Linear Momentum and Collisions Conservation of linear momentum

Size: px
Start display at page:

Download "Linear Momentum and Collisions Conservation of linear momentum"

Transcription

1 Unit 4 Linear omentum and Collisions 4.. Conseration of linear momentum 4. Collisions 4.3 Impulse 4.4 Coefficient of restitution (e) 4.. Conseration of linear momentum m m u u m = u = u m Before Collision After Collision Consider that we are performing a collision experiment with two particles (not necessary identical particles) on a two-dimensional plane, say, smooth table. If the initial elocity ectors of the two particles were labeled as u and u respectiely, then after collision, their elocity were found to be and respectiely. The theory behind the collision During the collision, the forces act on each other are with the same magnitude but opposite in direction. This is the Newton s third law, it is about the action and reaction forces. They are always opposite in directions but they hae the same magnitudes (e.g. F = F ). Hence, we hae m t m m = t = m

2 Substituting, and rearrange the equation, we obtain m ( u) = m ( u ) or m( u) + m( u) = 0. That is, m u + m u = m + m The aboe expression is the conseration of linear momentum. Define the linear momentum of a particle as p, where p = m. We can rewrite the aboe equation as p = constant or in another form p i = 0. i Experimental facts After performing numerous trials with different initial elocities and final elocity being measured, it was found that () is always in opposite direction of, () = constant. We can repeat the experiment by changing different particles and we found that different particles hae different degree of resistance to change its magnitude of the elocity after the collision. We can check that the constant is gien by the ratio of m and m : m =, m where m and m are then called the inertia mass of the particles, which is a measure of the resistance to change the elocity magnitude during an interaction with another particle. From this experiment, we also discoer a conseration law if we define a physical quantity called momentum by: p = m. i i Example An ant lands on one end of a floating 4.75g stick. After sitting at rest for a moment, it runs toward the other end with a speed of 3.8cm/s relatie to the still water. The stick moes in the opposite direction at 0.cm/s. What is the mass of the ant? Still Water

3 The total momentum of the system before the ant runs on the stick is zero. By conseration of linear momentum, the total momentum of the system after the ant runs on the stick equals zero. Hence we can write p a + p s = 0, m a a + m s s = 0, Substituting a, s and m a, we obtain m a (3.80) ( 0.) = 0 m a = 0.5g Example A gun of mass fires a shell of mass m and recoils horizontally. If the shell traels with speed relatie to the barrel, find the speed with which the barrel begins to recoil if (a) the barrel is horizontal, (b) the barrel is inclined at an angle α to the horizontal. (a) V m Let the barrel be recoiling with speed V. The speed of the shell as it leaes the barrel is V. Before firing the shell, the gun is at rest and the total momentum is zero. By the conseration of momentum, m ( V) V = 0. Hence V = m / ( + m). (b) When the gun is inclined at angle α. The shell leaes the barrel with a elocity which is the resultant of two components, and V. By the conseration of momentum in the direction of recoil, m ( cos α V) V = 0. m Hence V = m cos α / ( + m). V α 3

4 Example Two men each of mass m ride on a moable platform which has mass and is initially at rest on a smooth track. Both of them take a leap from the platform simultaneously along the track with speed u relatie to the platform. (a) (b) (c) Find the speed of the platform just after they jump. If they jump one after one, find the final speed of the platform. Compare the final speed of platform in both cases. (a) Let V be the speed of platform just after both men jump and leae the platform. The conseration of linear momentum along the track implies 0 = m( u V ) V, which (b) mu giesv =. + m Let V be the speed of platform just after the first man leaes the platform. The conseration of linear momentum along the track gies 0 = mu ( V) ( + mv ), mu which impliesv =. + m Next, the second man leaps from the platform after the first man, we can write ( m + ) V = m( u V ) V, where V is the speed of platform just after the second man leaes the platform. After mu simplification, we hae V V =. Substituting V into the expression and + m mu mu thusv = +. + m + m (c) Note that V V > V. mu mu mu mu mu = + > + = = V + m + m + m + m + m, we obtain 4

5 4. Collisions () Elastic collision: A collision that the momentum and the kinetic energy are consered. mu + mu = m + m mu + mu = m + m, where u i and i are the speed of particles before and after the collision, i = and. () Inelastic collision: A collision that the momentum is consered but the kinetic energy is not consered. mu + mu = m + m mu + mu m + m (3) Perfectly inelastic collision: A collision that the colliding objects stick together after they hit each other. The momentum of the system is consered but the kinetic energy is not consered.. Example Two particles, whose masses are 5 kg and 7 kg are moing on the same line with speed 30m/s and 0 m/s, respectiely, when they collide. Assuming that the particles couple together after impact, find their common elocity after impact if they were (a) moing in the same direction, (b) moing in opposite directions. (a) By the conseration of momentum, (5 + 7)V = 5(30) + 7(0), we obtain V = 45/6 m/s 30m/s 5 kg 0m/s 7 kg (b) By the conseration of momentum, 30m/s 0m/s (5 + 7)V = 5(30) 7(0), we obtain V = 5/6 m/s. 5 kg 7 kg 5

6 Example A and B are two particles, of mass 4 kg and 8 kg respectiely, lying in contact on a smooth horizontal table, and connected by a string 3 m long. B is 7 m from the smooth edge of the table and is connected by a taut string passing oer the edge to a particle C of mass 4 kg hanging freely. If the system is released from rest, find the speed with which A begins to moe. A 4kg B 8kg T T C 4kg When B is in motion and less than 3 m from A, its acceleration is gien be the equations 4g T = 4 a, T = 8 a, where T is the tension in the string, and hence a = g = 3.7 m/ s 3 Hence, when B has moed 3 m, its elocity is gien by 9.8 = 3, 3 = 4.43 m/ s, and this will also be the elocity of the mass C hanging ertically. The impulse in the string joining B to C when the string AB becomes taut will gie a certain horizontal momentum to B and take away the same amount of ertical momentum from C. Hence, we may use the conseration of momentum as if all three particles were moing in the same straight line. If m/s be their common elocity after A has been brought into motion, we hae 6

7 ( ) = (8 + 4) 4.43, = 3.3 m/ s. This is therefore the speed with which A begins to moe. 4.3 Impulse Impulse is defined as the change in momentum, e.g. I = p = m mu = F ae t (Area under cure) The unit of impulse is Ns or kg m/s. F ae Area t Area = F t f = t F dt i ae Example A particle of mass lying on the ground is connected, by means of a light inextensible string passing oer a smooth pulley to a mass m. After the mass m has fallen through a height h, the string tightens and the mass begins to rise. Find the impulse applied to when the string tightens and the initial speed. The elocity of mass m just before the string tightens is gien by = 0 + gh i.e. = gh. By the conseration of momentum, we hae m + (0) = mv + V, m h m where V is the elocity of the system just after the string tightens. 7

8 Substituting the expression of, we obtain V = m gh. m+ If I is the impulse, we can write I = V (0) = m gh m+. Remarks: The impulse on m = As the elocity V is smaller than. m gh m gh mv m = m gh = m+ m+. Of course, it is negatie! 4.4 Coefficient of restitution (e) Before u u m I I m ( u > u ) After The aboe figure depicts two bodies. Since the total momentum is consered, we hae m u + m u = m + m. This one equation is not sufficient to calculate and and we hae recourse to Newton s experimental law. If the elocities both before and after impact are taken relatie to the same body, then, for two bodies impinging directly, their relatie elocity after impact is equal to a constant (e) times their relatie elocity before impact and in the opposite direction. e is known as the coefficient of restitution. = e (u u ) In the case of oblique impact, the result holds for the components the elocities in the direction of the common normal at impact. The alue of e has to be found by experiment and aries from 0 for completely inelastic bodies to practically for nearly perfectly elastic bodies. Note that the quantities u, u, and mentioned aboe are in the same direction. 8

9 Example A smooth sphere strikes an identical sphere initially at rest. If the elocity of the moing sphere before the impact is m/s at 45 o to the line of center AB, and e = 0.6, find the elocities of the spheres after the impact. The stationary sphere receies an impulse in the direction of AB. So this sphere moes in the direction of AB with elocity, after impact. Sphere A moes in the direction θ to the horizontal with final elocity u. Consider the momentum of the first sphere perpendicular to AB, m(sin 45) = mu sinθ (m: mass of the sphere) u sinθ = () u θ A B A B m/s Before impact After impact From the conseration of momentum along AB, and from Newton s law of restitution, m( cos 45) + 0 = mu cosθ + m 0.6(cos 45 0) = ucosθ. We obtain + ucosθ = cos 45 () and ucosθ =. cos 45 (3) From () and (3) we hae =.6 cos 45 and u cosθ = 0.4 cos 45 (4) i.e. =.3 and ucosθ = 0.83 Substitute () into (4), we hae tanθ = 5, hence we find o θ 79 and u =.44 m/ s Thus the elocity of the second sphere is.3 m/s along AB, and that of the first sphere is.44 m/s at 79 o to AB. 9

10 Example Three identical spheres are arranged as shown in figure. If sphere C is projected with elocity u while A and B are at rest. Gien that the coefficient of restitution is e for each sphere, find the subsequent elocities of each sphere. Show also that the condition for sphere C to pass through and beyond the two spheres A and B is e < /9. C A C A w u B B w Before impact After impact Let u be the elocity of sphere C before impact, the elocity of sphere C after impact and w the elocities of A and B after impact. By conseration of momentum: mu = m + mw cos 30 + w cos 30 = u () By Newton s law of restitution: Soling () and (), we get w cos30 e = w cos30 = eu cos30 0 u cos 30 u 3u = ( 3 e) and w= ( + e) 5 5 u Thus, the elocity of C after impact is ( 3 e) and the elocities of A and B after impact are 5 3 u the same as ( + e ). 5 If the sphere C passes through and beyond the two spheres A and B, then > wcos30 u 3u 3 ( 3 e) > ( + e) e> 3+ 3e e<. 9 () 0

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv Solution to HW#7 CJ57.CQ.003. RASONNG AND SOLUTON a. Yes. Momentum is a ector, and the two objects hae the same momentum. This means that the direction o each object s momentum is the same. Momentum is

More information

Elastic collisions in one dimension Mixed Exercise 4

Elastic collisions in one dimension Mixed Exercise 4 Elastic collisions in one dimension Mixed Exercise 1 u w A (m) B (m) A (m) B (m) Using conseration of linear momentum for the system ( ): mu m= mw u = w (1) 1 w e= = 3 u ( ) u+ = 3 w () Adding equations

More information

Chapter 11 Collision Theory

Chapter 11 Collision Theory Chapter Collision Theory Introduction. Center o Mass Reerence Frame Consider two particles o masses m and m interacting ia some orce. Figure. Center o Mass o a system o two interacting particles Choose

More information

AP Physics Chapter 9 QUIZ

AP Physics Chapter 9 QUIZ AP Physics Chapter 9 QUIZ Name:. The graph at the right shows the force on an object of mass M as a function of time. For the time interal 0 to 4 seconds, the total change in the momentum of the object

More information

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS CHAPTER B TEST REVIEW. A rocket is fired ertically. At its highest point, it explodes. Which one of the following describes what happens

More information

Your Thoughts. What is the difference between elastic collision and inelastic collision?

Your Thoughts. What is the difference between elastic collision and inelastic collision? Your Thoughts This seemed pretty easy...before we got the checkpoint questions What is the difference between elastic collision and inelastic collision? The most confusing part of the pre lecture was the

More information

Conservation of Linear Momentum, Collisions

Conservation of Linear Momentum, Collisions Conseration of Linear Momentum, Collisions 1. 3 kg mass is moing with an initial elocity i. The mass collides with a 5 kg mass m, which is initially at rest. Find the final elocity of the masses after

More information

, remembering that! v i 2

, remembering that! v i 2 Section 53: Collisions Mini Inestigation: Newton s Cradle, page 34 Answers may ary Sample answers: A In Step, releasing one end ball caused the far ball on the other end to swing out at the same speed

More information

Conservation of Momentum in Two Dimensions

Conservation of Momentum in Two Dimensions Conseration of Momentum in Two Dimensions Name Section Linear momentum p is defined as the product of the mass of an object and its elocity. If there is no (or negligible) external force in a collision,

More information

Created by T. Madas COLLISIONS. Created by T. Madas

Created by T. Madas COLLISIONS. Created by T. Madas COLLISIONS Question (**) Two particles A and B of respective masses 2 kg and M kg move on a smooth horizontal surface in the same direction along a straight line. The speeds of A and B are 4 ms and 2 ms,

More information

M1 January Immediately after the collision Q moves with speed 5 m s 1. Calculate. the speed of P immediately after the collision,

M1 January Immediately after the collision Q moves with speed 5 m s 1. Calculate. the speed of P immediately after the collision, M1 January 2003 1. railway truck P of mass 2000 kg is moving along a straight horizontal track with speed 10 m s 1. The truck P collides with a truck Q of mass 3000 kg, which is at rest on the same track.

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Field/Furic PHYSICS DEPARTENT PHY 2053 Exam 1 October 5, 2011 Name (print, last first): Signature: On my honor, I hae neither gien nor receied unauthorized aid on this examination. YOUR

More information

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v.

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. 1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. The magnitude of the change in momentum of the ball is A.

More information

Force, Energy & Periodic Motion. Preparation for unit test

Force, Energy & Periodic Motion. Preparation for unit test Force, Energy & Periodic Motion Preparation for unit test Summary of assessment standards (Unit assessment standard only) In the unit test you can expect to be asked at least one question on each sub-skill.

More information

Lecture 12! Center of mass! Uniform circular motion!

Lecture 12! Center of mass! Uniform circular motion! Lecture 1 Center of mass Uniform circular motion Today s Topics: Center of mass Uniform circular motion Centripetal acceleration and force Banked cures Define the center of mass The center of mass is a

More information

EXPERIMENT 8 BALLISTIC PENDULUM. Figure 1 Setup to determine the initial speed of the projectile using the Blackwood Pendulum

EXPERIMENT 8 BALLISTIC PENDULUM. Figure 1 Setup to determine the initial speed of the projectile using the Blackwood Pendulum EXPERIMENT 8 BALLISTIC PENDULUM I. Introduction. The objectie of this eperiment is to determine the initial elocity of a projectile fired from a gun by two methods. In the first the projectile undergoes

More information

( ) Momentum and impulse Mixed exercise 1. 1 a. Using conservation of momentum: ( )

( ) Momentum and impulse Mixed exercise 1. 1 a. Using conservation of momentum: ( ) Momentum and impulse Mixed exercise 1 1 a Using conseration of momentum: ( ) 6mu 4mu= 4m 1 u= After the collision the direction of Q is reersed and its speed is 1 u b Impulse = change in momentum I = (3m

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

Name: M1 - Dynamics. Date: Time: Total marks available: Total marks achieved:

Name: M1 - Dynamics. Date: Time: Total marks available: Total marks achieved: Name: M1 - Dynamics Date: Time: Total marks available: Total marks achieved: Questions Q1. A railway truck P, of mass m kg, is moving along a straight horizontal track with speed 15 ms 1. Truck P collides

More information

Purpose of the experiment

Purpose of the experiment Impulse and Momentum PES 116 Adanced Physics Lab I Purpose of the experiment Measure a cart s momentum change and compare to the impulse it receies. Compare aerage and peak forces in impulses. To put the

More information

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem WEEK-6 Recitation PHYS 3 FOCUS ON CONCEPTS Section 7. The Impulse Momentum Theorem Mar, 08. Two identical cars are traeling at the same speed. One is heading due east and the other due north, as the drawing

More information

CHAPTER 2 TEST REVIEW

CHAPTER 2 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 69 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 2 TEST REVIEW 1. Samantha walks along a horizontal path in the direction shown. The curved

More information

Page 2. Example Example Example Jerk in a String Example Questions B... 39

Page 2. Example Example Example Jerk in a String Example Questions B... 39 Page 1 Dynamics Newton's Laws...3 Newton s First Law... 3 Example 1... 3 Newton s Second Law...4 Example 2... 5 Questions A... 6 Vertical Motion...7 Example 3... 7 Example 4... 9 Example 5...10 Example

More information

Elastic collisions in two dimensions 5B

Elastic collisions in two dimensions 5B Elastic collisions in two dimensions 5B a First collision: e=0.5 cos α = cos30 () sin α = 0.5 sin30 () Squaring and adding equations () and () gies: cos α+ sin α = 4cos 30 + sin 30 (cos α+ sin α)= 4 3

More information

Momentum. Edexcel GCE. Core Mathematics M1

Momentum. Edexcel GCE. Core Mathematics M1 Edexcel GCE Core Mathematics M1 Momentum Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Advice to Candidates You must ensure that your answers

More information

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s),

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s), Chapter 4 Student Solutions Manual. We apply Eq. 4- and Eq. 4-6. (a) Taking the deriatie of the position ector with respect to time, we hae, in SI units (m/s), d ˆ = (i + 4t ˆj + tk) ˆ = 8tˆj + k ˆ. dt

More information

Momentum Practice Problems

Momentum Practice Problems Momentum Practice Problems PSI AP Physics C Name Multiple Choice 1. A steel ball and a piece of clay have equal mass. They are dropped from the same height on a horizontal steel platform. The ball bounces

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED GCE UNIT 76/ MATHEMATICS (MEI Mechanics MONDAY MAY 7 Additional materials: Answer booklet (8 pages Graph paper MEI Examination Formulae and Tables (MF Morning Time: hour minutes INSTRUCTIONS TO

More information

M1 January An easy question to start the paper. Applying conservation of momentum where u is the initial velocity and v the final velocity.

M1 January An easy question to start the paper. Applying conservation of momentum where u is the initial velocity and v the final velocity. Page 1 M1 January 003 1. A railway truck P of mass 000 kg is moving along a straight horizontal track with speed 10 ms -1. The truck P collides with a truck Q of mass 3000 kg, which is at rest on the same

More information

Physics 4A Solutions to Chapter 4 Homework

Physics 4A Solutions to Chapter 4 Homework Physics 4A Solutions to Chapter 4 Homework Chapter 4 Questions: 4, 1, 1 Exercises & Problems: 5, 11, 3, 7, 8, 58, 67, 77, 87, 11 Answers to Questions: Q 4-4 (a) all tie (b) 1 and tie (the rocket is shot

More information

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

Energy in Collisions Problems AP Physics C

Energy in Collisions Problems AP Physics C 1. A bullet of mass m and velocity v 0 is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity

More information

LINEAR MOMENTUM AND COLLISIONS

LINEAR MOMENTUM AND COLLISIONS LINEAR MOMENTUM AND COLLISIONS Chapter 9 Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Center of Mass

More information

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017 These notes are seen pages. A quick summary: Projectile motion is simply horizontal motion at constant elocity with ertical motion at constant acceleration. An object moing in a circular path experiences

More information

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Kinematics: Projectile Motion Science and Mathematics Education Research Group Supported by UBC Teaching

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission 2014. M32 Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 2014 APPLIED MATHEMATICS HIGHER LEVEL FRIDAY, 20 JUNE MORNING, 9.30 to 12.00 Six questions to be answered.

More information

Kinematics of Particles

Kinematics of Particles nnouncements Recitation time is set to 8am eery Monday. Participation i credit will be gien to students t who uploads a good question or good answer to the Q& bulletin board. Suggestions? T s and I will

More information

Q1. For the two physical quantities, impulse and force, which one of the following is correct?

Q1. For the two physical quantities, impulse and force, which one of the following is correct? PhysicsndMathsTutor.com 1 Q1. For the two physical quantities, impulse and force, which one of the following is correct? B C D Impulse is a scalar and force is a scalar. Impulse is a scalar and force is

More information

Physics 1: Mechanics

Physics 1: Mechanics Physics 1: Mechanics Đào Ngọc Hạnh Tâm Office: A1.53, Email: dnhtam@hcmiu.edu.n HCMIU, Vietnam National Uniersity Acknowledgment: Most of these slides are supported by Prof. Phan Bao Ngoc credits (3 teaching

More information

AP Physics C. Momentum. Free Response Problems

AP Physics C. Momentum. Free Response Problems AP Physics C Momentum Free Response Problems 1. A bullet of mass m moves at a velocity v 0 and collides with a stationary block of mass M and length L. The bullet emerges from the block with a velocity

More information

LAWS OF MOTION Newtons laws of motion. (i) First law: Law of inertia. Every body continues to be in its state of rest or of uniform motion in a

LAWS OF MOTION Newtons laws of motion. (i) First law: Law of inertia. Every body continues to be in its state of rest or of uniform motion in a LAWS OF MOTION Newtons laws of motion. (i) First law: Law of inertia. Every body continues to be in its state of rest or of uniform motion in a straight line unless compelled to change that state by an

More information

Impulse and Momentum. AP Physics B

Impulse and Momentum. AP Physics B Imulse and Momentum P Physics B Imulse Momentum Consider Newton s nd Law and the definition of acceleration Units of Imulse: Ns Units of Momentum: Kg x m/s Momentum is defined as Inertia in Motion Imulse

More information

Problems. 66 km/h B km/h 30 A. v A. 1.5 ft

Problems. 66 km/h B km/h 30 A. v A. 1.5 ft Problems Problem 3.1 2700-lb automobile starts from rest and traels a quarter of a mile. ssume that the coefficient of static friction between the tires and the paement is 0.70, the automobile has frontwheel

More information

Solutionbank M1 Edexcel AS and A Level Modular Mathematics

Solutionbank M1 Edexcel AS and A Level Modular Mathematics Page of Solutionbank M Exercise A, Question A particle P of mass 0. kg is moving along a straight horizontal line with constant speed m s. Another particle Q of mass 0.8 kg is moving in the same direction

More information

WORK ENERGY AND POWER

WORK ENERGY AND POWER WORK ENERGY AND POWER WORK PHYSICAL DEINITION When the point of application of force moves in the direction of the applied force under its effect then work is said to be done. MATHEMATICAL DEINITION O

More information

Core Mathematics M1. Dynamics (Planes)

Core Mathematics M1. Dynamics (Planes) Edexcel GCE Core Mathematics M1 Dynamics (Planes) Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Advice to Candidates You must ensure that your

More information

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt Phone : 0 903 903 7779, 98930 58881 Impulse and Momentum Page: 1 fo/u fopkjr Hkh# tu] ugha vkjehks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';kea iq#"k flag ladyi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s;

More information

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v.

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v. 1 Impulse and Momentum Recall from Newton s 1 st Law: inertia is the tendency of an object to keep on doing what its already doing, that is: either remaining stationary, or: travelling at a constant velocity.

More information

Q2. Two forces of 6 N and 10 N act at a point. Which of the following could not be the magnitude of the result?

Q2. Two forces of 6 N and 10 N act at a point. Which of the following could not be the magnitude of the result? Q1. Two ice skaters, initially at rest and in contact, push apart from each other. Which line, to, in the table states correctly the change in the total momentum and the total kinetic energy of the two

More information

PHYSICS (B) v 2 r. v r

PHYSICS (B) v 2 r. v r PHYSICS 1. If Q be the amount of liquid (iscosity ) flowing per second through a capillary tube of radius r and length l under a pressure difference P, then which of the following relation is correct?

More information

Physics-MC Page 1 of 29 Inertia, Force and Motion 1.

Physics-MC Page 1 of 29 Inertia, Force and Motion 1. Physics-MC 2006-7 Page 1 of 29 Inertia, Force and Motion 1. 3. 2. Three blocks of equal mass are placed on a smooth horizontal surface as shown in the figure above. A constant force F is applied to block

More information

Advanced Subsidiary / Advanced Level

Advanced Subsidiary / Advanced Level GCE Examinations Mechanics Module M1 Advanced Subsidiary / Advanced Level Paper F Time: 1 hour 30 minutes Instructions and Information Candidates may use any calculator except those with a facility for

More information

EXERCISE 01. JEE-Physics CHECK YOUR GRASP

EXERCISE 01. JEE-Physics CHECK YOUR GRASP J-Physics XRIS 1 HK YOUR GRSP Select the correct alternatie (only one correct answer) 1. On account of the earth rotating about its axis :- the linear elocity of objects at equator is greater than at other

More information

WORK, POWER AND ENERGY

WORK, POWER AND ENERGY WORK, POWER AND ENERGY Important Points:. Dot Product: a) Scalar product is defined as the product of the magnitudes of two vectors and the cosine of the angle between them. The dot product of two vectors

More information

Kinetics of Particles: Work and Energy

Kinetics of Particles: Work and Energy Kinetics of Particles: Work and Energy Total work done is given by: Modifying this eqn to account for the potential energy terms: U 1-2 + (-ΔV g ) + (-ΔV e ) = ΔT T U 1-2 is work of all external forces

More information

Chapter 1: Kinematics of Particles

Chapter 1: Kinematics of Particles Chapter 1: Kinematics of Particles 1.1 INTRODUCTION Mechanics the state of rest of motion of bodies subjected to the action of forces Static equilibrium of a body that is either at rest or moes with constant

More information

AP PHYSICS C Momentum Name: AP Review

AP PHYSICS C Momentum Name: AP Review AP PHYSICS C Momentum Name: AP Review Momentum How hard it is to stop a moving object. Related to both mass and velocity. For one particle p = mv For a system of multiple particles P = p i = m ivi Units:

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

LAWS OF MOTION. (i) This law gives the value of force.

LAWS OF MOTION. (i) This law gives the value of force. LAWS OF MOTION The law of inertia given by Galileo was represented by Newton as the first law of motion :" If no external force acts on a body, the body at rest remains at rest and a body in motion continues

More information

Thomas Whitham Sixth Form Mechanics in Mathematics

Thomas Whitham Sixth Form Mechanics in Mathematics Thomas Whitham Sixth Form Mechanics in Mathematics 6/0/00 Unit M Rectilinear motion with constant acceleration Vertical motion under gravity Particle Dynamics Statics . Rectilinear motion with constant

More information

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the

More information

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 20: Rotational Motion Slide 20-1 Recap: center of mass, linear momentum A composite system behaves as though its mass is concentrated

More information

ELASTIC STRINGS & SPRINGS

ELASTIC STRINGS & SPRINGS ELASTIC STRINGS & SPRINGS Question 1 (**) A particle of mass m is attached to one end of a light elastic string of natural length l and modulus of elasticity 25 8 mg. The other end of the string is attached

More information

Note on Posted Slides. Motion Is Relative

Note on Posted Slides. Motion Is Relative Note on Posted Slides These are the slides that I intended to show in class on Tue. Jan. 9, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably not

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0.

11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0. A harmonic wave propagates horizontally along a taut string of length! = 8.0 m and mass! = 0.23 kg. The vertical displacement of the string along its length is given by!!,! = 0.1!m cos 1.5!!! +!0.8!!,

More information

MAGNETIC EFFECTS OF CURRENT-3

MAGNETIC EFFECTS OF CURRENT-3 MAGNETIC EFFECTS OF CURRENT-3 [Motion of a charged particle in Magnetic field] Force On a Charged Particle in Magnetic Field If a particle carrying a positie charge q and moing with elocity enters a magnetic

More information

AP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems

AP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is

More information

STEP Support Programme. Mechanics STEP Questions

STEP Support Programme. Mechanics STEP Questions STEP Support Programme Mechanics STEP Questions This is a selection of mainly STEP I questions with a couple of STEP II questions at the end. STEP I and STEP II papers follow the same specification, the

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 4. Home Page. Title Page. Page 1 of 35.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 4. Home Page. Title Page. Page 1 of 35. Rutgers Uniersit Department of Phsics & Astronom 01:750:271 Honors Phsics I Fall 2015 Lecture 4 Page 1 of 35 4. Motion in two and three dimensions Goals: To stud position, elocit, and acceleration ectors

More information

N10/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS STANDARD LEVEL PAPER 1. Monday 8 November 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

N10/4/PHYSI/SPM/ENG/TZ0/XX PHYSICS STANDARD LEVEL PAPER 1. Monday 8 November 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES N1/4/PHYSI/SPM/ENG/TZ/XX 881654 PHYSICS STANDARD LEVEL PAPER 1 Monday 8 Noember 21 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

Physics 201, Review 3

Physics 201, Review 3 Physics 0, Reiew Important Notes: This reiew does not replace your own preparation efforts Exercises used in this reiew do not form a test problem pool. Please practice more with end of chapter problems.

More information

Written Homework problems. Spring (taken from Giancoli, 4 th edition)

Written Homework problems. Spring (taken from Giancoli, 4 th edition) Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission 00. M3 Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 00 APPLIED MATHEMATICS HIGHER LEVEL FRIDAY, 5 JUNE MORNING, 9.30 to.00 Six questions to be answered.

More information

Momentum and Energy. Relativity and Astrophysics Lecture 24 Terry Herter. Energy and Momentum Conservation of energy and momentum

Momentum and Energy. Relativity and Astrophysics Lecture 24 Terry Herter. Energy and Momentum Conservation of energy and momentum Momentum and Energy Relatiity and Astrohysics Lecture 4 Terry Herter Outline Newtonian Physics Energy and Momentum Conseration of energy and momentum Reading Sacetime Physics: Chater 7 Homework: (due Wed.

More information

(a) Find, in terms of a, g and θ, an expression for v 2. (3) (b) Find, in terms of m, g and θ, an expression for T. (4)

(a) Find, in terms of a, g and θ, an expression for v 2. (3) (b) Find, in terms of m, g and θ, an expression for T. (4) 1. A particle P of mass m is attached to one end of a light inextensible string of length a. The other end of the string is fixed at the point O. The particle is initially held with OP horizontal and the

More information

Every object remains in a state of rest or move with constant velocity in a straight line unless forces acts on it to change that state

Every object remains in a state of rest or move with constant velocity in a straight line unless forces acts on it to change that state " NEWONʼS LAW OF MOION NEWONʼS FIRS LAW Newtonʼs First Law of Motion states that: Every object remains in a state of rest or move with constant velocity in a straight line unless forces acts on it to change

More information

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage).

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage). 1 Motion Aristotle s Study Aristotle s Law of Motion This law of motion was based on false assumptions. He believed that an object moved only if something was pushing it. His arguments were based on everyday

More information

OCR Maths M2. Topic Questions from Papers. Collisions

OCR Maths M2. Topic Questions from Papers. Collisions OCR Maths M2 Topic Questions from Papers Collisions 41 Three smooth spheres A, B and C, ofequalradiusandofmassesm kg, 2m kg and 3m kg respectively, lie in a straight line and are free to move on a smooth

More information

A Level. A Level Physics. MECHANICS: Momentum and Collisions (Answers) AQA, Edexcel, OCR. Name: Total Marks: /30

A Level. A Level Physics. MECHANICS: Momentum and Collisions (Answers) AQA, Edexcel, OCR. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA, Edexcel, OCR A Level A Level Physics MECHANICS: Momentum and Collisions (Answers) Name: Total Marks: /30 Maths Made Easy Complete

More information

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Momentum and its relation to force Momentum describes an object s motion. Linear momentum is the product of an object s mass and

More information

Physics 2514 Lecture 26

Physics 2514 Lecture 26 Physics 2514 Lecture 26 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/12 Review We have defined the following using Newton s second law of motion ( F net = d p

More information

Axis. Axis. Axis. Hoop about. Annular cylinder (or ring) about central axis. Solid cylinder (or disk) about. central axis. central axis I = MR 2 1

Axis. Axis. Axis. Hoop about. Annular cylinder (or ring) about central axis. Solid cylinder (or disk) about. central axis. central axis I = MR 2 1 Instructor(s): Matchea/Yelton PHYSICS DEPATMENT PHY 2048 Exam 2 Noember 7th, 207 Name (print, last first): Signature: On my honor, I hae neither gien nor receied unauthorized aid on this examination. YOU

More information

Physics 5A Final Review Solutions

Physics 5A Final Review Solutions Physics A Final Review Solutions Eric Reichwein Department of Physics University of California, Santa Cruz November 6, 0. A stone is dropped into the water from a tower 44.m above the ground. Another stone

More information

APPLIED MATHEMATICS AM 02

APPLIED MATHEMATICS AM 02 AM SYLLABUS (2013) APPLIED MATHEMATICS AM 02 SYLLABUS Applied Mathematics AM 02 Syllabus (Available in September) Paper I (3 hrs)+paper II (3 hrs) Applied Mathematics (Mechanics) Aims A course based on

More information

Created by T. Madas WORK & ENERGY. Created by T. Madas

Created by T. Madas WORK & ENERGY. Created by T. Madas WORK & ENERGY Question (**) A B 0m 30 The figure above shows a particle sliding down a rough plane inclined at an angle of 30 to the horizontal. The box is released from rest at the point A and passes

More information

EF 151 Final Exam - Spring, 2016 Page 1 Copy 1

EF 151 Final Exam - Spring, 2016 Page 1 Copy 1 EF 151 Final Exam - Spring, 016 Page 1 Copy 1 Name: Section: Instructions: Sit in assigned seat; failure to sit in assigned seat results in a 0 for the exam. Put name and section on your exam. Put seating

More information

A Level Maths Notes: M2 Equations for Projectiles

A Level Maths Notes: M2 Equations for Projectiles A Level Maths Notes: M2 Equations for Projectiles A projectile is a body that falls freely under gravity ie the only force acting on it is gravity. In fact this is never strictly true, since there is always

More information

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass, what time would be required to stop a car of mass m traveling

More information

PROPRIETARY MATERIAL.

PROPRIETARY MATERIAL. PROLEM 13.159 To apply shock loading to an artillery shell, a -kg pendulum is released from a known height and strikes impactor at a known elocity. Impactor then strikes the 1-kg artillery shell. Knowing

More information

AP Physics Free Response Practice Oscillations

AP Physics Free Response Practice Oscillations AP Physics Free Response Practice Oscillations 1975B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is drawn aside through

More information

PHYSICS I RESOURCE SHEET

PHYSICS I RESOURCE SHEET PHYSICS I RESOURCE SHEET Cautions and Notes Kinematic Equations These are to be used in regions with constant acceleration only You must keep regions with different accelerations separate (for example,

More information

The Dot Product Pg. 377 # 6ace, 7bdf, 9, 11, 14 Pg. 385 # 2, 3, 4, 6bd, 7, 9b, 10, 14 Sept. 25

The Dot Product Pg. 377 # 6ace, 7bdf, 9, 11, 14 Pg. 385 # 2, 3, 4, 6bd, 7, 9b, 10, 14 Sept. 25 UNIT 2 - APPLICATIONS OF VECTORS Date Lesson TOPIC Homework Sept. 19 2.1 (11) 7.1 Vectors as Forces Pg. 362 # 2, 5a, 6, 8, 10 13, 16, 17 Sept. 21 2.2 (12) 7.2 Velocity as Vectors Pg. 369 # 2,3, 4, 6, 7,

More information

= y(x, t) =A cos (!t + kx)

= y(x, t) =A cos (!t + kx) A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8

More information

APPLIED MATHEMATICS IM 02

APPLIED MATHEMATICS IM 02 IM SYLLABUS (2013) APPLIED MATHEMATICS IM 02 SYLLABUS Applied Mathematics IM 02 Syllabus (Available in September) 1 Paper (3 hours) Applied Mathematics (Mechanics) Aims A course based on this syllabus

More information

Physics 212 / Summer 2009 Name: ANSWER KEY Dr. Zimmerman Ch. 26 Quiz

Physics 212 / Summer 2009 Name: ANSWER KEY Dr. Zimmerman Ch. 26 Quiz Physics 1 / Summer 9 Name: ANSWER KEY h. 6 Quiz As shown, there are three negatie charges located at the corners of a square of side. There is a single positie charge in the center of the square. (a) Draw

More information

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20 Physics Final Exam Mechanics Review Answers 1. Use the velocity-time graph below to find the: a. velocity at 2 s 6 m/s v (m/s) 1 b. acceleration from -2 s 6 c. acceleration from 2-4 s 2 m/s 2 2 4 t (s)

More information