) Displacement () Aerage elocity (3) Aerage speed (4)

More information

Chapter 2. Kinematics in One Dimension

Chapter 2. Kinematics in One Dimension Register Clickers Chapter 2 Kinematics in One Dimension Kinematics deals with the concepts that are needed to describe motion. Dynamics deals with the effect that forces have on motion. Together, kinematics

More information

Unit 2: Vector Dynamics

Unit 2: Vector Dynamics Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

More information

11.3 Acceleration. What Is Acceleration? How are changes in velocity described?

11.3 Acceleration. What Is Acceleration? How are changes in velocity described? What Is Acceleration? How are changes in velocity described? What Is Acceleration? Changes in Speed In science, acceleration applies to Acceleration can be caused by Deceleration is DOK question Predict

More information

CHAPTER 3: Kinematics in Two Dimensions; Vectors

CHAPTER 3: Kinematics in Two Dimensions; Vectors HAPTER 3: Kinematics in Two Dimensions; Vectors Solution Guide to WebAssign Problems 3.1 [] The truck has a displacement of 18 + (16) blocks north and 1 blocks east. The resultant has a magnitude of +

More information

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s),

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s), Chapter 4 Student Solutions Manual. We apply Eq. 4- and Eq. 4-6. (a) Taking the deriatie of the position ector with respect to time, we hae, in SI units (m/s), d ˆ = (i + 4t ˆj + tk) ˆ = 8tˆj + k ˆ. dt

More information

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli Lecture PowerPoints Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

Lecture Notes Kinematics Recap 2.4 Acceleration

Lecture Notes Kinematics Recap 2.4 Acceleration Lecture Notes 2.5-2.9 Kinematics Recap 2.4 Acceleration Acceleration is the rate at which velocity changes. The SI unit for acceleration is m/s 2 Acceleration is a vector, and thus has both a magnitude

More information

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity What is displacement, velocity and acceleration? what units do they have? vector vs scalar? One dimensional motion, and graphing Moving man worksheet moving man doc - todo Introduction to simple graphing

More information

Feb 6, 2013 PHYSICS I Lecture 5

Feb 6, 2013 PHYSICS I Lecture 5 95.141 Feb 6, 213 PHYSICS I Lecture 5 Course website: faculty.uml.edu/pchowdhury/95.141/ www.masteringphysics.com Course: UML95141SPRING213 Lecture Capture h"p://echo36.uml.edu/chowdhury213/physics1spring.html

More information

PSI AP Physics 1 Kinematics. Free Response Problems

PSI AP Physics 1 Kinematics. Free Response Problems PSI AP Physics 1 Kinematics Free Response Problems 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will

More information

Circular motion. Announcements:

Circular motion. Announcements: Circular motion Announcements: Clicker scores through Wednesday are now posted on DL. Scoring is points for a wrong answer, 3 points for a right answer. 13 clicker questions so far, so max is 39 points.

More information

From rest, a rock is dropped and falls for 3.0 seconds before hitting the ground. What is its velocity right before it hits the ground?

From rest, a rock is dropped and falls for 3.0 seconds before hitting the ground. What is its velocity right before it hits the ground? Physics Lecture #6: Falling Objects A falling object accelerates as it falls. A bowling ball dropped on your foot will hurt more if it is dropped from a greater height since it has more time to increase

More information

Displacement, Velocity, and Acceleration AP style

Displacement, Velocity, and Acceleration AP style Displacement, Velocity, and Acceleration AP style Linear Motion Position- the location of an object relative to a reference point. IF the position is one-dimension only, we often use the letter x to represent

More information

MOTION OF FALLING OBJECTS WITH RESISTANCE

MOTION OF FALLING OBJECTS WITH RESISTANCE DOING PHYSICS WIH MALAB MECHANICS MOION OF FALLING OBJECS WIH RESISANCE Ian Cooper School of Physics, Uniersity of Sydney ian.cooper@sydney.edu.au DOWNLOAD DIRECORY FOR MALAB SCRIPS mec_fr_mg_b.m Computation

More information

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION OBJECTIVES After studying the material of this chapter, the student should be able to: state from memory the meaning of the key terms and phrases

More information

Review. acceleration is the rate of change of velocity (how quickly the velocity is changing) For motion in a line. v t

Review. acceleration is the rate of change of velocity (how quickly the velocity is changing) For motion in a line. v t Accelerated Motion Reiew acceleration is the rate o change o elocity (how quickly the elocity is changing) For motion in a line a i t t When an object is moing in a straight line, a positie acceleration

More information

Welcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz

Welcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz Welcome back to PHY101: Major Concepts in Phsics I Photo: J. M. Schwarz Announcements Course Website: jmschwarztheorgroup.org/ph101/ HW on Chapter is due at the beginning of lecture on Wednesda. HW 3 on

More information

Problem Set : Kinematics in 1 Dimension

Problem Set : Kinematics in 1 Dimension Problem Set : Kinematics in 1 Dimension Assignment One-Dimensional Motion Page 1 of 6 Name: Date: Solve the following problems and answer the questions on separate paper. Be neat and complete. Include

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

Physics Review. Do: Page # Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h

Physics Review. Do: Page # Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h Physics Review Do: Page 413 417 #1 51 1. Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h Use the following information to answer Question 2. The following distance

More information

4.1 - Acceleration. What is acceleration?

4.1 - Acceleration. What is acceleration? 4.1 - Acceleration How do we describe speeding up or slowing down? What is the difference between slowing down gradually and hitting a brick wall? Both these questions have answers that involve acceleration.

More information

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test AP Physics 1 Unit 2: 2 Dimensional Kinematics Name: Date In Class Homework to completed that evening (before coming to next class period) 9/6 Tue (B) 9/7 Wed (C) 1D Kinematics Test Unit 2 Video 1: Vectors

More information

Math 1314 Lesson 7 Applications of the Derivative

Math 1314 Lesson 7 Applications of the Derivative Math 1314 Lesson 7 Applications of the Derivative Recall from Lesson 6 that the derivative gives a formula for finding the slope of the tangent line to a function at any point on that function. Example

More information

Note on Posted Slides. Motion Is Relative

Note on Posted Slides. Motion Is Relative Note on Posted Slides These are the slides that I intended to show in class on Tue. Jan. 9, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably not

More information

Four Types of Motion We ll Study

Four Types of Motion We ll Study Four Types of Motion We ll Study The branch of mechanics that studies the motion of a body without caring about what caused the motion. Kinematics definitions Kinematics branch of physics; study of motion

More information

PHYS1100 Practice problem set, Chapter 2: 6, 10, 13, 17, 22, 24, 25, 34, 42, 50, 55, 65, 71, 82

PHYS1100 Practice problem set, Chapter 2: 6, 10, 13, 17, 22, 24, 25, 34, 42, 50, 55, 65, 71, 82 PHYS00 Practice problem set, Chapter : 6, 0, 3, 7,, 4, 5, 34, 4, 50, 55, 65, 7, 8.6. Model: We will consider Larry to be a particle. Solve: Since Larry s speed is constant, we can use the following equation

More information

3) Which of the following quantities has units of a displacement? (There could be more than one correct choice.)

3) Which of the following quantities has units of a displacement? (There could be more than one correct choice.) FLEX Physical Sciences AP Physics 1 (Honors Physics) Final Homework Exam 1) A toy rocket is launched vertically from ground level at time t = 0 s. The rocket engine provides constant upward acceleration

More information

Section 5.1: Momentum and Impulse Tutorial 1 Practice, page Given: m = 160 g = 0.16 kg;! v = 140 m/s [E] Required:! p ; E k

Section 5.1: Momentum and Impulse Tutorial 1 Practice, page Given: m = 160 g = 0.16 kg;! v = 140 m/s [E] Required:! p ; E k Section 5.1: Momentum and Imulse Tutorial 1 Practice, age 223 1. Gien: m 160 g 0.16 kg; 140 m/s [E] Required: ; E k Analysis: m ; E k 1 2 m2 Solution: m E k 1 2 m2 (0.16 kg(40.0 m/s [E] 6.4 kg m/s [E]

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101 Fall 2013 (Purcell), Fake Midterm #1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The figure shows the graph of the position x as a

More information

Kinematics 2. What equation relates the known quantities to what is being asked?

Kinematics 2. What equation relates the known quantities to what is being asked? Physics R Date: 1. A cheetah goes from rest to 60 miles per hour (26.8 m/s) in 3 seconds. Calculate the acceleration of the cheetah. Kinematics Equations Kinematics 2 How to solve a Physics problem: List

More information

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14 Centripetal force Objecties Describe and analyze the motion of objects moing in circular motion. Apply Newton s second law to circular motion problems. Interpret free-body force diagrams. 1. A race car

More information

Unit 1 Parent Guide: Kinematics

Unit 1 Parent Guide: Kinematics Unit 1 Parent Guide: Kinematics Kinematics is the study of the motion of objects. Scientists can represent this information in the following ways: written and verbal descriptions, mathematically (with

More information

Energy Notes. Name: Hr:

Energy Notes. Name: Hr: Energy Notes Name: Hr: Guided Outline 5-1 Nature of Energy Directions: As you read through Chapter 5 in your textbook, fill in the missing information. I. Section 1: Nature of Energy A. What is Energy?

More information

Position, Velocity, Acceleration

Position, Velocity, Acceleration 191 CHAPTER 7 Position, Velocity, Acceleration When we talk of acceleration we think of how quickly the velocity is changing. For example, when a stone is dropped its acceleration (due to gravity) is approximately

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Physics Department Tutorial: Motion in a Circle (solutions)

Physics Department Tutorial: Motion in a Circle (solutions) JJ 014 H Physics (9646) o Solution Mark 1 (a) The radian is the angle subtended by an arc length equal to the radius of the circle. Angular elocity ω of a body is the rate of change of its angular displacement.

More information

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres Chapter 2 Motion Defining Motion Motion is a continuous change in position can be described by measuring the rate of change of position

More information

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion.

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion. Projectile motion Objectives Identify examples of projectile motion. Solve projectile motion problems. problems Graph the motion of a projectile. 1. Which of the events described below cannot be an example

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

3.3 Acceleration An example of acceleration Definition of acceleration Acceleration Figure 3.16: Steeper hills

3.3 Acceleration An example of acceleration Definition of acceleration Acceleration Figure 3.16: Steeper hills 3.3 Acceleration Constant speed is easy to understand. However, almost nothing moves with constant speed for long. When the driver steps on the gas pedal, the speed of the car increases. When the driver

More information

Chapter 3. Accelerated Motion

Chapter 3. Accelerated Motion Chapter 3 Accelerated Motion Chapter 3 Accelerated Motion In this chapter you will: Develop descriptions of accelerated motions. Use graphs and equations to solve problems involving moving objects. Describe

More information

Provincial Exam Review: Motion

Provincial Exam Review: Motion Section 8.1 Provincial Exam Review: Motion 1. Identify each of the following quantities as either vector or scalar. (a) 10 kg (b) 20 m [S] (c) 5 hours driving in a car (d) swimming for 100 m [N] (e) 15

More information

Chapter 2: 1-D Kinematics

Chapter 2: 1-D Kinematics Chapter : 1-D Kinematics Types of Motion Translational Motion Circular Motion Projectile Motion Rotational Motion Natural Motion Objects have a proper place Objects seek their natural place External forces

More information

Physics 2A (Fall 2012) Chapter 2: Motion in One Dimension

Physics 2A (Fall 2012) Chapter 2: Motion in One Dimension Physics 2A (Fall 2012) Chapter 2: Motion in One Dimension Whether you think you can or think you can t, you re usually right. Henry Ford It is our attitude at the beginning of a difficult task which, more

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below.

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. Kinematics 1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. After 25 seconds Joseph has run 200 m. Which of the following is correct at 25 seconds? Instantaneous

More information

Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature: Student ID:   Section Number: Do not fill out the information below until instructed to do so! Name: Signature: Student ID: E-mail: Section Number: Formulae are provided on the last page. You may NOT use any other formula sheet. You

More information

Reminder: Acceleration

Reminder: Acceleration Reminder: Acceleration a = change in velocity during time "t elapsed time interval "t = "v "t Can be specified by giving magnitude a = Δv / Δt and sign. Positive velocity, increasing speed => positive

More information

Lesson 3: Free fall, Vectors, Motion in a plane (sections )

Lesson 3: Free fall, Vectors, Motion in a plane (sections ) Lesson 3: Free fall, Vectors, Motion in a plane (sections.6-3.5) Last time we looked at position s. time and acceleration s. time graphs. Since the instantaneous elocit is lim t 0 t the (instantaneous)

More information

9/7/11. Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4

9/7/11. Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4 Reading Quiz Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4 Chapter 3 Sections 3.1 3.4 Free fall Components of a Vector Adding and Subtracting Vectors Unit Vectors A: speed

More information

Lecture 12! Center of mass! Uniform circular motion!

Lecture 12! Center of mass! Uniform circular motion! Lecture 1 Center of mass Uniform circular motion Today s Topics: Center of mass Uniform circular motion Centripetal acceleration and force Banked cures Define the center of mass The center of mass is a

More information