The Dot Product Pg. 377 # 6ace, 7bdf, 9, 11, 14 Pg. 385 # 2, 3, 4, 6bd, 7, 9b, 10, 14 Sept. 25

Size: px
Start display at page:

Download "The Dot Product Pg. 377 # 6ace, 7bdf, 9, 11, 14 Pg. 385 # 2, 3, 4, 6bd, 7, 9b, 10, 14 Sept. 25"

Transcription

1 UNIT 2 - APPLICATIONS OF VECTORS Date Lesson TOPIC Homework Sept (11) 7.1 Vectors as Forces Pg. 362 # 2, 5a, 6, 8, 10 13, 16, 17 Sept (12) 7.2 Velocity as Vectors Pg. 369 # 2,3, 4, 6, 7, 9, 11, 12 Sept (13) 7.3/ 7.4 The Dot Product Pg. 377 # 6ace, 7bdf, 9, 11, 14 Pg. 385 # 2, 3, 4, 6bd, 7, 9b, 10, 14 Sept (14) 7.6 The Cross Product Pg. 407 # 3, 4ace, 5, 7, 8a, 9b, 11 Sept (15) 7.5 Scalar and Vector Projections Pg. 398 # 6, 7ac, 8a, 11, 13 Sept (16) 7.7 Applications of The Dot and Cross Product Pg. 414 # 1, 2,3, 5, 6, 8 Sept (17) Reiew for Unit 2 Test Pg. 418 # 1, 3, 4, 6, , 15, 17, 20, 23, 30, 31, 34 Oct (18) TEST- UNIT 2

2 MCV 4U Lesson 2.1 Vectors as Forces A force can be described as a push or a pull on an object. It is measured in Newtons (N). To describe a force it is necessary to state: 1. its direction 2. the point at which it is applied 3. its magnitude 40 N.P 30 N The diagram shows 40 N and 30 N forces acting in opposite directions at point P. The combined effect of these two forces as a 10 N force to the left. This single force that has the same combined effect as two forces combined is called the resultant. The equilibrant is the opposite force that would exactly counterbalance the resultant force. In this case the equilibrant force would be a 10 N force to the right.

3 Ex. 1 Two horses are pulling a load. The chains between them are at an angle of 45 to each other. One horse pulls with a force of 260 N, the other with a force of 320 N. a) What is the magnitude of the resultant force on the load? In what direction is this force? b) What is the magnitude of the equilibrant force on the load? In what direction is this force? Ex. 2 A sign is suspended in the lobby of GHS by two wires making angles with the ceiling of 50 and 30. If the sign weighs 2 kg, find the tensions (forces) acting in the wires. Proide an accurate ector diagram. N.B. The magnitude of a force is measured in Newtons (N). At the earth's surface, acceleration due to graity is approximately 9.8 m/s 2. Force = Mass acceleration due to graity (where mass is measured in kg) When calculating the force we use the constant 9.8.

4 Ex. 3 A lawn mower is pushed with a force of 90 N directed along the handle, which makes an angle of 36 with the ground. a) Determine the horizontal and ertical components of the force on the mower. b) Describe the physical consequence of each component of the pushing force.

5 Ex. Find the resultant of the ectors below. Pg. 362 # 2, 5a, 6, 8, 10 13, 15-17

6 MCV 4U Lesson 2.2 Velocity as a Vector Since elocity has direction it can be represented by a ector. When a plane flies, its elocity relatie to the earth (ground elocity) is the resultant of (1) the plane's elocity through the air (air elocity) and (2) the elocity of the wind. g a w Relatie Velocity The elocity of an object is its elocity relatie to the frame of reference of some obserer in a gien situation. ie: 80 km/h Bus WEST 100 km/h Car EAST 90 km/h Truck To someone in the bus the car is passing at 20 km/h. the elocity of the car relatie to the bus is 20 km/h east. The elocity of the truck relatie to the car is 190 km/h west. Thus we hae the principle: Velocity of A relatie to B = Velocity of A elocity of B Ex. 1 A plane is steering at N60 E at an airspeed of 450 km/h. The wind is from the N50 W at 75km/h. Determine the planes ground elocity.

7 Ex. 2 A canoeist who can paddle at 4 km/h in still water wants to cross a 500 m wide rier that has a current of 1 km/h. a) If he steers the canoe in a direction perpendicular to the current, determine theresultant elocity and the point on the opposite bank where he lands. b) If he had wished to trael straight across the rier, determine the direction in which he must head and the time it takes to cross the rier. Pg. 369 # 2,3, 4, 6, 7, 9, 11, 12

8 MCV 4U Lesson 2.3 The Dot Product Ex. 1 Find the angle between ectors u (3, 1) and (2, 5). (2, 5) Pg. 377 # 6ace, 7bdf, 9, 11, 14 Pg. 385 # 2, 3, 4, 6bd, 7, 9b, 10, 14 w u (3, 1) We can define the dot product of two algebraic ectors u and as u u cos, where is the angle between u and and u u 1 1 u 2 2 when in component form. ie: u (u 1, u 2 ) and ( 1, 2 ). Similarly, if u (u 1, u 2, u 3 ) and ( 1, 2, 3 ) then u u 1 1 u 2 2 u 3 3 The dot product of two ectors is a scalar quantity, so it is sometimes called the scalar product. Ex. 2 Find u for each of the following. a) u (1,3), ( 2,5) b) u ( 4,2, 3), (2, 3, 1)

9 If we want to find the angle between two ectors, we can use cos u u. Ex. 3 Find between the following pair of ectors. a) u ( 2,5), (3,6) b) u (1,1,2) ( 1,2,1) Ex. 4 Find u in each of the following cases. a) u 6, 8, 60 b) u 3, 12, 6 c) u 2, 9, 20 OTHER THINGS TO CONSIDER: Properties of the Dot Product: 1. Associatie: a(u ) (au ) u (a ) 2. Distributie: u ( w) u u w 3. u u u 2, since u u u u cos0 u u (1) u 2 Also, consider the dot product of unit ectors. i i 1 j j 1 k k 1 i j j i 0 i k k i 0 j k k j 0 Examples: 3. If u (1,2,3) 2. If a (1,2) b (3,4) c (5,6) 2 u u u Distributie Property:

10 MCV 4U Lesson 2.4 The Cross Product The cross product is a ector quantity unlike the dot product, which is a scalar quantity. As a result, the cross product is also known as the ector product. For ectors u and, we define the cross product as: u u sin n where us the angle between u and, n is a unit ector perpendicular to both u and such that u, and n form a right handed system as indicated below. 1. Place ectors tail to tail. 2. Place right hand along first ector u with fingers extended in the direction of the ector. 3. Curl the fingers in the direction of the angle that makes with u 4. Thumb gies direction of u. The magnitude of the cross product of two ectors u and is u u sin. For non-zero ectors u and, u and are collinear iff u 0 u The properties of the cross product are similar to those of the dot product. 1. u ( w ) u u w 2. (u ) w u w w 3. ku k(u ) u (k ) 4. a a 0 The cross product in component form, where u = u, u, ) and =,, ) is gien by: u (u 2 3 u 3 2,u 3 1 u 1 3,u 1 2 u 2 1 ) ( 1 2 u3 ( If u and are two non-collinear ectors in three-dimensional space, then eery ector perpendicular to both u and is in the form k(u ), k R. For the unit ectors i, j, and k, we hae the following results. i i 0 i j k j i k j j 0 j k i k j i k k 0 k i j i k j NOTE: u u

11 Ex. 1 For the following pairs of ectors, state whether u is directed into or out of the page. u u u Ex. 2 Find a ector which is perpendicular to both u = (1, 2, 3) and = (3, 4, 5). Ex. 3 u = 5 and = 11 and the angle between them is 85. Determine u. Ex. 4 Find the cross product of a 2i 4 j 3k and b 7i 3 j k. Pg. 407 # 3, 4ace, 5, 7, 8a, 9b, 11

12 MCV 4U Lesson 2.5 Scalar and Vector Projections I. Scalar Projections: For ectors u and, 0, proj u u cos and u scalar proj(u onto ) ie: cos adj hyp cos Projection u Projection = u cos We know that u u cos. We can rewrite this formula as u u cos Soling for u cos gies u cos = u. So, the Scalar Projection of u onto = u and the Scalar Projection of onto u = u u In general, u u u II. Vector Projections: A projection is formed by dropping a perpendicular from each point in an object onto a line or plane. A shadow is a projection if the light rays forming the shadow meet a line or plane at right angles. A projection is a ector. Used in physics, computer programming and astronomy to determine the lengths of "shadows" projected onto a surface. The ector we obtain by projecting u perpendicularly onto the line through is called the ector projection of u onto and is denoted proj(u onto ) or proj u. For ectors u and, 0, proj u u cos ( ) u where is a unit ector in the direction of and Vector proj(u onto )

13 If the ectors are not tail to tail, drop perpendiculars from the tail and the tip of u to meet at O and P and OP is the projection of u onto. proj u u cos or we hae: O Magnitude ector proj(u onto ) P u 2 Vector proj( u onto ) = [ Scalar proj( u onto )]( ector ˆ )] u = = ( u ) (u ) 2 = u III. Direction Cosines Any ector u in space can be written as an ordered triple where u OP (a,b,c) and where a, b, and c are its x-, y-, and z-components. The ector u in space can also be written using the ectors i ˆ, jˆ, and k, where i j and k ˆ, ˆ, are unit ectors along the x-, y-, and z-axes, respectiely. î = (1, 0, 0) ĵ = (0, 1, 0) k = (0, 0, 1) u OP = a î + b ĵ + c k Its magnitude is gien by u a b c To plot a ector in space, you moe a units along the x-axis, then b units parallel to the y-axis, and then c units parallel to the z-axis. Drawing a rectangular prism (box) is often helpful when doing this. The direction angles of a ector (a, b, c) are the angles,, and that the ectors make with the positie x-, y-, and z-axes, respectiely, where 0,, 180 The direction cosines of a ector u are the cosines of the direction angles,, and where cos = a u, cos = b u, cos = c u., where u a b c. Thus the direction cosines are the components of a unit ector. cos 2 + cos 2 + cos 2 = 1

14 Ex. 1 Find the ector proj(b onto a ) gien: a) a ( 4, 2) b (3,1) b) a ( 1,3,6) b ( 2,1, 3) Ex. 2 Find the scalar projections of a onto b and b onto a if a = (2, 1, 9) and b = ( 3, 0, 4). Ex 3. Find the direction cosines and the direction angles of the ector u - (2, 3, -4). Pg. 398 # 6, 7ac, 8a, 11, 13

15 MCV 4U Lesson 2.6 Applications of the Dot Product and Cross Product I. Forces A: Work B: Torque (Moment of force) - is a measure of how much a force acting on an object causes that object to rotate. The turning effect of a force is called torque and is defined by the cross product. T r F r F sin (n ) where F is the applied force, r is the ector determined by the leer arm acting from the axis of rotation, is the angle between the force and the leer arm and n is a unit ector perpendicular to both r and F. Torque is a ector quantity and is measured in Newton-metres (N m). While it is dimensionally correct to express joules as Newton-metres or N m, such use is discouraged by the SI authority to aoid confusion with torque. Torque and energy are fundamentally different physical quantities. For example, adding 1 N m of torque to 1 N m of energy gies a dimensionally consistent result of 2 N m, but this quantity is physically meaningless.

16 One joule in eeryday life is approximately: the energy required to lift a small apple one meter straight up. the energy released when that same apple falls one meter to the ground. the energy released as heat by a person at rest, eery hundredth of a second. one hundredth of the energy a person can receie by drinking a drop of beer. the kinetic energy of an adult human moing at a speed of about a handspan eery second. the kinetic energy of a tennis ball moing at 23 km/h (14 mph).

17 III. Area and Volume of a parallelogram or triangle formed by ectors a and b. Area of a Parallelogram Area of a Triangle = 1 (Area of a Parallelogram) 2 a h a sin a b Area = base x height b a sin b a b = 1 2 b a Volume of a Parallelepiped c b a A parallelepiped is a six faced solid where the opposite faces are congruent parallelograms. Let a, b, and c be the three sides as shown. Volume area of base height a b height This is a triple scalar product. If the triple scalar product of three ectors is zero the ectors are coplanar. Therefore the parallelepiped is flat and has a zero olume. Now the height of the figure is the distance between the upper and lower faces. a b will gie us a ector perpendicular to the plane containing a and b. The height will be the magnitude of the projection of c onto ( a b ). Volume a b height a b proj[ c onto ( a b)] c ( a b) a b a b c ( a b)

18 Ex. 1 A crate on a ramp is hauled 10 m up the ramp under a constant force of 35 N applied at an angle of 25 to the ramp. Find the work done. Ex. 2 A 75 N force is applied to the end of a 0.3 m long wrench and makes an angle of 70 with the handle. What is the torque on the bolt at the other end of the wrench? Pg. 414 # 1, 2,3, 5, 6, 8

Unit 1 Representing and Operations with Vectors. Over the years you have come to accept various mathematical concepts or properties:

Unit 1 Representing and Operations with Vectors. Over the years you have come to accept various mathematical concepts or properties: Lesson1.notebook November 27, 2012 Algebra Unit 1 Representing and Operations with Vectors Over the years you have come to accept various mathematical concepts or properties: Communative Property Associative

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

6.1.1 Angle between Two Lines Intersection of Two lines Shortest Distance from a Point to a Line

6.1.1 Angle between Two Lines Intersection of Two lines Shortest Distance from a Point to a Line CHAPTER 6 : VECTORS 6. Lines in Space 6.. Angle between Two Lines 6.. Intersection of Two lines 6..3 Shortest Distance from a Point to a Line 6. Planes in Space 6.. Intersection of Two Planes 6.. Angle

More information

CHAPTER 3 : VECTORS. Definition 3.1 A vector is a quantity that has both magnitude and direction.

CHAPTER 3 : VECTORS. Definition 3.1 A vector is a quantity that has both magnitude and direction. EQT 101-Engineering Mathematics I Teaching Module CHAPTER 3 : VECTORS 3.1 Introduction Definition 3.1 A ector is a quantity that has both magnitude and direction. A ector is often represented by an arrow

More information

(arrows denote positive direction)

(arrows denote positive direction) 12 Chapter 12 12.1 3-dimensional Coordinate System The 3-dimensional coordinate system we use are coordinates on R 3. The coordinate is presented as a triple of numbers: (a,b,c). In the Cartesian coordinate

More information

Introduction to Vectors Pg. 279 # 1 6, 8, 9, 10 OR WS 1.1 Sept. 7. Vector Addition Pg. 290 # 3, 4, 6, 7, OR WS 1.2 Sept. 8

Introduction to Vectors Pg. 279 # 1 6, 8, 9, 10 OR WS 1.1 Sept. 7. Vector Addition Pg. 290 # 3, 4, 6, 7, OR WS 1.2 Sept. 8 UNIT 1 INTRODUCTION TO VECTORS Lesson TOPIC Suggested Work Sept. 5 1.0 Review of Pre-requisite Skills Pg. 273 # 1 9 OR WS 1.0 Fill in Info sheet and get permission sheet signed. Bring in $3 for lesson

More information

5. A triangle has sides represented by the vectors (1, 2) and (5, 6). Determine the vector representing the third side.

5. A triangle has sides represented by the vectors (1, 2) and (5, 6). Determine the vector representing the third side. Vectors EXAM review Problem 1 = 8 and = 1 a) Find the net force, assume that points North, and points East b) Find the equilibrant force 2 = 15, = 7, and the angle between and is 60 What is the magnitude

More information

Unit 11: Vectors in the Plane

Unit 11: Vectors in the Plane 135 Unit 11: Vectors in the Plane Vectors in the Plane The term ector is used to indicate a quantity (such as force or elocity) that has both length and direction. For instance, suppose a particle moes

More information

2-9. The plate is subjected to the forces acting on members A and B as shown. If θ = 60 o, determine the magnitude of the resultant of these forces

2-9. The plate is subjected to the forces acting on members A and B as shown. If θ = 60 o, determine the magnitude of the resultant of these forces 2-9. The plate is subjected to the forces acting on members A and B as shown. If θ 60 o, determine the magnitude of the resultant of these forces and its direction measured clockwise from the positie x

More information

Physics 1: Mechanics

Physics 1: Mechanics Physics 1: Mechanics Đào Ngọc Hạnh Tâm Office: A1.53, Email: dnhtam@hcmiu.edu.n HCMIU, Vietnam National Uniersity Acknowledgment: Most of these slides are supported by Prof. Phan Bao Ngoc credits (3 teaching

More information

Note: the net distance along the path is a scalar quantity its direction is not important so the average speed is also a scalar.

Note: the net distance along the path is a scalar quantity its direction is not important so the average speed is also a scalar. PHY 309 K. Solutions for the first mid-term test /13/014). Problem #1: By definition, aerage speed net distance along the path of motion time. 1) ote: the net distance along the path is a scalar quantity

More information

6.3 Vectors in a Plane

6.3 Vectors in a Plane 6.3 Vectors in a Plane Plan: Represent ectors as directed line segments. Write the component form of ectors. Perform basic ector operations and represent ectors graphically. Find the direction angles of

More information

BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14.

BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14. For problems 9 use: u (,3) v (3, 4) s (, 7). w =. 3u v = 3. t = 4. 7u = u w (,3,5) 5. wt = t (,, 4) 6. Find the measure of the angle between w and t to the nearest degree. 7. Find the unit vector having

More information

Physics 4A Solutions to Chapter 4 Homework

Physics 4A Solutions to Chapter 4 Homework Physics 4A Solutions to Chapter 4 Homework Chapter 4 Questions: 4, 1, 1 Exercises & Problems: 5, 11, 3, 7, 8, 58, 67, 77, 87, 11 Answers to Questions: Q 4-4 (a) all tie (b) 1 and tie (the rocket is shot

More information

Vectors in R n. P. Danziger

Vectors in R n. P. Danziger 1 Vectors in R n P. Danziger 1 Vectors The standard geometric definition of ector is as something which has direction and magnitude but not position. Since ectors hae no position we may place them whereer

More information

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors)

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors) MOTION IN -DIMENSION (Projectile & Circular motion nd Vectors) INTRODUCTION The motion of an object is called two dimensional, if two of the three co-ordinates required to specif the position of the object

More information

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017 These notes are seen pages. A quick summary: Projectile motion is simply horizontal motion at constant elocity with ertical motion at constant acceleration. An object moing in a circular path experiences

More information

12.1 Three Dimensional Coordinate Systems (Review) Equation of a sphere

12.1 Three Dimensional Coordinate Systems (Review) Equation of a sphere 12.2 Vectors 12.1 Three Dimensional Coordinate Systems (Reiew) Equation of a sphere x a 2 + y b 2 + (z c) 2 = r 2 Center (a,b,c) radius r 12.2 Vectors Quantities like displacement, elocity, and force inole

More information

The Cross Product. In this section, we will learn about: Cross products of vectors and their applications.

The Cross Product. In this section, we will learn about: Cross products of vectors and their applications. The Cross Product In this section, we will learn about: Cross products of vectors and their applications. THE CROSS PRODUCT The cross product a x b of two vectors a and b, unlike the dot product, is a

More information

Applications of Forces

Applications of Forces Chapter 10 Applications of orces Practice Problem Solutions Student Textbook page 459 1. (a) rame the Problem - Make a sketch of the ector. - The angle is between 0 and 90 so it is in the first quadrant.

More information

MAT 1339-S14 Class 8

MAT 1339-S14 Class 8 MAT 1339-S14 Class 8 July 28, 2014 Contents 7.2 Review Dot Product........................... 2 7.3 Applications of the Dot Product..................... 4 7.4 Vectors in Three-Space.........................

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-1D Spring 013 Motion in Two and Three Dimensions Lectures 5,6,7 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

DO PHYSICS ONLINE. WEB activity: Use the web to find out more about: Aristotle, Copernicus, Kepler, Galileo and Newton.

DO PHYSICS ONLINE. WEB activity: Use the web to find out more about: Aristotle, Copernicus, Kepler, Galileo and Newton. DO PHYSICS ONLINE DISPLACEMENT VELOCITY ACCELERATION The objects that make up space are in motion, we moe, soccer balls moe, the Earth moes, electrons moe, - - -. Motion implies change. The study of the

More information

2008 FXA THREE FORCES IN EQUILIBRIUM 1. Candidates should be able to : TRIANGLE OF FORCES RULE

2008 FXA THREE FORCES IN EQUILIBRIUM 1. Candidates should be able to : TRIANGLE OF FORCES RULE THREE ORCES IN EQUILIBRIUM 1 Candidates should be able to : TRIANGLE O ORCES RULE Draw and use a triangle of forces to represent the equilibrium of three forces acting at a point in an object. State that

More information

Linear Momentum and Collisions Conservation of linear momentum

Linear Momentum and Collisions Conservation of linear momentum Unit 4 Linear omentum and Collisions 4.. Conseration of linear momentum 4. Collisions 4.3 Impulse 4.4 Coefficient of restitution (e) 4.. Conseration of linear momentum m m u u m = u = u m Before Collision

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-A Fall 014 Motion in Two and Three Dimensions Lectures 4,5 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

different formulas, depending on whether or not the vector is in two dimensions or three dimensions.

different formulas, depending on whether or not the vector is in two dimensions or three dimensions. ectors The word ector comes from the Latin word ectus which means carried. It is best to think of a ector as the displacement from an initial point P to a terminal point Q. Such a ector is expressed as

More information

A vector in the plane is directed line segment. The directed line segment AB

A vector in the plane is directed line segment. The directed line segment AB Vector: A ector is a matrix that has only one row then we call the matrix a row ector or only one column then we call it a column ector. A row ector is of the form: a a a... A column ector is of the form:

More information

Would you risk your live driving drunk? Intro

Would you risk your live driving drunk? Intro Martha Casquete Would you risk your lie driing drunk? Intro Motion Position and displacement Aerage elocity and aerage speed Instantaneous elocity and speed Acceleration Constant acceleration: A special

More information

sin! =! d y =! d T ! d y = 15 m = m = 8.6 m cos! =! d x ! d x ! d T 2 =! d x 2 +! d y =! d x 2 +! d y = 27.2 m = 30.0 m tan! =!

sin! =! d y =! d T ! d y = 15 m = m = 8.6 m cos! =! d x ! d x ! d T 2 =! d x 2 +! d y =! d x 2 +! d y = 27.2 m = 30.0 m tan! =! Section. Motion in Two Dimensions An Algebraic Approach Tutorial 1 Practice, page 67 1. Gien d 1 = 7 m [W]; d = 35 m [S] Required d T Analysis d T = d 1 + d Solution Let φ represent the angle d T with

More information

Vectors. Examples of vectors include: displacement, velocity, acceleration, and force. Examples of scalars include: distance, speed, time, and volume.

Vectors. Examples of vectors include: displacement, velocity, acceleration, and force. Examples of scalars include: distance, speed, time, and volume. Math 150 Prof. Beydler 7.4/7.5 Notes Page 1 of 6 Vectors Suppose a car is heading NE (northeast) at 60 mph. We can use a vector to help draw a picture (see right). v A vector consists of two parts: 1.

More information

JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle

JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle Angular elocity 1 (a) Define the radian. [1] (b) Explain what is meant by the term angular elocity. [1] (c) Gie the angular elocity

More information

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem WEEK-6 Recitation PHYS 3 FOCUS ON CONCEPTS Section 7. The Impulse Momentum Theorem Mar, 08. Two identical cars are traeling at the same speed. One is heading due east and the other due north, as the drawing

More information

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2)

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2) Dynamics ( 동역학 ) Ch. Motion of Translating Bodies (. &.) Motion of Translating Bodies This chapter is usually referred to as Kinematics of Particles. Particles: In dynamics, a particle is a body without

More information

Chapter 6 REVIEW. 6.1 Introduction to Vectors. 6.3 Multiplying a Vector by a Scalar. 6.2 Addition and Subtraction of Vectors

Chapter 6 REVIEW. 6.1 Introduction to Vectors. 6.3 Multiplying a Vector by a Scalar. 6.2 Addition and Subtraction of Vectors Chapter 6 REVIEW 6.1 Introduction to Vectors 1. For which of the following situations would a vector be a suitable mathematical model? Provide a reason for your decision. a) A car is travelling at 70 km/h

More information

6. Vectors. Given two points, P 0 = (x 0, y 0 ) and P 1 = (x 1, y 1 ), a vector can be drawn with its foot at P 0 and

6. Vectors. Given two points, P 0 = (x 0, y 0 ) and P 1 = (x 1, y 1 ), a vector can be drawn with its foot at P 0 and 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

(a)!! d = 17 m [W 63 S]!! d opposite. (b)!! d = 79 cm [E 56 N] = 79 cm [W 56 S] (c)!! d = 44 km [S 27 E] = 44 km [N 27 W] metres. 3.

(a)!! d = 17 m [W 63 S]!! d opposite. (b)!! d = 79 cm [E 56 N] = 79 cm [W 56 S] (c)!! d = 44 km [S 27 E] = 44 km [N 27 W] metres. 3. Chapter Reiew, pages 90 95 Knowledge 1. (b). (d) 3. (b) 4. (a) 5. (b) 6. (c) 7. (c) 8. (a) 9. (a) 10. False. A diagram with a scale of 1 cm : 10 cm means that 1 cm on the diagram represents 10 cm in real

More information

7.3. Applications of the Dot Product. Solution. Find the Angle Between Two Vectors. Solution

7.3. Applications of the Dot Product. Solution. Find the Angle Between Two Vectors. Solution 7.3 Applications of the Dot Product The dot product has many applications in mathematics and science. Finding the work done, determining the angle between two vectors, and finding the projection of one

More information

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14 Centripetal force Objecties Describe and analyze the motion of objects moing in circular motion. Apply Newton s second law to circular motion problems. Interpret free-body force diagrams. 1. A race car

More information

Roberto s Notes on Linear Algebra Chapter 1: Geometric vectors Section 8. The dot product

Roberto s Notes on Linear Algebra Chapter 1: Geometric vectors Section 8. The dot product Roberto s Notes on Linear Algebra Chapter 1: Geometric ectors Section 8 The dot product What you need to know already: What a linear combination of ectors is. What you can learn here: How to use two ectors

More information

8.0 Definition and the concept of a vector:

8.0 Definition and the concept of a vector: Chapter 8: Vectors In this chapter, we will study: 80 Definition and the concept of a ector 81 Representation of ectors in two dimensions (2D) 82 Representation of ectors in three dimensions (3D) 83 Operations

More information

Quantities which have only magnitude are called scalars. Quantities which have magnitude and direction are called vectors.

Quantities which have only magnitude are called scalars. Quantities which have magnitude and direction are called vectors. Vectors summary Quantities which have only magnitude are called scalars. Quantities which have magnitude and direction are called vectors. AB is the position vector of B relative to A and is the vector

More information

VISUAL PHYSICS ONLINE THE LANGUAGE OF PHYSICS SCALAR AND VECTORS

VISUAL PHYSICS ONLINE THE LANGUAGE OF PHYSICS SCALAR AND VECTORS VISUAL PHYSICS ONLINE THE LANGUAGE OF PHYSICS SCALAR AND VECTORS SCALAR QUANTITES Physical quantities that require only a number and a unit for their complete specification are known as scalar quantities.

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Field/Furic PHYSICS DEPARTENT PHY 2053 Exam 1 October 5, 2011 Name (print, last first): Signature: On my honor, I hae neither gien nor receied unauthorized aid on this examination. YOUR

More information

LINEAR ALGEBRA. and VECTOR GEOMETRY Volume 2 of 2 September 2014 edition

LINEAR ALGEBRA. and VECTOR GEOMETRY Volume 2 of 2 September 2014 edition LINEAR ALGEBRA and VECTOR GEOMETRY Volume 2 of 2 September 2014 edition Because the book is so large, the entire Linear Algebra course has been split into two olumes. Grant Skene for Grant s Tutoring (www.grantstutoring.com)

More information

Spring 2010 Physics 141 Practice Exam II Phy141_mt1b.pdf

Spring 2010 Physics 141 Practice Exam II Phy141_mt1b.pdf 1. (15 points) You are given two vectors: A has length 10. and an angle of 60. o (with respect to the +x axis). B has length 10. and an angle of 200. o (with respect to the +x axis). a) Calculate the components

More information

DISPLACEMENT AND FORCE IN TWO DIMENSIONS

DISPLACEMENT AND FORCE IN TWO DIMENSIONS DISPLACEMENT AND FORCE IN TWO DIMENSIONS Vocabulary Review Write the term that correctly completes the statement. Use each term once. coefficient of kinetic friction equilibrant static friction coefficient

More information

Physics Department Tutorial: Motion in a Circle (solutions)

Physics Department Tutorial: Motion in a Circle (solutions) JJ 014 H Physics (9646) o Solution Mark 1 (a) The radian is the angle subtended by an arc length equal to the radius of the circle. Angular elocity ω of a body is the rate of change of its angular displacement.

More information

Feb 6, 2013 PHYSICS I Lecture 5

Feb 6, 2013 PHYSICS I Lecture 5 95.141 Feb 6, 213 PHYSICS I Lecture 5 Course website: faculty.uml.edu/pchowdhury/95.141/ www.masteringphysics.com Course: UML95141SPRING213 Lecture Capture h"p://echo36.uml.edu/chowdhury213/physics1spring.html

More information

VIII - Geometric Vectors

VIII - Geometric Vectors MTHEMTIS 0-NY-05 Vectors and Matrices Martin Huard Fall 07 VIII - Geometric Vectors. Find all ectors in the following parallelepiped that are equialent to the gien ectors. E F H G a) b) c) d) E e) f) F

More information

Forces and Newton s Laws Notes

Forces and Newton s Laws Notes Forces and Newton s Laws Notes Force An action exerted on an object which can change the motion of the object. The SI unit for force is the Newton (N) o N = (kg m)/s 2 o Pound is also a measure of force

More information

CHAPTER 3: Kinematics in Two Dimensions; Vectors

CHAPTER 3: Kinematics in Two Dimensions; Vectors HAPTER 3: Kinematics in Two Dimensions; Vectors Solution Guide to WebAssign Problems 3.1 [] The truck has a displacement of 18 + (16) blocks north and 1 blocks east. The resultant has a magnitude of +

More information

Figure 17.1 The center of mass of a thrown rigid rod follows a parabolic trajectory while the rod rotates about the center of mass.

Figure 17.1 The center of mass of a thrown rigid rod follows a parabolic trajectory while the rod rotates about the center of mass. 17.1 Introduction A body is called a rigid body if the distance between any two points in the body does not change in time. Rigid bodies, unlike point masses, can have forces applied at different points

More information

Status: Unit 2, Chapter 3

Status: Unit 2, Chapter 3 1 Status: Unit, Chapter 3 Vectors and Scalars Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication by a Scalar Adding Vectors by Components Unit Vectors Vector Kinematics Projectile

More information

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s),

(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s), Chapter 4 Student Solutions Manual. We apply Eq. 4- and Eq. 4-6. (a) Taking the deriatie of the position ector with respect to time, we hae, in SI units (m/s), d ˆ = (i + 4t ˆj + tk) ˆ = 8tˆj + k ˆ. dt

More information

VECTORS REVIEW NAME:

VECTORS REVIEW NAME: VECTORS REVIEW NAME: 1. The vector diagram below represents two forces, F 1 and F 2 simultaneously acting on an object. Which vector best represents the resultant of the two forces? 2. A child walks 5.0

More information

Chapter 8 Vector applications

Chapter 8 Vector applications MC Qld- 5 Vector applications Chapter Vector applications Exercise A Force diagrams and the triangle of forces a F ( F + F ) (4 + ) i ( + 4 ) F (4 + ) + ( + 4 ) 6 + 4 + 7 + 9 + 4 + 4 c d a 00 + 4.5 ( +

More information

LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC Concurrent forces are those forces whose lines of action

LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC Concurrent forces are those forces whose lines of action LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC 107 1. Concurrent forces are those forces whose lines of action 1. Meet on the same plane 2. Meet at one point 3. Lie

More information

UNIT-05 VECTORS. 3. Utilize the characteristics of two or more vectors that are concurrent, or collinear, or coplanar.

UNIT-05 VECTORS. 3. Utilize the characteristics of two or more vectors that are concurrent, or collinear, or coplanar. UNIT-05 VECTORS Introduction: physical quantity that can be specified by just a number the magnitude is known as a scalar. In everyday life you deal mostly with scalars such as time, temperature, length

More information

Pearson Physics Level 20 Unit I Kinematics: Chapter 2 Solutions

Pearson Physics Level 20 Unit I Kinematics: Chapter 2 Solutions Pearson Phsics Leel 0 Unit I Kinematics: Chapter Solutions Student Book page 71 Skills Practice Students answers will ar but ma consist of: (a) scale 1 cm : 1 m; ector will be 5 cm long scale 1 m forward

More information

BELLWORK feet

BELLWORK feet BELLWORK 1 A hot air balloon is being held in place by two people holding ropes and standing 35 feet apart. The angle formed between the ground and the rope held by each person is 40. Determine the length

More information

So now that we ve mentioned these terms : kinetic, potential, work we should try to explain them more. Let s develop a model:

So now that we ve mentioned these terms : kinetic, potential, work we should try to explain them more. Let s develop a model: Lecture 12 Energy e are now at the point where we can talk about one of the most powerful tools in physics, energy. Energy is really an abstract concept. e hae indicators of energy (temperature, elocity

More information

Math 425 Lecture 1: Vectors in R 3, R n

Math 425 Lecture 1: Vectors in R 3, R n Math 425 Lecture 1: Vectors in R 3, R n Motiating Questions, Problems 1. Find the coordinates of a regular tetrahedron with center at the origin and sides of length 1. 2. What is the angle between the

More information

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1 Monday, October 17, 011 Page: 1 Q1. 1 b The speed-time relation of a moving particle is given by: v = at +, where v is the speed, t t + c is the time and a, b, c are constants. The dimensional formulae

More information

PHYS 100: Lecture 3. r r r VECTORS. RELATIVE MOTION in 2-D. uuur uur uur SG S W. B y j x x x C B. A y j. A x i. B x i. v W. v S.

PHYS 100: Lecture 3. r r r VECTORS. RELATIVE MOTION in 2-D. uuur uur uur SG S W. B y j x x x C B. A y j. A x i. B x i. v W. v S. PHYS 100: Lecture 3 VECTORS A C B r r r C = A + B j i A i C B i B y j A y j C = A + B C = A + B y y y RELATIVE MOTION in 2- W S W W S SG uuur uur uur = + SG S W Physics 100 Lecture 3, Slide 1 Who is the

More information

27 ft 3 adequately describes the volume of a cube with side 3. ft F adequately describes the temperature of a person.

27 ft 3 adequately describes the volume of a cube with side 3. ft F adequately describes the temperature of a person. VECTORS The stud of ectors is closel related to the stud of such phsical properties as force, motion, elocit, and other related topics. Vectors allow us to model certain characteristics of these phenomena

More information

Vectors. Example: Example: 2 cm. Parts of a vector: 3 cm. Body / Line Segment. Tail / Toe. Tip / Head

Vectors. Example: Example: 2 cm. Parts of a vector: 3 cm. Body / Line Segment. Tail / Toe. Tip / Head Vectors The study of motion involves the introduction of a variety of quantities which are used to describe the physical world. Examples of such quantities include distance, displacement, speed, velocity,

More information

Scalar multiplication and algebraic direction of a vector

Scalar multiplication and algebraic direction of a vector Roberto s Notes on Linear Algebra Chapter 1: Geometric ectors Section 5 Scalar multiplication and algebraic direction of a ector What you need to know already: of a geometric ectors. Length and geometric

More information

Congruence Axioms. Data Required for Solving Oblique Triangles

Congruence Axioms. Data Required for Solving Oblique Triangles Math 335 Trigonometry Sec 7.1: Oblique Triangles and the Law of Sines In section 2.4, we solved right triangles. We now extend the concept to all triangles. Congruence Axioms Side-Angle-Side SAS Angle-Side-Angle

More information

CHAPTER 2: VECTOR COMPONENTS DESCRIBE MOTION IN TWO DIMENSIONS

CHAPTER 2: VECTOR COMPONENTS DESCRIBE MOTION IN TWO DIMENSIONS CHAPTER 2: VECTOR COMPOETS DESCRIBE MOTIO I TWO DIMESIOS 2.1 Vector Methods in One Dimension Vectors may be pictured with sketches in which arrows represent quantities such as displacement, force and velocity.

More information

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv Solution to HW#7 CJ57.CQ.003. RASONNG AND SOLUTON a. Yes. Momentum is a ector, and the two objects hae the same momentum. This means that the direction o each object s momentum is the same. Momentum is

More information

1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below.

1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below. Name Vectors Practice 1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below. What additional force, when applied to the object, will establish

More information

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its. Fry Texas A&M University Fall 2016 Math 150 Notes Chapter 9 Page 248 Chapter 9 -- Vectors Remember that is the set of real numbers, often represented by the number line, 2 is the notation for the 2-dimensional

More information

Physics 2A Chapter 4: Forces and Newton s Laws of Motion

Physics 2A Chapter 4: Forces and Newton s Laws of Motion Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will

More information

Applications of Trigonometry and Vectors. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Applications of Trigonometry and Vectors. Copyright 2017, 2013, 2009 Pearson Education, Inc. 7 Applications of Trigonometry and Vectors Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 7.4 Geometrically Defined Vectors and Applications Basic Terminology The Equilibrant Incline Applications

More information

Definitions In physics we have two types of measurable quantities: vectors and scalars.

Definitions In physics we have two types of measurable quantities: vectors and scalars. 1 Definitions In physics we have two types of measurable quantities: vectors and scalars. Scalars: have magnitude (magnitude means size) only Examples of scalar quantities include time, mass, volume, area,

More information

9.4 Polar Coordinates

9.4 Polar Coordinates 9.4 Polar Coordinates Polar coordinates uses distance and direction to specify a location in a plane. The origin in a polar system is a fixed point from which a ray, O, is drawn and we call the ray the

More information

Motion In Two Dimensions. Vectors in Physics

Motion In Two Dimensions. Vectors in Physics Motion In Two Dimensions RENE DESCARTES (1736-1806) GALILEO GALILEI (1564-1642) Vectors in Physics All physical quantities are either scalars or ectors Scalars A scalar quantity has only magnitude. In

More information

Chapter 1. Units, Physical Quantities, and Vectors

Chapter 1. Units, Physical Quantities, and Vectors Chapter 1 Units, Physical Quantities, and Vectors 1.3 Standards and Units The metric system is also known as the S I system of units. (S I! Syst me International). A. Length The unit of length in the metric

More information

Math 144 Activity #9 Introduction to Vectors

Math 144 Activity #9 Introduction to Vectors 144 p 1 Math 144 ctiity #9 Introduction to Vectors Often times you hear people use the words speed and elocity. Is there a difference between the two? If so, what is the difference? Discuss this with your

More information

Please Visit us at:

Please Visit us at: IMPORTANT QUESTIONS WITH ANSWERS Q # 1. Differentiate among scalars and vectors. Scalars Vectors (i) The physical quantities that are completely (i) The physical quantities that are completely described

More information

Chapter 7 Introduction to vectors

Chapter 7 Introduction to vectors Introduction to ectors MC Qld-7 Chapter 7 Introduction to ectors Eercise 7A Vectors and scalars a i r + s ii r s iii s r b i r + s Same as a i ecept scaled by a factor of. ii r s Same as a ii ecept scaled

More information

SUPPLEMENT I. Example. Graph the vector 4, 3. Definition. Given two points A(x 1, y 1 ) and B(x 2, y 2 ), the vector represented by # AB is # AB =,

SUPPLEMENT I. Example. Graph the vector 4, 3. Definition. Given two points A(x 1, y 1 ) and B(x 2, y 2 ), the vector represented by # AB is # AB =, SUPPLEMENT I 1. Vectors Definition. A vector is a quantity that has both a magnitude and a direction. A twodimensional vector is an ordered pair a = a 1, a 2 of real numbers. The numbers a 1 and a 2 are

More information

Objective 1. Lesson 87: The Cross Product of Vectors IBHL - SANTOWSKI FINDING THE CROSS PRODUCT OF TWO VECTORS

Objective 1. Lesson 87: The Cross Product of Vectors IBHL - SANTOWSKI FINDING THE CROSS PRODUCT OF TWO VECTORS Lesson 87: The Cross Product of Vectors IBHL - SANTOWSKI In this lesson you will learn how to find the cross product of two vectors how to find an orthogonal vector to a plane defined by two vectors how

More information

θ Vman V ship α φ V β

θ Vman V ship α φ V β Answer, Key { Homework 3 { Rubin H Landau 1 This print-out should hae 9 uestions. Check that it is complete before leaing the printer. Also, multiple-choice uestions may continue on the next column or

More information

Chapter 2 Mechanical Equilibrium

Chapter 2 Mechanical Equilibrium Chapter 2 Mechanical Equilibrium I. Force (2.1) A. force is a push or pull 1. A force is needed to change an object s state of motion 2. State of motion may be one of two things a. At rest b. Moving uniformly

More information

Physics Mid-Term Practice Exam

Physics Mid-Term Practice Exam Physics Mid-Term Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Which one of the following problems would NOT be a part of physics? a.

More information

Chapter 11 Collision Theory

Chapter 11 Collision Theory Chapter Collision Theory Introduction. Center o Mass Reerence Frame Consider two particles o masses m and m interacting ia some orce. Figure. Center o Mass o a system o two interacting particles Choose

More information

p net (1) v combined

p net (1) v combined PHY 309 K. Solutions for Problem set # 9. Non-textbook problem #I: N,y v truck W E,x v car p truck p net (1) v combined S The collision in question is totally inelastic after the collision, the two vehicles

More information

Section 13.4 The Cross Product

Section 13.4 The Cross Product Section 13.4 The Cross Product Multiplying Vectors 2 In this section we consider the more technical multiplication which can be defined on vectors in 3-space (but not vectors in 2-space). 1. Basic Definitions

More information

TSOKOS CHAP 1 TEST REVIEW

TSOKOS CHAP 1 TEST REVIEW IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS TSOKOS CHAP TEST REVIEW ORDERS OF MAGNITUDE AND UNITS 2. The resistie force F acting on a sphere of radius r moing at speed through

More information

EF 151 Final Exam - Spring, 2016 Page 1 Copy 1

EF 151 Final Exam - Spring, 2016 Page 1 Copy 1 EF 151 Final Exam - Spring, 016 Page 1 Copy 1 Name: Section: Instructions: Sit in assigned seat; failure to sit in assigned seat results in a 0 for the exam. Put name and section on your exam. Put seating

More information

What you will learn today

What you will learn today What you will learn today The Dot Product Equations of Vectors and the Geometry of Space 1/29 Direction angles and Direction cosines Projections Definitions: 1. a : a 1, a 2, a 3, b : b 1, b 2, b 3, a

More information

1. Linear Motion. Table of Contents. 1.1 Linear Motion: Velocity Time Graphs (Multi Stage) 1.2 Linear Motion: Velocity Time Graphs (Up and Down)

1. Linear Motion. Table of Contents. 1.1 Linear Motion: Velocity Time Graphs (Multi Stage) 1.2 Linear Motion: Velocity Time Graphs (Up and Down) . LINEAR MOTION www.mathspoints.ie. Linear Motion Table of Contents. Linear Motion: Velocity Time Graphs (Multi Stage). Linear Motion: Velocity Time Graphs (Up and Down).3 Linear Motion: Common Initial

More information

Chapter 1: Kinematics of Particles

Chapter 1: Kinematics of Particles Chapter 1: Kinematics of Particles 1.1 INTRODUCTION Mechanics the state of rest of motion of bodies subjected to the action of forces Static equilibrium of a body that is either at rest or moes with constant

More information

Forces of Friction Contact between bodies with a relative velocity produces friction opposite

Forces of Friction Contact between bodies with a relative velocity produces friction opposite Forces of Friction Contact between bodies with a relative velocity produces friction Friction is proportional to the normal force The force of static friction is generally greater than the force of kinetic

More information

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS CHAPTER B TEST REVIEW. A rocket is fired ertically. At its highest point, it explodes. Which one of the following describes what happens

More information

a by a factor of = 294 requires 1/T, so to increase 1.4 h 294 = h

a by a factor of = 294 requires 1/T, so to increase 1.4 h 294 = h IDENTIFY: If the centripetal acceleration matches g, no contact force is required to support an object on the spinning earth s surface. Calculate the centripetal (radial) acceleration /R using = πr/t to

More information

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars Chapter 3. Vectors I. Vectors and Scalars 1. What type of quantity does the odometer of a car measure? a) vector; b) scalar; c) neither scalar nor vector; d) both scalar and vector. 2. What type of quantity

More information

CHAPTER 10 VECTORS POINTS TO REMEMBER

CHAPTER 10 VECTORS POINTS TO REMEMBER For more important questions visit : www4onocom CHAPTER 10 VECTORS POINTS TO REMEMBER A quantity that has magnitude as well as direction is called a vector It is denoted by a directed line segment Two

More information