Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Section Number:

Size: px
Start display at page:

Download "Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Section Number:"

Transcription

1 Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Section Number: Formulae are provided on the last page. You may NOT use any other formula sheet. You may use this exam or come up front for scratch paper. Although the questions are multiple-choice all work must be shown to get credit for the answer marked. If the answer marked does not obviously follow from the shown work, even if the answer is correct, you will get zero credit for the answer. The points per question are indicated. Clearly erase any unwanted marks. No credit will be given if we can t figure out which answer you are choosing. Be careful in marking your answer. Because it is multiple-choice format there will be no partial credit. If you mistakenly mark the wrong answer you will get zero credit for the answer. Double check your work and answers before turning them in. Put your initials here after reading the above instructions (doing so means that you understand and agree with the above instructions):

2 Please read ALL answers. NO CREDIT WILL BE GIVEN IF REASONING AND WORK IS NOT SHOWN. 1. The following conversion equivalents are given: mile = 5280 ft 1 ft = 12 in 1 m = in 1 hour = 60 min 1 min = 60 s A car has a velocity of 6.5 miles per hour. The velocity, in meters/second, is closest to: (a) 3.5 m/s (b) 1.3 m/s (c) 31.3 m/s (d) 14.5 m/s (e) 2.9 m/s 2. You are given two vectors A = +5.0 i ˆ 2.0 ˆ j 2.0k ˆ and The scalar product of the two vectors is closest to: (a) 0.0 (b) 8.0 (c) (d) 42.0 (e) B = 2.0 i ˆ 7.0 ˆ j k ˆ 3. The components of vectors B and C are given as follows: B x = -7.3 C x = -7.8 B y = -8.6 C y = +9.8 The angle (less than 180 degrees) between vectors B and C, in degrees, is closest to: (a) 96 (b) 2 (c) 79 (d) 101 (e) 178

3 4. An airplane undergoes the following displacements: First, it flies 66 km in a direction 30 degrees east of north. Next, it flies 49 km due south. Finally, it flies 100 km 30 degrees north of west. Using analytical methods, determine how far the airplane ends up from its starting point. (a) 79.1 km (b) 82.3 km (c) 75.9 km (d) 77.5 km (e) 80.7 km 5. A train moves at a constant velocity of 31 m/s. The train then decelerates uniformly at m/s 2, until it is brought to a halt. The distance traveled by the train during deceleration, in km, is closest to: (a) 6.0 (b) 7.4 (c) 6.7 (d) 6.3 (e) A ball is projected upward at time t = 0.0 s, from a point on a roof 80 m above the ground. The ball rises, then falls and strikes the ground. The initial velocity of the ball is 56.7 m/s. Consider all quantities as positive in the upward direction. At time t = 2.9 s, the acceleration of the ball is closest to: (a) 0.0 (b) -4.9 m/s 2 (c) -9.8 m/s 2 (d) +4.9 m/s 2 (e) +9.8 m/s 2

4 7. A ball is projected upward at time t = 0.0 s, from a point on a roof 70 m above the ground. The ball rises, then falls and strikes the ground. The initial velocity of the ball is 31.9 m/s. Consider all quantities as positive in the upward direction. The time when the ball strikes the ground is closest to: (a) 8.2 s (b) 8.5 s (c) 7.7 s (d) 8.8 s (e) 3.3 s 8. On the earth, when an astronaut throws a kg stone vertically upward, it returns to his hand 8.00 s later. On planet X he finds that, under the same circumstances, the stone returns to his hand in 16.0 s. In both cases, he throws the stone with the same initial velocity and it feels negligible air resistance. The acceleration due to gravity on planet X (in terms of g) is closest to: (a) 0.71 g (b) 2.00 g (c) 0.50 g (d) 0.25 g (e) 1.41 g 9. Which of the following situations is impossible? (a) An object has velocity directed east and acceleration directed west. (b) An object has velocity directed east and acceleration directed east. (c) An object has constant nonzero velocity and changing acceleration. (d) An object has zero velocity but nonzero acceleration. (e) An object has constant nonzero acceleration and changing velocity.

5 10. The figure shows the graph of the position x as a function of time for an object moving in the straight line (the x-axis). Which of the following graphs best describes the x-component of the velocity as a function of time for this object? (a) (b) (c) (d) (e) 11. The x- and y-coordinates of a particle in motion, as functions of time t, are given by: x = 7t 2-7t + 6 y = 4t 3-3t 2-12t - 5 At the instant the x-component of velocity is equal to zero, the y-component of the acceleration is closest to: (a) -18 m/s 2 (b) 6.0 m/s 2 (c) -30 m/s 2 (d) 0.00 m/s 2 (e) 18 m/s A projectile is fired from the origin (at y = 0 m) as shown in the figure. The initial velocity components are v 0x = 270 m/s and v 0y = 80 m/s. The projectile reaches maximum height at point P, then it falls and strikes the ground at point Q. In Fig. 3.2, the y-component of the velocity of the shell of point P is closest to: (a) zero (b) +80 m/s (c) -80 m/s (d) -160 m/s (e) +160 m/s

6 13. Shown in the figure below are the trajectories of four artillery shells. Each was fired with the same speed. Which was in the air the longest time? (a) (b) (c) (d) (e) all are in the air the same time 14. An object moves in a circle of radius R at constant speed with a period t. If you want to change only the period in order to cut the object's acceleration in half, the new period should be: (a) t/4 (b) 1.41 t (c) t/1.41 (d) 4 t (e) 2 t 15. A hiker throws a stone from the upper edge of a vertical cliff. The stone s initial velocity is 25.0 m/s directed at 40.0 o with the face of the cliff, as shown in the figure below. The stone hits the ground 3.75 s after being thrown and feels no appreciable air resistance as it falls. The height of the cliff is closest to: (a) 141 m (b) 71.8 m (c) 60.3 m (d) 163 m (e) 129 m

7 Vectors Formula sheet A = A = A x 2 + A y 2 + A z 2 A = A xˆ i + A y ˆ j + A ˆ z k A B = ABcosθ A B = A x B y + A y B y + A z B z A B = ABsinθ A B The following always apply v x = dx a x = d v x v x average = x(t 2 ) x(t 1 ) t 2 t 1 a x average = v(t 2 ) v(t 1 ) t 2 t 1 The following apply for constant acceleration x x 0 = v x 0 t a x t 2 v x = v x 0 + a x t v 2 2 x = v x 0 + 2a x (x x 0 ) Other equations v = d r a = d v a c = v2 R = 4π 2 R T 2 v P / A = v P / B + v B / A Some constants g = 9.80 m s 2 1 km hr = m s Some mathematical formulas: at 2 + bt + x = 0 t = b + if x(t) = at n dx = nat n 1 b2 4ac 2a

Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature: Student ID:   Section Number: Do not fill out the information below until instructed to do so! Name: Signature: Student ID: E-mail: Section Number: Formulae are provided on the last page. You may NOT use any other formula sheet. You

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Midterm α, Physics 1P21/1P91

Midterm α, Physics 1P21/1P91 Midterm α, Physics 1P21/1P91 Prof. D. Crandles March 1, 2013 Last Name First Name Student ID Circle your course number above No examination aids other than those specified on this examination script are

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3 A.P. Physics B Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters - 3 * In studying for your test, make sure to study this review sheet along with your quizzes and homework assignments.

More information

FIRST MIDTERM - REVIEW PROBLEMS

FIRST MIDTERM - REVIEW PROBLEMS Physics 10 Spring 009 George Williams FIRST MIDTERM - REVIEW PROBLEMS A data sheet is provided at the end. Problems labeled [Ch. 4] are relevant to the second midterm. 1. Convert 747 m to feet. Convert

More information

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below.

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. Kinematics 1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. After 25 seconds Joseph has run 200 m. Which of the following is correct at 25 seconds? Instantaneous

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

Vectors and Kinematics Notes 1 Review

Vectors and Kinematics Notes 1 Review Velocity is defined as the change in displacement with respect to time. Vectors and Kinematics Notes 1 Review Note that this formula is only valid for finding constant velocity or average velocity. Also,

More information

Physics 2101, First Exam, Spring 2008

Physics 2101, First Exam, Spring 2008 Physics 2101, First Exam, Spring 2008 January 22, 2008 Please turn OFF your cell phone and MP3 player! Write your name and section number in the front of the scantron form. Bubble in your name on the back

More information

Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit:

Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit: Physics 12 Unit 1: Kinematics Notes. Name: What you will be able to do by the end of this unit: B1. Perform vector analysis in one or two dimensions identify scalars and vectors resolve a vector into two

More information

STRAIGHT LINE MOTION TEST

STRAIGHT LINE MOTION TEST STRAIGHT LINE MOTION TEST Name: 1. The number of significant figures in the number 0.030 is a) b) 3 c) d) 5. The number 35.5 rounded to significant figures is a) 35.0 b) 35 c) 35.5 d) 0 3. Five different

More information

Kinematics Multiple- Choice Questions (answers on page 16)

Kinematics Multiple- Choice Questions (answers on page 16) Kinematics Multiple- Choice Questions (answers on page 16) 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

Kinematics 2. What equation relates the known quantities to what is being asked?

Kinematics 2. What equation relates the known quantities to what is being asked? Physics R Date: 1. A cheetah goes from rest to 60 miles per hour (26.8 m/s) in 3 seconds. Calculate the acceleration of the cheetah. Kinematics Equations Kinematics 2 How to solve a Physics problem: List

More information

Physics I Exam 1 Fall 2014 (version A)

Physics I Exam 1 Fall 2014 (version A) 95.141 Physics I Exam 1 Fall 014 (version A) Section Number Section instructor Last/First Name (print) / Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space

More information

PHYSICS 218 FINAL EXAM Fall, 2005 Sections

PHYSICS 218 FINAL EXAM Fall, 2005 Sections PHYSICS 218 FINAL EXAM Fall, 2005 Sections 807-809 Name: Signature: Student ID: E-mail: Section Number: You have the full class period to complete the exam. Formulae are provided on the last page. You

More information

Phys 111 Exam 1 September 19, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID

Phys 111 Exam 1 September 19, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID Phys 111 Exam 1 September 19, 2017 Name Section University ID Please fill in your computer answer sheet as follows: 1) In the NAME grid, fill in your last name, leave one blank space, then your first name.

More information

PHYSICS 221 SPRING EXAM 1: February 16, 2012; 8:00pm 10:00pm

PHYSICS 221 SPRING EXAM 1: February 16, 2012; 8:00pm 10:00pm PHYSICS 221 SPRING 2012 EXAM 1: February 16, 2012; 8:00pm 10:00pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

More information

Physics 218 Exam I. Fall 2017 (all sections) September 27 th, 2017

Physics 218 Exam I. Fall 2017 (all sections) September 27 th, 2017 Physics 218 Exam I Fall 2017 (all sections) September 27 th, 2017 Please fill out the information and read the instructions below, but do not open the exam until told to do so. Rules of the exam: 1. You

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2 Physics C -D Kinematics Name: AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors Specify

More information

2) A car accelerates from 5.0 m/s to 21 m/s at a rate of 3.0 m/s 2. How far does it travel while accelerating? A) 207 m B) 117 m C) 41 m D) 69 m

2) A car accelerates from 5.0 m/s to 21 m/s at a rate of 3.0 m/s 2. How far does it travel while accelerating? A) 207 m B) 117 m C) 41 m D) 69 m Name VECTORS 1) An airplane undergoes the following displacements: First, it flies 59 km in a direction 30 east of north. Next, it flies 58 km due south. Finally, it flies 100 km 30 north of west. Using

More information

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres Chapter 2 Motion Defining Motion Motion is a continuous change in position can be described by measuring the rate of change of position

More information

PSI AP Physics 1 Kinematics. Free Response Problems

PSI AP Physics 1 Kinematics. Free Response Problems PSI AP Physics 1 Kinematics Free Response Problems 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101 Fall 2013 (Purcell), Fake Midterm #1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The figure shows the graph of the position x as a

More information

Kinematics Multiple-Choice Questions

Kinematics Multiple-Choice Questions Kinematics Multiple-Choice Questions 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle. Which of the following

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Phys 111 Exam 1 September 22, 2015

Phys 111 Exam 1 September 22, 2015 Phys 111 Exam 1 September 22, 2015 1. The time T required for one complete oscillation of a mass m on a spring of force constant k is T = 2π m k. Find the dimension of k to be dimensionally correct for

More information

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time.

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time. Chapter: Chapter 2 Learning Objectives LO 2.1.0 Solve problems related to position, displacement, and average velocity to solve problems. LO 2.1.1 Identify that if all parts of an object move in the same

More information

Motion Graphs Practice

Motion Graphs Practice Name Motion Graphs Practice d vs. t Graphs d vs. t Graphs d vs. t Graphs 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. 3. The

More information

Planar Motion with Constant Acceleration

Planar Motion with Constant Acceleration Planar Motion with Constant Acceleration 1. If the acceleration vector of an object is perpendicular to its velocity vector, which of the following must be true? (a) The speed is changing. (b) The direction

More information

Multiple Choice Review for Final Exam ~ Physics 1020

Multiple Choice Review for Final Exam ~ Physics 1020 Multiple Choice Review for Final Exam ~ Physics 1020 1. You are throwing a ball straight up in the air. At the highest point, the ball s a) velocity and acceleration are zero b) velocity is nonzero, but

More information

Physics 125: Classical Physics A. 1 Practice Problems for Midterm Exam 1

Physics 125: Classical Physics A. 1 Practice Problems for Midterm Exam 1 Physics 125: Classical Physics A 1 Practice Problems for Midterm Exam 1 Problem 1 The Figure 1 depicts velocity as a function of time for a short run. Find: a) The acceleration at t = 5 seconds. b) The

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH105-004 Exam 1 A Name CWID MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) An object starts its motion with a constant velocity of 2.0 m/s toward

More information

5 Projectile Motion. Projectile motion can be described by the horizontal and vertical components of motion.

5 Projectile Motion. Projectile motion can be described by the horizontal and vertical components of motion. Projectile motion can be described by the horizontal and vertical components of motion. In the previous chapter we studied simple straight-line motion linear motion. Now we extend these ideas to nonlinear

More information

College Physics: A Strategic Approach, 3e (Knight) Chapter 2 Motion in One Dimension. 2.1 Conceptual Questions

College Physics: A Strategic Approach, 3e (Knight) Chapter 2 Motion in One Dimension. 2.1 Conceptual Questions College Physics: A Strategic Approach, 3e (Knight) Chapter 2 Motion in One Dimension 2.1 Conceptual Questions 1) Consider a deer that runs from point A to point B. The distance the deer runs can be greater

More information

LAHS Physics Semester 1 Final Practice Multiple Choice

LAHS Physics Semester 1 Final Practice Multiple Choice LAHS Physics Semester 1 Final Practice Multiple Choice The following Multiple Choice problems are practice MC for the final. Some or none of these problems may appear on the real exam. Answers are provided

More information

PH 1110 Summary Homework 1

PH 1110 Summary Homework 1 PH 111 Summary Homework 1 Name Section Number These exercises assess your readiness for Exam 1. Solutions will be available on line. 1a. During orientation a new student is given instructions for a treasure

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. c.

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. c. Class: Date: Chapter 2 Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the speed of an object at rest? a. 0.0 m/s c. 9.8 m/s

More information

F13--HPhys--Q4 Practice POST

F13--HPhys--Q4 Practice POST Name: Class: Date: ID: A F13--HPhys--Q4 Practice POST Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is not an example of projectile

More information

Projectile Motion I. Projectile motion is an example of. Motion in the x direction is of motion in the y direction

Projectile Motion I. Projectile motion is an example of. Motion in the x direction is of motion in the y direction What is a projectile? Projectile Motion I A projectile is an object upon which the only force acting is gravity. There are a variety of examples of projectiles. An object dropped from rest is a projectile

More information

Topic 2 Revision questions Paper

Topic 2 Revision questions Paper Topic 2 Revision questions Paper 1 3.1.2018 1. [1 mark] The graph shows the variation of the acceleration a of an object with time t. What is the change in speed of the object shown by the graph? A. 0.5

More information

Bill s ball goes up and comes back down to Bill s level. At that point, it is

Bill s ball goes up and comes back down to Bill s level. At that point, it is ConcepTest 2.1 Up in the Air Alice and Bill are at the top of a cliff of height H.. Both throw a ball with initial speed v 0, Alice straight down and Bill straight up. The speeds of the balls when they

More information

CHAPTER 3 ACCELERATED MOTION

CHAPTER 3 ACCELERATED MOTION Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 3 ACCELERATED MOTION Day Plans for the day Assignments for the day 1 3.1 Acceleration o Changing Velocity

More information

KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES

KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES 014.08.06. KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES www.biofizika.aok.pte.hu Premedical course 04.08.014. Fluids Kinematics Dynamics MECHANICS Velocity and acceleration

More information

Department of Natural Sciences Clayton State University. Physics 1111 Quiz 2

Department of Natural Sciences Clayton State University. Physics 1111 Quiz 2 Department of Natural Sciences Physics 1111 Quiz September 11, 006 Name SOLUTION A ball is thrown straight up and reaches its maximum height after.00 s. a. What is the acceleration of the ball after it

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

Physics 20 Practice Problems for Exam 1 Fall 2014

Physics 20 Practice Problems for Exam 1 Fall 2014 Physics 20 Practice Problems for Exam 1 Fall 2014 Multiple Choice Short Questions (1 pt ea.) Circle the best answer. 1. An apple falls from a tree and hits the ground 5 meters below. It hits the ground

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Car and Bicycle Rider Problem Set 1 A car is driving along a straight line with a speed v 0. At time t = 0 the car is at the

More information

Section 2-2: Constant velocity means moving at a steady speed in the same direction

Section 2-2: Constant velocity means moving at a steady speed in the same direction Section 2-2: Constant velocity means moving at a steady speed in the same direction 1. A particle moves from x 1 = 30 cm to x 2 = 40 cm. The displacement of this particle is A. 30 cm B. 40 cm C. 70 cm

More information

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit?

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit? Name: ate: 1. Which combination correctly pairs a vector quantity with its corresponding unit?. weight and kg. velocity and m/s. speed and m/s. acceleration and m 2 /s 2. 12.0-kilogram cart is moving at

More information

PHYS.1410 Physics I Exam 1 Spring 2016 (version A)

PHYS.1410 Physics I Exam 1 Spring 2016 (version A) PHYS.1410 Physics I Exam 1 Spring 016 (version A) Recitation Section Number Name (PRINT) / LAST FIRST Last 3 Digits of Student ID Number: Fill out the above section of this page and print your last name

More information

Chapter 2: 2-Dimensional Motion

Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion 2.1 Position 2.2 Distance and Displacement 2.3 Average Speed and Average Velocity 2.4 Instant Speed and Instant

More information

Motion Along a Straight Line

Motion Along a Straight Line PHYS 101 Previous Exam Problems CHAPTER Motion Along a Straight Line Position & displacement Average & instantaneous velocity Average & instantaneous acceleration Constant acceleration Free fall Graphical

More information

PH105 Exam 1 Solution

PH105 Exam 1 Solution PH105 Exam 1 Solution 1. The graph in the figure shows the position of an object as a function of time. The letters A-E represent particular moments of time. At which moment shown (A, B, etc.) is the speed

More information

161 Spring 2018 Exam 1 Version A Name: No cell phones or electronic devices (except scientific calculators). = 4 3 = = =

161 Spring 2018 Exam 1 Version A Name: No cell phones or electronic devices (except scientific calculators). = 4 3 = = = 161 Spring 2018 Exam 1 Version A Name: No cell phones or electronic devices (except scientific calculators). = 4 3 = = = = 4 = h h = = ± 4 2 = 2 = = 2 1609 m = 1 mi 12 in = 1 ft 60 s = 1 min 1000 g = 1

More information

Chapter 2: Motion along a straight line

Chapter 2: Motion along a straight line Chapter 2: Motion along a straight line This chapter uses the definitions of length and time to study the motions of particles in space. This task is at the core of physics and applies to all objects irregardless

More information

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20 Physics Final Exam Mechanics Review Answers 1. Use the velocity-time graph below to find the: a. velocity at 2 s 6 m/s v (m/s) 1 b. acceleration from -2 s 6 c. acceleration from 2-4 s 2 m/s 2 2 4 t (s)

More information

Physics I Exam 1 Fall 2015 (version A)

Physics I Exam 1 Fall 2015 (version A) 95.141 Physics I Exam 1 Fall 2015 (version A) Recitation Section Number Last/First Name (PRINT) / Last 3 Digits of Student ID Number: Fill out the above section of this page and print your last name on

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas CALCULUS KINEMATICS CALCULUS KINEMATICS IN SCALAR FORM Question (**) A particle P is moving on the x axis and its acceleration a ms, t seconds after a given instant, is given by a = 6t 8, t 0. The particle

More information

Physics 0174(CHS) Exam #1 Academic Year NAME

Physics 0174(CHS) Exam #1 Academic Year NAME . Physics 0174(CHS) Exam #1 Academic Year 2015-2016 NAME This exam consists of 6 pages in addition to this page; please check to see that you have all of them. Be sure to show clearly how you arrive at

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Physics 201, Midterm Exam 1, Fall Answer Key

Physics 201, Midterm Exam 1, Fall Answer Key Physics 201, Midterm Exam 1, Fall 2006 Answer Key 1) The equation for the change of position of a train starting at x = 0 m is given by x(t) = 1 2 at 2 + bt 3. The dimensions of b are: A. T 3 B. LT 3 C.

More information

MOTION (Chapter 2) Student Learning Objectives 2/11/2016. Compare and contrast terms used to describe motion Analyze circular and parabolic motion

MOTION (Chapter 2) Student Learning Objectives 2/11/2016. Compare and contrast terms used to describe motion Analyze circular and parabolic motion MOTION (Chapter 2) https://www.youtube.com/watch?v=oxc-hhqldbe Student Learning Objectives Compare and contrast terms used to describe motion Analyze circular and parabolic motion PHYSICS:THE MOST FUNDAMENTAL

More information

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] A) Its vertical speed remains the same, and its horizontal

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Optional Problems for Quiz 2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The components of vectors B and C are given as follows: 1) Bx

More information

Accl g Motion graph prac

Accl g Motion graph prac Accl g Motion graph prac 1. An object starts from rest and falls freely. What is the velocity of the object at the end of 3.00 seconds? A) 9.81 m/s B) 19.6 m/s C) 29.4 m/s D) 88.2 m/s 2. An object is dropped

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Unit 2: Vector Dynamics

Unit 2: Vector Dynamics Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

More information

Sample Physics Placement Exam

Sample Physics Placement Exam Sample Physics 130-1 Placement Exam A. Multiple Choice Questions: 1. A cable is used to take construction equipment from the ground to the top of a tall building. During the trip up, when (if ever) is

More information

Motion in one dimension

Motion in one dimension Work Sheet - 1 1. Define rest and motion. 2. Define distance and displacement. Write their S.I unit. 3. Distinguish between distance and displacement. Write five points of differences. Work Sheet - 2 1.

More information

Physics 218 Exam I. Spring 2018 (all UP sections) February 19 th, 2018

Physics 218 Exam I. Spring 2018 (all UP sections) February 19 th, 2018 Physics 218 Exam I Spring 2018 (all UP sections) February 19 th, 2018 Rules of the exam: Please fill out the information and read the instructions below, but do not open the exam until told to do so. 1.

More information

Kinematics 2. Kinematics Equations. How to solve a Physics problem:

Kinematics 2. Kinematics Equations. How to solve a Physics problem: Kinematics Equations Kinematics 2 How to solve a Physics problem: What is the question asking for? List the given quantities with units Equation Substitution with units Solution with units Does the answer

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Phys101-T121-First Major Exam Zero Version, choice A is the correct answer

Phys101-T121-First Major Exam Zero Version, choice A is the correct answer Phys101-T121-First Major Exam Zero Version, choice A is the correct answer Q1. Find the mass of a solid cylinder of copper with a radius of 5.00 cm and a height of 10.0 inches if the density of copper

More information

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E Name - 1 -APPH_MidTerm AP Physics Date Mid - Term Exam Part 1: Write your answers to all multiple choice questions in this space. 1) 2) 3) 10) 11) 19) 20) 4) 12) 21) 5) 13) 22) 6) 7) 14) 15) 23) 24) 8)

More information

Mathematics AS/P2/M18 AS PAPER 2

Mathematics AS/P2/M18 AS PAPER 2 Surname Other Names Candidate Signature Centre Number Candidate Number Examiner Comments Total Marks Mathematics AS PAPER 2 March Mock Exam (OCR Version) CM Time allowed: 1 hour and 30 minutes Instructions

More information

Exam. Name. 1) For general projectile motion with no air resistance, the horizontal component of a projectile's velocity A) B) C) D)

Exam. Name. 1) For general projectile motion with no air resistance, the horizontal component of a projectile's velocity A) B) C) D) Exam Name 1) For general projectile motion with no air resistance, the horizontal component of a projectile's velocity 2) An athlete participates in an interplanetary discus throw competition during an

More information

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION OBJECTIVES After studying the material of this chapter, the student should be able to: state from memory the meaning of the key terms and phrases

More information

b) (6) How far down the road did the car travel during the acceleration?

b) (6) How far down the road did the car travel during the acceleration? General Physics I Quiz 2 - Ch. 2-1D Kinematics June 17, 2009 Name: For full credit, make your work clear to the grader. Show the formulas you use, all the essential steps, and results with correct units

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Projectile Motion An object may move in both the x and y directions simultaneously. This form of two-dimensional motion we will deal with is called projectile motion.

More information

PHYSICS MIDTERM REVIEW PACKET

PHYSICS MIDTERM REVIEW PACKET PHYSICS MIDTERM REVIEW PACKET PERIOD: TIME: DATE: ROOM: YOU NEED TO BRING: 1. #2 PENCIL W/ ERASER. 2. CALCULATOR (YOUR OWN). YOU WILL NOT BE ALLOWED TO SHARE OR BORROW!!! YOU WILL BE GIVEN: 1. FORMULA

More information

3 UCM & Gravity Student Physics Regents Date

3 UCM & Gravity Student Physics Regents Date Student Physics Regents Date 1. Which diagram best represents the gravitational forces, Fg, between a satellite, S, and Earth? A) B) 4. Gravitational force exists between point objects and separated by

More information

Introduction to 2-Dimensional Motion

Introduction to 2-Dimensional Motion Introduction to 2-Dimensional Motion 2-Dimensional Motion! Definition: motion that occurs with both x and y components.! Example:! Playing pool.! Throwing a ball to another person.! Each dimension of the

More information

Problem: Projectile (CM-1998)

Problem: Projectile (CM-1998) Physics C -D Kinematics Name: ANSWER KEY AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors

More information

Chapter 1. Kinematics

Chapter 1. Kinematics Chapter 1 Kinematics 3 4 AP Physics Multiple Choice Practice Kinematics 1. A car travels 30 miles at an average speed of 60 miles per hour and then 30 miles at an average speed of 30 miles per hour. The

More information

State two other scalar quantities in physics that have the same unit as each other [1]

State two other scalar quantities in physics that have the same unit as each other [1] 1 (a) Energy and work done are scalar quantities and have the same unit as each other. State two other scalar quantities in physics that have the same unit as each other....... [1] (b) Two forces A and

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

Angel International School - Manipay 1 st Term Examination November, 2015

Angel International School - Manipay 1 st Term Examination November, 2015 Grade 09 Angel International School - Manipay 1 st Term Examination November, 2015 Physics Duration: 3.00 Hours Index No:- Part 1 1) What is the SI unit of mass? a) kg b) mg c) g d) t 2) Which list contains

More information

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (!

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (! 1. The angle between the vector! A = 3î! 2 ĵ! 5 ˆk and the positive y axis, in degrees, is closest to: A) 19 B) 71 C) 90 D) 109 E) 161 The dot product between the vector! A = 3î! 2 ĵ! 5 ˆk and the unit

More information

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I.

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I. Antiderivatives Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if F x f x for all x I. Theorem If F is an antiderivative of f on I, then every function of

More information

Midterm Examination, Physics 1P21

Midterm Examination, Physics 1P21 Midterm Examination, Physics 1P21 Prof. S. Bose Feb. 25, 2015 Last Name First Name Student ID Circle your course number above No examination aids other than those specified on this examination script are

More information

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN 2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN Topics: Forces Motion Momentum Gravity Electrostatics DATE: TIME: ROOM: PROCTOR: YOU ARE REQUIRED TO BRING: 1. CALCULATOR (YOUR OWN NO SHARING) 2. PENCIL

More information

Physics 101 Hour Exam 1 March 3, 2014

Physics 101 Hour Exam 1 March 3, 2014 Physics 101 Hour Exam 1 March 3, 2014 Last Name: First Name ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Calculators cannot be share Please keep yours

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 MIDTERM TEST Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please check): 01 A.

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information