Lecture 12! Center of mass! Uniform circular motion!

Size: px
Start display at page:

Download "Lecture 12! Center of mass! Uniform circular motion!"

Transcription

1 Lecture 1 Center of mass Uniform circular motion

2 Today s Topics: Center of mass Uniform circular motion Centripetal acceleration and force Banked cures

3 Define the center of mass The center of mass is a point that represents the aerage location for the total mass of a system. m x x 1 1 cm m m m x For linear motion, we can consider all of the mass of the object to be concentrated at the center of mass.

4 Center of mass simplifies calculations inoling conseration of momentum for combined linear and rotational motion, the CM of an object is the point that obeys the linear equations of motion we hae deeloped DEMO: Shape

5 What if there are more than Oxygen y Oxygen objects? nm 60.0 o Sulfur 60.0 o nm x A sulfur dioxide molecule consists of oxygen atoms and a sulfur atom. The sulfur atom is twice as massie as the oxygen atom. Find the x and y coordinates of the center of mass of this molcule 1. Find the x and y components of all atoms with respect to the origin (sulfur atom) x-coordinate y-coordinate Oxygen atom (on the left) x 1 (0.143 nm) sin nm Oxygen atom (on the right) x +(0.143 nm) sin nm y 1 +(0.143 nm) cos nm y +(0.143 nm) cos nm Sulfur atom x 3 0 nm y 3 0 nm

6 Let m 1 and m represent the masses of the oxygen atoms on the left and right, respectiely. Likewise, let m 3 be the mass of the sulfur atom. The x-coordinate of the center of mass is x cm m x + m x + m x m 1( 0.14 nm) + m nm m 1 + m + m 3 m 1 + m + m 3 Oxygen nm o o ( ) + m 3 ( 0 nm) y Sulfur Oxygen nm x Since m 1 m (both are oxygen atoms), the equation aboe yields x cm 0 m The y-coordinate of the center of mass is y cm m y + m y + m y m 1 ( nm) + m nm m 1 + m + m 3 m 1 + m + m 3 ( ) + m 3 ( 0 nm) Substituting m 1 m m and m 3 m into the equation aboe yields y cm m ( nm) + m ( nm) + m( 0 nm) m + m + m nm

7 Continuous mass distributions Use symmetry CM somewhere along this line The CM need not be inside the object For a system composed of multiple parts with symmetry, first condense each part to its CM and then treat each CM as a pointlike particle kg 1 kg kg 1 kg CM

8 Velocity of the center of mass Δx cm m 1 Δx 1 + m Δx m 1 + m cm m m m 1 + m p 1 + p m 1 + m p total m total In an isolated system, the total linear momentum does not change, therefore the elocity of the center of mass does not change.

9 A stationary 4-kg shell explodes into three pieces. Two of the fragments hae a mass of 1 kg each and moe along the paths shown with a speed of 10 m/s. The third fragment moes upward as shown. kg What is the speed of the third fragment? Momentum along x and y must be consered,so (kg)( y y 5 m/s ) (1kg)(10m/s)(cos60 ) kg 1 kg 10 m/s 10 m/s What is the speed of the center of mass of this system after the explosion? (a) zero m/s (b) 1 m/s (c) 3 m/s (d) 5 m/s (e)7 m/s

10 Uniform Circular Motion Uniform circular motion is the motion of an object traeling at a constant speed on a circular path. Let T be the time it takes for the object to trael once around the circle. π T r T is also known as the period of the motion

11 Example A ball moes with a constant speed of 4 m/s around a circle of radius 0.5 m. What is the period of the motion? T πr T πr π (0.5 m) 4 m/s 0.4 s

12 Circular Motion In uniform circular motion, the speed is constant, but the direction of the elocity ector is not constant. So een if the speed is constant, there has to be an acceleration. centripetal acceleration What is the direction and magnitude of this centripetal acceleration?

13 Centripetal acceleration 0 Δ 0 F a Δ c Δt Δ F 0 a c r The centripetal acceleration in uniform circular motion points to the center of the circle. a c r rˆ ˆr is a unit ector that points radially away from the origin

14 Example 1 A racecar is traeling at constant speed around a circular track. What happens to the centripetal acceleration of the car if the speed is doubled? (a) The centripetal acceleration remains the same. (b) The centripetal acceleration increases by a factor of. (c) The centripetal acceleration increases by a factor of 4. (d) The centripetal acceleration is decreased by a factor of one-half. (e) The centripetal acceleration is decreased by a factor of one-fourth a c r rˆ If 0, 4 0

15 Centripetal Force F a m The centripetal force is the net force required to keep an object moing on a circular path. The direction of the centripetal force always points toward the center of the circle and continually changes direction as the object moes. F c ma c m r rˆ

16 What s the origin of the Centripetal Force? A 0.5-kg ball attached to a string is rotating in a horizontal circle of radius 0.5 m. If the ball reoles twice eery second, what is the tension in the string? Here I am calculating the magnitude of F C F F T T πr T F c m r mac m r π (0.5 m) 0.5 s (0.5 kg) 6.8 m/s ( 6.8 m/s) 0.5 m 0 N In this case, it s the tension in the string

17 How about for a car going around a turn? On an unbanked cure, the static frictional force proides the centripetal force. Looking from behind f S F N mg

18 Or for a car going around a banked turn? On a frictionless banked cure, the centripetal force is the horizontal component of the normal force. The ertical component of the normal force balances the car s weight.

19 F c F sin θ N F cosθ mg N m r tan θ rg

20 An Amusement Park Ride A small child rides in a barrel of fun ride. The floor drops downward and the child remains pinned against the wall. If the radius of the deice is.15 m and the coefficient of static friction between the child and the wall is 0.400, with what minimum speed is the child moing if he is to remain pinned against the wall? F N f S mg F N m r f S max mg 0 µ S F N mg 0 µ S m r mg 0 rg µ S 7.6 m/s Notice does not depend on the mass of the child.

Lecture 12. Center of mass Uniform circular motion

Lecture 12. Center of mass Uniform circular motion Lecture 12 Center of mass Uniform circular motion Today s Topics: Center of mass Uniform circular motion Centripetal acceleration and force Banked curves Define the center of mass The center of mass is

More information

B) v `2. C) `2v. D) 2v. E) 4v. A) 2p 25. B) p C) 2p. D) 4p. E) 4p 2 25

B) v `2. C) `2v. D) 2v. E) 4v. A) 2p 25. B) p C) 2p. D) 4p. E) 4p 2 25 1. 3. A ball attached to a string is whirled around a horizontal circle of radius r with a tangential velocity v. If the radius is changed to 2r and the magnitude of the centripetal force is doubled the

More information

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS CHAPTER B TEST REVIEW. A rocket is fired ertically. At its highest point, it explodes. Which one of the following describes what happens

More information

Name St. Mary's HS AP Physics Circular Motion HW

Name St. Mary's HS AP Physics Circular Motion HW Name St. Mary's HS AP Physics Circular Motion HW Base your answers to questions 1 and 2 on the following situation. An object weighing 10 N swings at the end of a rope that is 0.72 m long as a simple pendulum.

More information

Physics Department Tutorial: Motion in a Circle (solutions)

Physics Department Tutorial: Motion in a Circle (solutions) JJ 014 H Physics (9646) o Solution Mark 1 (a) The radian is the angle subtended by an arc length equal to the radius of the circle. Angular elocity ω of a body is the rate of change of its angular displacement.

More information

ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.6 MOTION IN A CIRCLE

ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.6 MOTION IN A CIRCLE ONLINE: MAHEMAICS EXENSION opic 6 MECHANICS 6.6 MOION IN A CICLE When a particle moes along a circular path (or cured path) its elocity must change een if its speed is constant, hence the particle must

More information

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14 Centripetal force Objecties Describe and analyze the motion of objects moing in circular motion. Apply Newton s second law to circular motion problems. Interpret free-body force diagrams. 1. A race car

More information

JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle

JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle Angular elocity 1 (a) Define the radian. [1] (b) Explain what is meant by the term angular elocity. [1] (c) Gie the angular elocity

More information

Physics Teach Yourself Series Topic 2: Circular motion

Physics Teach Yourself Series Topic 2: Circular motion Physics Teach Yourself Series Topic : Circular motion A: Leel 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au TSSM 013 Page 1 of 7 Contents What you need to

More information

Friction is always opposite to the direction of motion.

Friction is always opposite to the direction of motion. 6. Forces and Motion-II Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:

More information

AP Physics Free Response Practice Dynamics

AP Physics Free Response Practice Dynamics AP Physics Free Response Practice Dynamics 14) In the system shown above, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless

More information

Circular Motion. - The velocity is tangent to the path and perpendicular to the radius of the circle

Circular Motion. - The velocity is tangent to the path and perpendicular to the radius of the circle Circular Motion Level : Physics Teacher : Kim 1. Uniform Circular Motion - According to Newton s 1 st law, an object in motion will move in a straight line at a constant speed unless an unbalance force

More information

Physics 23 Exam 2 March 3, 2009

Physics 23 Exam 2 March 3, 2009 Use the following to answer question 1: A stationary 4-kg shell explodes into three pieces. Two of the fragments have a mass of 1 kg each and move along the paths shown with a speed of 10 m/s. The third

More information

Circular Motion Class:

Circular Motion Class: Circular Motion Class: Name: Date: 1. What is the magnitude of the centripetal acceleration of a 4-kilogram mass orbiting at 10 meters per second with a radius of 2 meters? (1) 5 m/sec 2 (2) 50 m/sec 2

More information

Physics 4A Solutions to Chapter 4 Homework

Physics 4A Solutions to Chapter 4 Homework Physics 4A Solutions to Chapter 4 Homework Chapter 4 Questions: 4, 1, 1 Exercises & Problems: 5, 11, 3, 7, 8, 58, 67, 77, 87, 11 Answers to Questions: Q 4-4 (a) all tie (b) 1 and tie (the rocket is shot

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

Linear Momentum and Collisions Conservation of linear momentum

Linear Momentum and Collisions Conservation of linear momentum Unit 4 Linear omentum and Collisions 4.. Conseration of linear momentum 4. Collisions 4.3 Impulse 4.4 Coefficient of restitution (e) 4.. Conseration of linear momentum m m u u m = u = u m Before Collision

More information

Physics 111: Mechanics Lecture 9

Physics 111: Mechanics Lecture 9 Physics 111: Mechanics Lecture 9 Bin Chen NJIT Physics Department Circular Motion q 3.4 Motion in a Circle q 5.4 Dynamics of Circular Motion If it weren t for the spinning, all the galaxies would collapse

More information

= M. L 2. T 3. = = cm 3

= M. L 2. T 3. = = cm 3 Phys101 First Major-1 Zero Version Sunday, March 03, 013 Page: 1 Q1. Work is defined as the scalar product of force and displacement. Power is defined as the rate of change of work with time. The dimension

More information

CIRCULAR MOTION. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

CIRCULAR MOTION. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe IRULAR MOTION hallenging MQ questions by The Physics afe ompiled and selected by The Physics afe 1 A car is making a turn at speed. The radius of the turn is r and the centripetal force on the car is F.

More information

Your Thoughts. What is the difference between elastic collision and inelastic collision?

Your Thoughts. What is the difference between elastic collision and inelastic collision? Your Thoughts This seemed pretty easy...before we got the checkpoint questions What is the difference between elastic collision and inelastic collision? The most confusing part of the pre lecture was the

More information

EXAMPLE: Accelerometer

EXAMPLE: Accelerometer EXAMPLE: Accelerometer A car has a constant acceleration of.0 m/s. A small ball of mass m = 0.50 kg attached to a string hangs from the ceiling. Find the angle θ between the string and the vertical direction.

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 8. Home Page. Title Page. Page 1 of 35.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 8. Home Page. Title Page. Page 1 of 35. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics I Fall 2015 Lecture 8 Page 1 of 35 Midterm 1: Monday October 5th 2014 Motion in one, two and three dimensions Forces and Motion

More information

Uniform circular motion: Review

Uniform circular motion: Review Announcements: 1 st test at Lockett #6 (6:00PM, Feb 3 rd ) Formula sheet will be provided No other materials is needed Practice exam and answers are on the web Uniform circular motion: Review As you go

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 3 CENTRIPETAL FORCE

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 3 CENTRIPETAL FORCE ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D5 TUTORIAL CENTRIPETAL FORCE This tutorial examines the relationship between inertia and acceleration. On completion of this tutorial you should be able

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Graitation. Each of fie satellites makes a circular orbit about an object that is much more massie than any of the satellites. The mass and orbital radius of each satellite

More information

Last Time: Start Rotational Motion (now thru mid Nov) Basics: Angular Speed, Angular Acceleration

Last Time: Start Rotational Motion (now thru mid Nov) Basics: Angular Speed, Angular Acceleration Last Time: Start Rotational Motion (now thru mid No) Basics: Angular Speed, Angular Acceleration Today: Reiew, Centripetal Acceleration, Newtonian Graitation i HW #6 due Tuesday, Oct 19, 11:59 p.m. Exam

More information

Power. Power is the time rate at which work W is done by a force Average power. (energy per time) P = dw/dt = (Fcosφ dx)/dt = F v cosφ= F.

Power. Power is the time rate at which work W is done by a force Average power. (energy per time) P = dw/dt = (Fcosφ dx)/dt = F v cosφ= F. Power Power is the time rate at which work W is done by a force Aerage power P ag = W/ t Instantaneous power (energy per time) P = dw/dt = (Fcosφ dx)/dt = F cosφ= F. Unit: watt 1 watt = 1 W = 1 J/s 1 horsepower

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 16, 2000 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

More information

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below.

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram below. The diagram shows the top view of a -kilogram student at point A on an amusement park ride. The ride spins the student in a

More information

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105 Coordinator: Dr. W. L-Basheer Monday, March 16, 2015 Page: 1 Q1. 70 N block and a 35 N block are connected by a massless inextendable string which is wrapped over a frictionless pulley as shown in Figure

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Field/Furic PHYSICS DEPARTENT PHY 2053 Exam 1 October 5, 2011 Name (print, last first): Signature: On my honor, I hae neither gien nor receied unauthorized aid on this examination. YOUR

More information

Laws of Motion. Multiple Choice Questions

Laws of Motion. Multiple Choice Questions The module presented herein is a sequel to MCQs on different units in Physics, a few viz. Rotational motion and Oscillations etc. posted earlier. The contents of the documents are intended to give the

More information

AP Physics Homework. pg 155: 1, 5, 13, 14, 15, 48, and 55

AP Physics Homework. pg 155: 1, 5, 13, 14, 15, 48, and 55 AP Physics Hoework pg 155: 1, 5, 13, 14, 15, 48, and 55 1. A light string can support a stationary hanging load of 25.0kg before breaking. A 3.00kg object attached to the string rotates on a horizontal,

More information

Information. Complete Ch 6 on Force and Motion Begin Ch 7 on Work and Energy

Information. Complete Ch 6 on Force and Motion Begin Ch 7 on Work and Energy Information Lecture today Complete Ch 6 on Force and Motion Begin Ch 7 on Work and Energy Exam in one week will emphasize material up through chapter 6. Chapter 7 material (work, energy, ) will not be

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED GCE UNIT 76/ MATHEMATICS (MEI Mechanics MONDAY MAY 7 Additional materials: Answer booklet (8 pages Graph paper MEI Examination Formulae and Tables (MF Morning Time: hour minutes INSTRUCTIONS TO

More information

1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true?

1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? Slide 1 / 30 1 car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? The car s velocity is constant The car s acceleration is constant The

More information

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem WEEK-6 Recitation PHYS 3 FOCUS ON CONCEPTS Section 7. The Impulse Momentum Theorem Mar, 08. Two identical cars are traeling at the same speed. One is heading due east and the other due north, as the drawing

More information

( m/s) 2 4(4.9 m/s 2 )( 52.7 m)

( m/s) 2 4(4.9 m/s 2 )( 52.7 m) Version 072 idterm 2 OConnor (05141) 1 This print-out should have 18 questions ultiple-choice questions may continue on the next column or page find all choices before answering V1:1, V2:1, V3:3, V4:5,

More information

( m/s) 2 4(4.9 m/s 2 )( 53.2 m)

( m/s) 2 4(4.9 m/s 2 )( 53.2 m) Version 074 idterm 2 OConnor (05141) 1 This print-out should have 18 questions ultiple-choice questions may continue on the next column or page find all choices before answering V1:1, V2:1, V3:3, V4:5,

More information

Circular Motion and Universal Law of Gravitation. 8.01t Oct 4, 2004

Circular Motion and Universal Law of Gravitation. 8.01t Oct 4, 2004 Circular Motion and Universal Law of Gravitation 8.01t Oct 4, 2004 Summary: Circular Motion arc length s= Rθ tangential velocity ds v = = dt dθ R = Rω dt 2 d θ 2 dt tangential acceleration a θ = dv θ =

More information

Extra Circular Motion Questions

Extra Circular Motion Questions Extra Circular Motion Questions Elissa is at an amusement park and is driving a go-cart around a challenging track. Not being the best driver in the world, Elissa spends the first 10 minutes of her go-cart

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] A) Its vertical speed remains the same, and its horizontal

More information

9.3 Worked Examples Circular Motion

9.3 Worked Examples Circular Motion 9.3 Worked Examples Circular Motion Example 9.1 Geosynchronous Orbit A geostationary satellite goes around the earth once every 3 hours 56 minutes and 4 seconds, (a sidereal day, shorter than the noon-to-noon

More information

Chapter 6. Force and motion II

Chapter 6. Force and motion II Chapter 6. Force and motion II Friction Static friction Sliding (Kinetic) friction Circular motion Physics, Page 1 Summary of last lecture Newton s First Law: The motion of an object does not change unless

More information

Chapter 5 Review : Circular Motion; Gravitation

Chapter 5 Review : Circular Motion; Gravitation Chapter 5 Review : Circular Motion; Gravitation Conceptual Questions 1) Is it possible for an object moving with a constant speed to accelerate? Explain. A) No, if the speed is constant then the acceleration

More information

AP Physics Chapter 9 QUIZ

AP Physics Chapter 9 QUIZ AP Physics Chapter 9 QUIZ Name:. The graph at the right shows the force on an object of mass M as a function of time. For the time interal 0 to 4 seconds, the total change in the momentum of the object

More information

Uniform Circular Motion

Uniform Circular Motion Slide 1 / 112 Uniform Circular Motion 2009 by Goodman & Zavorotniy Slide 2 / 112 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and

More information

Circular Motion and Gravitation Practice Test Provincial Questions

Circular Motion and Gravitation Practice Test Provincial Questions Circular Motion and Gravitation Practice Test Provincial Questions 1. A 1 200 kg car is traveling at 25 m s on a horizontal surface in a circular path of radius 85 m. What is the net force acting on this

More information

Circular Motion (Chapter 5)

Circular Motion (Chapter 5) Circular Motion (Chapter 5) So far we have focused on linear motion or motion under gravity (free-fall). Question: What happens when a ball is twirled around on a string at constant speed? Ans: Its velocity

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1 Phys101 Second Major-15 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 016 Page: 1 Q1. Figure 1 shows two masses; m 1 = 4.0 and m = 6.0 which are connected by a massless rope passing over a

More information

Physics 1: Mechanics

Physics 1: Mechanics Physics 1: Mechanics Đào Ngọc Hạnh Tâm Office: A1.53, Email: dnhtam@hcmiu.edu.n HCMIU, Vietnam National Uniersity Acknowledgment: Most of these slides are supported by Prof. Phan Bao Ngoc credits (3 teaching

More information

To Feel a Force Chapter 13

To Feel a Force Chapter 13 o Feel a Force Chapter 13 Chapter 13:. A. Consequences of Newton's 2nd Law for a human being he forces acting on a human being are balanced in most situations, resulting in a net external force of zero.

More information

Dynamics II Motion in a Plane. Review Problems

Dynamics II Motion in a Plane. Review Problems Dynamics II Motion in a Plane Review Problems Problem 1 A 500 g model rocket is on a cart that is rolling to the right at a speed of 3.0 m/s. The rocket engine, when it is fired, exerts an 8.0 N thrust

More information

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the

More information

PSI AP Physics B Circular Motion

PSI AP Physics B Circular Motion PSI AP Physics B Circular Motion Multiple Choice 1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions

More information

Multiple Choice (A) (B) (C) (D)

Multiple Choice (A) (B) (C) (D) Multiple Choice 1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions are: (A) (B) (C) (D) 2.

More information

MAGNETIC EFFECTS OF CURRENT-3

MAGNETIC EFFECTS OF CURRENT-3 MAGNETIC EFFECTS OF CURRENT-3 [Motion of a charged particle in Magnetic field] Force On a Charged Particle in Magnetic Field If a particle carrying a positie charge q and moing with elocity enters a magnetic

More information

Cutnell/Johnson Physics

Cutnell/Johnson Physics Cutnell/Johnson Physics Classroom Response System Questions Chapter 5 Dynamics of Uniform Circular Motion Interactive Lecture Questions 5.1.1. An airplane flying at 115 m/s due east makes a gradual turn

More information

Phys101 Second Major-173 Zero Version Coordinator: Dr. M. Al-Kuhaili Thursday, August 02, 2018 Page: 1. = 159 kw

Phys101 Second Major-173 Zero Version Coordinator: Dr. M. Al-Kuhaili Thursday, August 02, 2018 Page: 1. = 159 kw Coordinator: Dr. M. Al-Kuhaili Thursday, August 2, 218 Page: 1 Q1. A car, of mass 23 kg, reaches a speed of 29. m/s in 6.1 s starting from rest. What is the average power used by the engine during the

More information

Physics 207 Lecture 11. Lecture 11. Chapter 8: Employ rotational motion models with friction or in free fall

Physics 207 Lecture 11. Lecture 11. Chapter 8: Employ rotational motion models with friction or in free fall Goals: Lecture 11 Chapter 8: Employ rotational motion models with friction or in free fall Chapter 9: Momentum & Impulse Understand what momentum is and how it relates to forces Employ momentum conservation

More information

CHAPTER 7 CIRCULAR MOTION

CHAPTER 7 CIRCULAR MOTION CHAPTER 7 CIRCULAR MOTION 1 Describing Circular Motion Picture of Uniform Circular Motion Is the object accelerating? Linear speed vs Angular Speed Period of Rotation Page 1 2 Centripetal Acceleration

More information

Circular Motion.

Circular Motion. 1 Circular Motion www.njctl.org 2 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and Rotational Velocity Dynamics of UCM Vertical

More information

Physics 2211 M Quiz #2 Solutions Summer 2017

Physics 2211 M Quiz #2 Solutions Summer 2017 Physics 2211 M Quiz #2 Solutions Summer 2017 I. (16 points) A block with mass m = 10.0 kg is on a plane inclined θ = 30.0 to the horizontal, as shown. A balloon is attached to the block to exert a constant

More information

Lecture 10. Example: Friction and Motion

Lecture 10. Example: Friction and Motion Lecture 10 Goals: Exploit Newton s 3 rd Law in problems with friction Employ Newton s Laws in 2D problems with circular motion Assignment: HW5, (Chapter 7, due 2/24, Wednesday) For Tuesday: Finish reading

More information

Circular Motion & Gravitation FR Practice Problems

Circular Motion & Gravitation FR Practice Problems 1) A mass m is attached to a length L of string and hung straight strainght down from a pivot. Small vibrations at the pivot set the mass into circular motion, with the string making an angle θ with the

More information

Algebra Based Physics Uniform Circular Motion

Algebra Based Physics Uniform Circular Motion 1 Algebra Based Physics Uniform Circular Motion 2016 07 20 www.njctl.org 2 Uniform Circular Motion (UCM) Click on the topic to go to that section Period, Frequency and Rotational Velocity Kinematics of

More information

Circular Motion Act. Centripetal Acceleration and. SPH3UW: Circular Motion, Pg 1 -> SPH3UW: Circular Motion, Pg 2. Page 1. Uniform Circular Motion

Circular Motion Act. Centripetal Acceleration and. SPH3UW: Circular Motion, Pg 1 -> SPH3UW: Circular Motion, Pg 2. Page 1. Uniform Circular Motion SPH3UW Centripetal Acceleration and Circular Motion Uniform Circular Motion What does it mean? How do we describe it? What can we learn about it? SPH3UW: Circular Motion, Pg 1 SPH3UW: Circular Motion,

More information

Lecture 5. Dynamics. Forces: Newton s First and Second

Lecture 5. Dynamics. Forces: Newton s First and Second Lecture 5 Dynamics. Forces: Newton s First and Second What is a force? It s a pull or a push: F F Force is a quantitative description of the interaction between two physical bodies that causes them to

More information

Chapter 5. A rock is twirled on a string at a constant speed. The direction of its acceleration at point P is A) B) P C) D)

Chapter 5. A rock is twirled on a string at a constant speed. The direction of its acceleration at point P is A) B) P C) D) A 1500 kg car travels at a constant speed of 22 m/s around a circular track which has a radius of 80 m. Which statement is true concerning this car? A) The velocity of the car is changing. B) The car is

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term Exam 2 Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term Exam 2 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 801 Physics Fall Term 013 Problem 1 of 4 (5 points) Exam Solutions Answers without work shown will not be given any credit A block of mass m

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In the diagram shown, the unknown vector is 1) Diagram 1 A) B - A. B) A - B. C) A + B.

More information

Family Name: Given Name: Student number:

Family Name: Given Name: Student number: Family Name: Given Name: Student number: Academic Honesty: In accordance with the Academic Honesty Policy (T0.02), academic dishonesty in any form will not be tolerated. Prohibited acts include, but are

More information

Upon collision, the clay and steel block stick together and move to the right with a speed of

Upon collision, the clay and steel block stick together and move to the right with a speed of 1. A 2.0-kilogram ball traveling north at 4.0 meters per second collides head on with a 1.0-kilogram ball traveling south at 8.0 meters per second. What is the magnitude of the total momentum of the two

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans:

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans: Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 1

Physics 12. Unit 5 Circular Motion and Gravitation Part 1 Physics 12 Unit 5 Circular Motion and Gravitation Part 1 1. Nonlinear motions According to the Newton s first law, an object remains its tendency of motion as long as there is no external force acting

More information

Lecture PowerPoints. Chapter 5 Physics for Scientists & Engineers, with Modern Physics, 4 th edition. Giancoli

Lecture PowerPoints. Chapter 5 Physics for Scientists & Engineers, with Modern Physics, 4 th edition. Giancoli Lecture PowerPoints Chapter 5 Physics for Scientists & Engineers, with Modern Physics, 4 th edition 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Chapter 8. Centripetal Force and The Law of Gravity

Chapter 8. Centripetal Force and The Law of Gravity Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration

More information

a by a factor of = 294 requires 1/T, so to increase 1.4 h 294 = h

a by a factor of = 294 requires 1/T, so to increase 1.4 h 294 = h IDENTIFY: If the centripetal acceleration matches g, no contact force is required to support an object on the spinning earth s surface. Calculate the centripetal (radial) acceleration /R using = πr/t to

More information

AP Physics 1 Lesson 9 Homework Outcomes. Name

AP Physics 1 Lesson 9 Homework Outcomes. Name AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

Honors Physics Review

Honors Physics Review Honors Physics Review Work, Power, & Energy (Chapter 5) o Free Body [Force] Diagrams Energy Work Kinetic energy Gravitational Potential Energy (using g = 9.81 m/s 2 ) Elastic Potential Energy Hooke s Law

More information

PHYSICS (B) v 2 r. v r

PHYSICS (B) v 2 r. v r PHYSICS 1. If Q be the amount of liquid (iscosity ) flowing per second through a capillary tube of radius r and length l under a pressure difference P, then which of the following relation is correct?

More information

Physics 101: Lecture 08. Common Incorrect Forces (Spooky Rules!) Items below are NOT forces Acceleration: F Net = ma Centripetal Acceleration

Physics 101: Lecture 08. Common Incorrect Forces (Spooky Rules!) Items below are NOT forces Acceleration: F Net = ma Centripetal Acceleration Physics 101: Lecture 08 Circular Motion Review of Newton s Laws Checkpoint 4, Lecture 7 In the game of tetherball, a rope connects a ball to the top of a vertical pole as shown. In one case, a ball of

More information

Conservation of Momentum in Two Dimensions

Conservation of Momentum in Two Dimensions Conseration of Momentum in Two Dimensions Name Section Linear momentum p is defined as the product of the mass of an object and its elocity. If there is no (or negligible) external force in a collision,

More information

Chapter 5 Gravitation Chapter 6 Work and Energy

Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 (5.6) Newton s Law of Universal Gravitation (5.7) Gravity Near the Earth s Surface Chapter 6 (today) Work Done by a Constant Force Kinetic Energy,

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s),

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s), Chapter 4 Student Solutions Manual. We apply Eq. 4- and Eq. 4-6. (a) Taking the deriatie of the position ector with respect to time, we hae, in SI units (m/s), d ˆ = (i + 4t ˆj + tk) ˆ = 8tˆj + k ˆ. dt

More information

Circular Motion Dynamics Concept Questions

Circular Motion Dynamics Concept Questions Circular Motion Dynamics Concept Questions Problem 1: A puck of mass m is moving in a circle at constant speed on a frictionless table as shown above. The puck is connected by a string to a suspended bob,

More information

AP* Circular & Gravitation Free Response Questions

AP* Circular & Gravitation Free Response Questions 1992 Q1 AP* Circular & Gravitation Free Response Questions A 0.10-kilogram solid rubber ball is attached to the end of a 0.80-meter length of light thread. The ball is swung in a vertical circle, as shown

More information

AP Physics Daily Problem #31

AP Physics Daily Problem #31 AP Physics Daily Problem #31 A 10kg mass is whirled around on the end of a 3m long cord. The speed of the mass is 7m/s. Ignore gravitational forces. 3.0m 7.0m/s Draw a free body diagram of the mass. (hint:

More information

Free-body diagrams. a. Find the acceleration of mass 2. b. Determine the magnitude of the tension in the string.

Free-body diagrams. a. Find the acceleration of mass 2. b. Determine the magnitude of the tension in the string. Free-body diagrams 1. wo blocks of masses m1 = 5.0 kg and m =.0 kg hang on both sides of an incline, connected through an ideal, massless string that goes through an ideal, massless pulley, as shown below.

More information

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below.

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram The diagram shows the top view of a 65-kilogram student at point A on an amusement park ride. The ride spins the student in a horizontal

More information

Exam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 1 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Let vector a! = 4î + 3 ĵ and vector b! = î + 2 ĵ (or b! = î + 4 ĵ ). What is the

More information

SPH4UIW The Circle Centripetal Acceleration and Circular Motion Round Round

SPH4UIW The Circle Centripetal Acceleration and Circular Motion Round Round SPH4UIW Centripetal Acceleration and Circular Motion The Circle Bablonian Numbers And ou thought our homework was difficult SPH4UIW: Circular Motion, Pg 1 SPH4UIW: Circular Motion, Pg ound ound SPH4UIW:

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Weight Friction Tension 07-1 1 Current assignments Thursday prelecture assignment. HW#7 due this Friday at 5 pm. 07-1 2 Summary To solve problems in mechanics,

More information