PHYS1100 Practice problem set, Chapter 2: 6, 10, 13, 17, 22, 24, 25, 34, 42, 50, 55, 65, 71, 82

Size: px
Start display at page:

Download "PHYS1100 Practice problem set, Chapter 2: 6, 10, 13, 17, 22, 24, 25, 34, 42, 50, 55, 65, 71, 82"

Transcription

1 PHYS00 Practice problem set, Chapter : 6, 0, 3, 7,, 4, 5, 34, 4, 50, 55, 65, 7, 8.6. Model: We will consider Larry to be a particle. Solve: Since Larry s speed is constant, we can use the following equation to calculate the velocities: sf si vs = t t (a) For the interval from the house to the lamppost: 00 yd 600 yd v = = 00 yd/min 9:07 9:05 For the interval from the lamppost to the tree: 00 yd 00 yd v = = yd/min 9:0 9:07 (b) For the average velocity for the entire run: v avg f 00 yd 600 yd = = + 0 yd/min 9:0 9:05 i

2 .0. Please refer to Figure Ex.0. Solve: (a) We can obtain the values for the velocity-versus-time graph from the equation v = s/ t. (b) There is only one turning point. At t = s the velocity changes from +0 m/s to 0 m/s, thus reversing the direction of motion. At t =, there is an abrupt change in motion from rest to +0 m/s, but there is no reversal in motion..3. Please refer to Figure Ex.3. Solve: (a) (b) The acceleration of the train at t = 3.0 s is + m/s.

3 .7. Model: We are using the particle model for the skater and the kinematics model of motion under constant acceleration. Solve: Since we don t know the time of acceleration we will use Assess: f i v = v + a( x x ) f i f i vf vi (6.0 m/s) (8.0 m/s) a = = =.8 m/s ( x x ) (5.0 m) A deceleration of.8 m/s is reasonable... Model: We will use the particle model and the constant-acceleration kinematic equations. Solve: (a) Substituting the known values into y = y + v t + a t, we get m = 0 m + 0 (m/s) t + ( 9.8 m/s ) t One of the roots of this equation is negative and is not relevant physically. The other root is t = 4.53 s which is the answer to part (b). Using v = v0 + a t, we obtain v = 0(m/s) + ( 9.8 m/s )(4.53 s) = 4.4 m/s (b) The time is 4.53 s. Assess: A time of 4.5 s is a reasonable value. The rock s velocity as it hits the bottom of the hole has a negative sign because of its downward direction. The magnitude of 4.4 m/s compared to 0 m/s, when the rock was tossed up, is consistent with the fact that the rock travels an additional distance of 0 m into the hole. 3

4 .4. Model: We will represent the skier as a particle. Note that the skier s motion on the horizontal, frictionless snow is not of any interest to us. Also note that the acceleration parallel to the incline is equal to g sin0. Solve: Using the following constant-acceleration kinematic equations, v fx = v ix + a x (x f x i ) (5 m /s) = (3.0 m / s) + (9.8 m /s )sin 0 (x 0 m) x = 63.5 m v fx = v ix + a x (t f t i ) (5 m / s) = (3.0 m / s) + (9.8 m /s )(sin 0 )t t = 7.05 s Assess: A time of 7.05 s to cover 63.5 m is a reasonable value Solve: (a) The position t = s is x s = [() + ] m = 5 m. (b) The velocity is the derivative v = dx / dt and the velocity at t = s is calculated as follows: v = (6t ) m/ s v s = [6() ] m /s = 3 m /s (c) The acceleration is the derivative a = dv /dt and the acceleration at t = s is calculated as follows: a = (t) m /s a s = [()()] m/ s = 4 m /s.34. Please refer to Figure P.34. Solve: (a) The velocity-versus-time graph is the derivative with respect to time of the distance-versus-time graph. The velocity is zero when the slope of the position-versus-time graph is zero, the velocity is most positive when the slope is most positive, and the velocity is most negative when the slope is most negative. The slope is zero at t = 0, s, s, 3 s,...; the slope is most positive at t = 0.5 s,.5 s,...; and the slope is most negative at t =.5 s, 3.5 s,... (b) 4

5 .4. Model: Represent the ball as a particle. Please refer to Figure P.4. The ball rolls down the first short track, then up the second short track, and then down the long track. s is the distance along the track measured from the left end (where s = 0). Label t = 0 at the beginning, that is, when the ball starts to roll down the first short track. Solve: Because the incline angle is the same, the magnitude of the acceleration is the same on all of the tracks. Assess: Note that the derivative of the s versus t graph yields the v s versus t graph. And the derivative of the v s versus t graph gives rise to the a s versus t graph. 5

6 .50. Model: The car is a particle and constant-acceleration kinematic equations hold. Solve: (a) This is a two-part problem. During the reaction time, x = x 0 + v 0 (t t 0 ) + / a 0 (t t 0 ) = 0 m + (0 m/s)(0.50 s 0 s) + 0 m = 0 m After reacting, x x = 0 m 0 m = 00 m, that is, you are 00 m away from the intersection. (b) To stop successfully, v = v + a ( x x ) (0 m/s) = (0 m/s) + a (00 m) a = m/s (c) The time it takes to stop can be obtained as follows: v = v + a ( t t ) 0 m/s = 0 m/s + ( m/s )( t 0.50 s) t = 0.5 s 6

7 .55. Model: We will model the lead ball as a particle and use the constant-acceleration kinematic equations. Note that the particle undergoes free fall until it hits the water surface. Solve: The kinematics equation y = y + v ( t t ) + a ( t t ) becomes Now, once again, 5.0 m = 0 m + 0 m + ( 9.8 m/s )( t 0) t =.0 s y = y + v( t t) + a( t t) y y = v (3.0 s.0 s) + 0 m/s =.99 v v is easy to determine since the time t has been found. Using v = v0 + a0( t t0), we get With this value for v, we go back to: v = 0 m/s (9.8 m/s )(.0 s 0 s) = m/s y y =.99 v = (.99)( m/s) = 9.7 m y y is the displacement of the lead ball in the lake and thus corresponds to the depth of the lake. The negative sign shows the direction of the displacement vector. Assess: A depth of about 60 ft for a lake is not unusual. 7

8 .65. Model: We will use the particle model for the skier s motion ignoring air resistance. Solve: (a) As discussed in the text, acceleration along a frictionless incline is a = gsin5, where g is the acceleration due to gravity. The acceleration of the skier on snow therefore is a ( ) x = 00 m/sin5. The final velocity can now be determined using kinematics = 0.90 gsin5. Also since h/ x = sin5, 00 m v = v0 + a( x x0) = (0 m/s) + (0.90)(9.8 m/s )sin5 0 m sin5 km 3600 s v = m/s = ( m/s) 4 km/ hr 000 m = hr (b) The speed lost to air resistance is (4 80)/4 00% 6%. = Assess: A record of 80 km/hr on such a slope in the presence of air resistance makes the obtained speed of 4 km/hr (without air resistance) physical and reasonable. 8

9 .7. Model: We will represent the dog and the cat in the particle model. Solve: We will first calculate the time t C the cat takes to reach the window. The dog has exactly the same time to reach the cat (or the window). Let us therefore first calculate t C as follows: xc = xc0 + vc0( tc tc0 ) + ac( tc tc0 ) 3.0 m =.5 m + 0 m + (0.85 m/s ) tc tc =.879 s In the time t D =.879 s, the dog s position can be found as follows: xd = xd0 + vd0 ( td td0 ) + ad( td td0) = + + = 0 m (.50 m/s)(.879 s) ( 0.0 m/s )(.879 s).6 m That is, the dog is shy of reaching the cat by 0.4 m. The cat is safe. 9

10 .8. Model: We will use the particle-model to represent the sprinter and the equations of kinematics. Solve: Substituting into the constant-acceleration kinematic equations, x = x + v ( t t ) + a ( t t ) = 0 m + 0 m + a (4 s 0 s) = a t = a (4.0 s) x = (8 s ) a From these two results, we find that x = ( s)v. Now, 0 v = v + a ( t t ) = 0 m/s + a (4.0 s 0 s) v = (4.0 s) a x = x + v( t t) + a( t t) 00 m = ( s) v + v (0 s 4 s) + 0 m v =.5 m/s Assess: Using the conversion.4 mph = m/s, v =.5 m/s = 8 mph. This speed as the sprinter reaches the finish line is physically reasonable. 0

2.1. Model: The car is represented by the particle model as a dot.

2.1. Model: The car is represented by the particle model as a dot. .. Model: The car is represented by the particle model as a dot. Solve: (a) Time t (s) Position x (m) 0 00 975 85 3 750 4 700 5 650 6 600 7 500 8 300 9 0 (b) .. Solve: Diagram Position Velocity Acceleration

More information

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment Unit 6 (1-Dimensional Motion) Practice Assessment Choose the best answer to the following questions. Indicate the confidence in your answer by writing C (Confident), S (So-so), or G (Guessed) next to the

More information

KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES

KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES 014.08.06. KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES www.biofizika.aok.pte.hu Premedical course 04.08.014. Fluids Kinematics Dynamics MECHANICS Velocity and acceleration

More information

Some Motion Terms. Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector

Some Motion Terms. Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector Motion Some Motion Terms Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector Scalar versus Vector Scalar - magnitude only (e.g. volume, mass, time) Vector - magnitude

More information

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart speeds up toward the origin. What do the position and velocity

More information

Chapter 2: 1D Kinematics

Chapter 2: 1D Kinematics Chapter 2: 1D Kinematics Description of motion involves the relationship between position, displacement, velocity, and acceleration. A fundamental goal of 1D kinematics is to determine x(t) if given initial

More information

Chapter 2: Motion along a straight line

Chapter 2: Motion along a straight line Chapter 2: Motion along a straight line This chapter uses the definitions of length and time to study the motions of particles in space. This task is at the core of physics and applies to all objects irregardless

More information

Chapter 2: 2-Dimensional Motion

Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion 2.1 Position 2.2 Distance and Displacement 2.3 Average Speed and Average Velocity 2.4 Instant Speed and Instant

More information

2.1. Model: The car is represented by the particle model as a dot.

2.1. Model: The car is represented by the particle model as a dot. Chapter Physics.. Model: The car is represented by the particle model as a dot. Solve: (a) Time t (s) Position x (m) 0 00 975 85 3 750 4 700 5 650 6 600 7 500 8 300 9 0 (b).8. Model: The bicyclist is a

More information

Chapter 2: Kinematics

Chapter 2: Kinematics Section 1 Chapter 2: Kinematics To simplify the concept of motion, we will first consider motion that takes place in one direction. To measure motion, you must choose a frame of reference. Frame of reference

More information

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter One-Dimensional Kinematics Units of Chapter Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications of

More information

AP Physics Free Response Practice Kinematics ANSWERS 1982B1 2

AP Physics Free Response Practice Kinematics ANSWERS 1982B1 2 AP Physics Free Response Practice Kinematics ANSWERS 198B1 a. For the first seconds, while acceleration is constant, d = ½ at Substituting the given values d = 10 meters, t = seconds gives a = 5 m/s b.

More information

Velocity, Speed, and Acceleration. Unit 1: Kinematics

Velocity, Speed, and Acceleration. Unit 1: Kinematics Velocity, Speed, and Acceleration Unit 1: Kinematics Speed vs Velocity Speed is a precise measurement of how fast you are going. It is your distance traveled over time. Speed is a scalar quantity. To measure

More information

Afternoon Section. Physics 1210 Exam 2 November 8, ! v = d! r dt. a avg. = v2. ) T 2! w = m g! f s. = v at v 2 1.

Afternoon Section. Physics 1210 Exam 2 November 8, ! v = d! r dt. a avg. = v2. ) T 2! w = m g! f s. = v at v 2 1. Name Physics 1210 Exam 2 November 8, 2012 Afternoon Section Please write directly on the exam and attach other sheets of work if necessary. Calculators are allowed. No notes or books may be used. Multiple-choice

More information

PHYS.1410 Physics I Exam 1 Spring 2016 (version A)

PHYS.1410 Physics I Exam 1 Spring 2016 (version A) PHYS.1410 Physics I Exam 1 Spring 016 (version A) Recitation Section Number Name (PRINT) / LAST FIRST Last 3 Digits of Student ID Number: Fill out the above section of this page and print your last name

More information

F13--HPhys--Q4 Practice POST

F13--HPhys--Q4 Practice POST Name: Class: Date: ID: A F13--HPhys--Q4 Practice POST Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is not an example of projectile

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics IC_W05D1 ConcepTests

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics IC_W05D1 ConcepTests Reading Question MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 IC_W05D1 ConcepTests Two objects are pushed on a frictionless surface from a starting line to a finish line with

More information

1.1 Graphing Motion. IB Physics 11 Kinematics

1.1 Graphing Motion. IB Physics 11 Kinematics IB Physics 11 Kinematics 1.1 Graphing Motion Kinematics is the study of motion without reference to forces and masses. We will need to learn some definitions: A Scalar quantity is a measurement that has

More information

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Preview Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Objectives

More information

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I.

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I. Antiderivatives Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if F x f x for all x I. Theorem If F is an antiderivative of f on I, then every function of

More information

Kinematics + Dynamics

Kinematics + Dynamics Physics 101: Lecture 04 Kinematics + Dynamics Today s lecture will cover Textbook Chapter 4 If you are new to the course, please read the course description on the course web page. Neptune Physics 101:

More information

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 2 One-Dimensional Kinematics Units of Chapter 2 Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications

More information

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

Horizontal Motion 1 An object is said to be at rest, if the position of the object does not change with time with respect to its surroundings An object is said to be in motion, if its position changes

More information

Physics 101 Prof. Ekey. Chapter 2

Physics 101 Prof. Ekey. Chapter 2 Physics 11 Prof. Ekey Chapter 2 Kinematics in one dimension Uniform motion, s vs t, v vs t, a vs t, kinematic equations fun. In this chapter, you will learn how to solve problems about motion along a straight

More information

Chapter 2 Linear Motion

Chapter 2 Linear Motion Chapter 2 Linear Motion Conceptual Questions 2.1 An object will slow down when its acceleration vector points in the opposite direction to its velocity vector. Recall that acceleration is the change in

More information

Chapter 2. Motion In One Dimension

Chapter 2. Motion In One Dimension I. Displacement, Position, and Distance Chapter 2. Motion In One Dimension 1. John (Mike, Fred, Joe, Tom, Derek, Dan, James) walks (jogs, runs, drives) 10 m north. After that he turns around and walks

More information

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12.1-12.2) Today s Objectives: Students will be able to find the kinematic quantities (position, displacement, velocity, and acceleration)

More information

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without considering the cause of the motion). Distance vs. Displacement

More information

1 Antiderivatives graphically and numerically

1 Antiderivatives graphically and numerically Math B - Calculus by Hughes-Hallett, et al. Chapter 6 - Constructing antiderivatives Prepared by Jason Gaddis Antiderivatives graphically and numerically Definition.. The antiderivative of a function f

More information

a. Determine the sprinter's constant acceleration during the first 2 seconds.

a. Determine the sprinter's constant acceleration during the first 2 seconds. AP Physics 1 FR Practice Kinematics 1d 1 The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90

More information

A+B. Scalar quantities are described by magnitude only (examples: distance, speed, temperature, energy, and mass).

A+B. Scalar quantities are described by magnitude only (examples: distance, speed, temperature, energy, and mass). Honors Physics Examination I Review Questions #1-#11 - Vectors & Measurements vector quantity is specified by magnitude and direction (examples: displacement, velocity, acceleration, momentum, and weight).

More information

ONE-DIMENSIONAL KINEMATICS

ONE-DIMENSIONAL KINEMATICS ONE-DIMENSIONAL KINEMATICS Chapter 2 Units of Chapter 2 Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications

More information

11.3 Acceleration. What Is Acceleration? How are changes in velocity described?

11.3 Acceleration. What Is Acceleration? How are changes in velocity described? What Is Acceleration? How are changes in velocity described? What Is Acceleration? Changes in Speed In science, acceleration applies to Acceleration can be caused by Deceleration is DOK question Predict

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

MOTION ALONG A STRAIGHT LINE

MOTION ALONG A STRAIGHT LINE MOTION ALONG A STRAIGHT LINE 2 21 IDENTIFY: The average velocity is Let be upward EXECUTE: (a) EVALUATE: For the first 115 s of the flight, When the velocity isn t constant the average velocity depends

More information

Projectile Motion. Figure 1. The system of coordinates for the projectile motion.

Projectile Motion. Figure 1. The system of coordinates for the projectile motion. Projectile Motion (1) Introduction and Theory: Consider a projectile motion of a ball as shown in Fig. 1. At t = 0 the ball is released at the position (0, y0) with horizontal velocity vx. Figure 1. The

More information

KINEMATICS WHERE ARE YOU? HOW FAST? VELOCITY OR SPEED WHEN YOU MOVE. Typical Cartesian Coordinate System. usually only the X and Y axis.

KINEMATICS WHERE ARE YOU? HOW FAST? VELOCITY OR SPEED WHEN YOU MOVE. Typical Cartesian Coordinate System. usually only the X and Y axis. KINEMATICS File:The Horse in Motion.jpg - Wikimedia Foundation 1 WHERE ARE YOU? Typical Cartesian Coordinate System usually only the X and Y axis meters File:3D coordinate system.svg - Wikimedia Foundation

More information

Position, Velocity, Acceleration

Position, Velocity, Acceleration 191 CHAPTER 7 Position, Velocity, Acceleration When we talk of acceleration we think of how quickly the velocity is changing. For example, when a stone is dropped its acceleration (due to gravity) is approximately

More information

a rad = v2 R = 4 π2 R T 2

a rad = v2 R = 4 π2 R T 2 Name Physics 121 Exam 1 28 September 217 This test is closed-note and closed-book. No written, printed, or recorded material is permitted. Calculators are permitted but computers are not. No collaboration,

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

Provincial Exam Review: Motion

Provincial Exam Review: Motion Section 8.1 Provincial Exam Review: Motion 1. Identify each of the following quantities as either vector or scalar. (a) 10 kg (b) 20 m [S] (c) 5 hours driving in a car (d) swimming for 100 m [N] (e) 15

More information

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school.

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school. Position-versus-Time Graphs Below is a motion diagram, made at 1 frame per minute, of a student walking to school. A motion diagram is one way to represent the student s motion. Another way is to make

More information

KINEMATICS. File:The Horse in Motion.jpg - Wikimedia Foundation. Monday, June 17, 13

KINEMATICS. File:The Horse in Motion.jpg - Wikimedia Foundation. Monday, June 17, 13 KINEMATICS File:The Horse in Motion.jpg - Wikimedia Foundation 1 WHERE ARE YOU? Typical Cartesian Coordinate System usually only the X and Y axis meters File:3D coordinate system.svg - Wikimedia Foundation

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 6 Last Lecture: Gravity Normal forces Strings, ropes and Pulleys Today: Friction Work and Kinetic Energy Potential Energy Conservation of Energy Frictional Forces

More information

Physics Review. Do: Page # Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h

Physics Review. Do: Page # Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h Physics Review Do: Page 413 417 #1 51 1. Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h Use the following information to answer Question 2. The following distance

More information

Version PREVIEW Semester 1 Review Slade (22222) 1

Version PREVIEW Semester 1 Review Slade (22222) 1 Version PREVIEW Semester 1 Review Slade () 1 This print-out should have 48 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A

More information

Section Distance and displacment

Section Distance and displacment Chapter 11 Motion Section 11.1 Distance and displacment Choosing a Frame of Reference What is needed to describe motion completely? A frame of reference is a system of objects that are not moving with

More information

Physics 2A (Fall 2012) Chapter 2: Motion in One Dimension

Physics 2A (Fall 2012) Chapter 2: Motion in One Dimension Physics 2A (Fall 2012) Chapter 2: Motion in One Dimension Whether you think you can or think you can t, you re usually right. Henry Ford It is our attitude at the beginning of a difficult task which, more

More information

Introduction to 1-D Motion Distance versus Displacement

Introduction to 1-D Motion Distance versus Displacement Introduction to 1-D Motion Distance versus Displacement Kinematics! Kinematics is the branch of mechanics that describes the motion of objects without necessarily discussing what causes the motion.! 1-Dimensional

More information

Four Basic Types of Motion Pearson Education, Inc.

Four Basic Types of Motion Pearson Education, Inc. Four Basic Types of Motion Making a Motion Diagram An easy way to study motion is to make a video of a moving object. A video camera takes images at a fixed rate, typically 30 every second. Each separate

More information

Name: Class: Date: v f 2 = v i 2 + 2a x. v f = v i 2 + 2a x = x = v i t a( t)2 = v i t ( g)( t)2

Name: Class: Date: v f 2 = v i 2 + 2a x. v f = v i 2 + 2a x = x = v i t a( t)2 = v i t ( g)( t)2 Assessment Chapter Test B Teacher Notes and Answers Motion in One Dimension CHAPTER TEST B (ADVANCED) 1. a 2. b 3. c 4. a 5. b 6. b 7. a 8. c 9. d 10. c 11. b 12. Although the magnitudes of the displacements

More information

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial =

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial = Practice Template K.E. = 1 2 mv2 P.E. height = mgh P.E. spring = 1 2 kx2 dw =! F! d! r = Fdr cosθ Energy Conservation T.E. initial = T.E. Final (1) Isolated system P.E. initial (2) Energy added E added

More information

Motion in Two Dimensions. 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3.

Motion in Two Dimensions. 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3. Motion in Two Dimensions 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3.Projectile Motion The position of an object is described by its position

More information

3.6 Motion in Two Dimensions Projectile Motion 3.7 Projectile Motion Solving September Problems.notebook

3.6 Motion in Two Dimensions Projectile Motion 3.7 Projectile Motion Solving September Problems.notebook Projectile motion is an extension to two dimensions of free fall motion. Section 3.6 A projectile is an object that moves in two dimensions under the influence of gravity and nothing else. As long as we

More information

PH 1110 Summary Homework 1

PH 1110 Summary Homework 1 PH 111 Summary Homework 1 Name Section Number These exercises assess your readiness for Exam 1. Solutions will be available on line. 1a. During orientation a new student is given instructions for a treasure

More information

Chapter 2. One Dimensional Motion

Chapter 2. One Dimensional Motion Chapter One Dimensional Motion Motion in One Dimension Displacement, Velocity and Speed Acceleration Motion with Constant Acceleration MFMcGraw-PHY 45 Chap_0b One Dim Motion-Revised 1/16/011 Introduction

More information

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once.

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. PART III. KINEMATICS A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. 1. rise (Δy) The vertical separation of any two points on a curve is

More information

Position-versus-Time Graphs

Position-versus-Time Graphs Position-versus-Time Graphs Below is a motion diagram, made at 1 frame per minute, of a student walking to school. A motion diagram is one way to represent the student s motion. Another way is to make

More information

Four Types of Motion We ll Study

Four Types of Motion We ll Study Four Types of Motion We ll Study The branch of mechanics that studies the motion of a body without caring about what caused the motion. Kinematics definitions Kinematics branch of physics; study of motion

More information

Phys 111 Exam 1 September 22, 2015

Phys 111 Exam 1 September 22, 2015 Phys 111 Exam 1 September 22, 2015 1. The time T required for one complete oscillation of a mass m on a spring of force constant k is T = 2π m k. Find the dimension of k to be dimensionally correct for

More information

Mark on the diagram the position of the ball 0.50 s after projection.

Mark on the diagram the position of the ball 0.50 s after projection. IB Kinematics Problems 1. This question is about projectile motion. A small steel ball is projected horizontally from the edge of a bench. Flash photographs of the ball are taken at.1 s intervals. The

More information

Important Vocabulary Speed vs Velocity Acceleration Graphs of Motion Momentum

Important Vocabulary Speed vs Velocity Acceleration Graphs of Motion Momentum Important Vocabulary Speed vs Velocity Acceleration Graphs of Motion Momentum Important Vocabulary Position-location of an object Distance-how far an object has traveled, regardless of direction Displacement-change

More information

Acceleration and Velocity PreTest (Chap 9)

Acceleration and Velocity PreTest (Chap 9) Science 10 Name: Ver: A Date: Acceleration and Velocity PreTest (Chap 9) 1. Which of the following is a unit of acceleration? a. s 2 b. m 2 c. m/s d. m/s/s 2. Data is plotted on a graph with velocity on

More information

Physics I Exam 1 Fall 2014 (version A)

Physics I Exam 1 Fall 2014 (version A) 95.141 Physics I Exam 1 Fall 014 (version A) Section Number Section instructor Last/First Name (print) / Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space

More information

Chapter 9 Review. Block: Date:

Chapter 9 Review. Block: Date: Science 10 Chapter 9 Review Name: Block: Date: 1. A change in velocity occurs when the of an object changes, or its of motion changes, or both. These changes in velocity can either be or. 2. To calculate

More information

EDEXCEL INTERNATIONAL A LEVEL MATHEMATICS. MECHANICS 1 Student Book SAMPLE COPY

EDEXCEL INTERNATIONAL A LEVEL MATHEMATICS. MECHANICS 1 Student Book SAMPLE COPY SPECIFICATIN 1.1.1 UNIT 1 THE MARKET i EDEXCEL INTERNATINAL A LEVEL MATHEMATICS MECHANICS 1 Student Book CNTENTS ii ABUT THIS BK VI 1 MATHEMATICAL MDELS IN MECHANICS 2 2 VECTRS IN MECHANICS 12 3 CNSTANT

More information

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval?

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval? Worksheet 9 1. A poorly tuned Geo Metro (really old cheap, slow, car) can accelerate from rest to a speed of 28 m/s in 20 s. a) What is the average acceleration of the car? b) What distance does it travel

More information

CHAPTER 2: Describing Motion: Kinematics in One Dimension

CHAPTER 2: Describing Motion: Kinematics in One Dimension CHAPTER : Describing Motion: Kinematics in One Dimension Answers to Questions 1. A car speedometer measures only speed. It does not give any information about the direction, and so does not measure velocity..

More information

Physics 1100: 1D Kinematics Solutions

Physics 1100: 1D Kinematics Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Physics 1100: 1D Kinematics Solutions 1. Neatly sketch the following dot motion diagrams: (a) A particle moving right

More information

PH Exam 1. Name

PH Exam 1. Name PH105-007 Exam 1 Name 1) The figure shows the graph of the position x as a function of time for an object moving in the straight line (the x-axis). Which of the following graphs best describes the velocity

More information

AP Physics Free Response Practice Kinematics

AP Physics Free Response Practice Kinematics AP Physics Free Response Practice Kinematics 1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining

More information

Exam 1 Practice SOLUTIONS Physics 111Q.B

Exam 1 Practice SOLUTIONS Physics 111Q.B Exam 1 Practice SOLUTIONS Physics 111Q.B Instructions This is a collection of practice problems for the first exam. The first exam will consist of 7-10 multiple choice questions followed by 1-3 problems

More information

Linear Motion. By Jack, Cole, Kate and Linus

Linear Motion. By Jack, Cole, Kate and Linus Linear Motion By Jack, Cole, Kate and Linus What is it? -Linear Motion is the study of motion, Kinematics, and Dynamics Motion Motion is dependent on the reference frame in which you are observing. If

More information

Veronika Kollár PreMed course

Veronika Kollár PreMed course Veronika Kollár PreMed course 30.07.013. The slope of a line y y y b y 1 x x 1 x The general equation of the line: f (x) = y = m x + b Where: b: intersection on the y axis m: the slope of the line x Intersection

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Unit 1 Parent Guide: Kinematics

Unit 1 Parent Guide: Kinematics Unit 1 Parent Guide: Kinematics Kinematics is the study of the motion of objects. Scientists can represent this information in the following ways: written and verbal descriptions, mathematically (with

More information

Acceleration Worksheet Definitions: velocity: speed in a given direction acceleration: the rate at which the velocity is changing

Acceleration Worksheet Definitions: velocity: speed in a given direction acceleration: the rate at which the velocity is changing Name: Period: Date: / / Acceleration Worksheet Definitions: velocity: speed in a given direction acceleration: the rate at which the velocity is changing Acceleration Notes: 1. What are the three things

More information

Chapter 3: Introduction to Kinematics

Chapter 3: Introduction to Kinematics Chapter 3: Introduction to Kinematics Kari Eloranta 2018 Jyväskylän Lyseon lukio Pre Diploma Program Year October 11, 2017 1 / 17 3.1 Displacement Definition of Displacement Displacement is the change

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Chapter 2: 1-D Kinematics

Chapter 2: 1-D Kinematics Chapter : 1-D Kinematics Types of Motion Translational Motion Circular Motion Projectile Motion Rotational Motion Natural Motion Objects have a proper place Objects seek their natural place External forces

More information

Chapter 2 Section 2: Acceleration

Chapter 2 Section 2: Acceleration Chapter 2 Section 2: Acceleration Motion Review Speed is the rate that an object s distance changes Distance is how far an object has travelled Speed = distance/time Velocity is rate that an object s displacement

More information

Chapter 2: Motion a Straight Line

Chapter 2: Motion a Straight Line Formula Memorization: Displacement What is a vector? Average Velocity Average Speed Instanteous Velocity Average Acceleration Instantaneous Acceleration Constant Acceleration Equation (List all five of

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Physics 101 Fall 2005: Test 1 Free Response and Instructions

Physics 101 Fall 2005: Test 1 Free Response and Instructions Last Name: First Name: Physics 101 Fall 2005: Test 1 Free Response and Instructions Print your LAST and FIRST name on the front of your blue book, on this question sheet, the multiplechoice question sheet

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

Kinematics 2. What equation relates the known quantities to what is being asked?

Kinematics 2. What equation relates the known quantities to what is being asked? Physics R Date: 1. A cheetah goes from rest to 60 miles per hour (26.8 m/s) in 3 seconds. Calculate the acceleration of the cheetah. Kinematics Equations Kinematics 2 How to solve a Physics problem: List

More information

Mechanics & Properties of Matter 5: Energy and Power

Mechanics & Properties of Matter 5: Energy and Power Mechanics & Properties of Matter 5: Energy and Power Energy and Power AIM This unit re-introduces the formulae for calculating work done, potential energy, kinetic energy and power. The principle that

More information

Chapter 2 Kinematics in One Dimension:

Chapter 2 Kinematics in One Dimension: Chapter 2 Kinematics in One Dimension: Vector / Scaler Quantities Displacement, Velocity, Acceleration Graphing Motion Distance vs Time Graphs Velocity vs Time Graphs Solving Problems Free Falling Objects

More information

Chapter 2 Motion Along A Straight Line

Chapter 2 Motion Along A Straight Line Chapter 2 Motion Along A Straight Line Kinematics: Description of Motion Motion in one dimension (1-D) Motion of point particles Treat larger objects as particles center of mass Chapter 2 Motion in 1-D

More information

Calculating Acceleration

Calculating Acceleration Calculating Acceleration Textbook pages 392 405 Before You Read Section 9. 2 Summary How do you think a velocity-time graph might differ from the position-time graph you learned about in the previous chapter?

More information

One Dimensional Motion (Motion in a Straight Line)

One Dimensional Motion (Motion in a Straight Line) One Dimensional Motion (Motion in a Straight Line) Chapter MOTION QUANTITIES 1 Kinematics - Intro Mechanics generally consists of two parts: Kinematics and Dynamics. Mechanics Kinematics Description of

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Worksheet 3. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object.

Worksheet 3. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object. Worksheet 3 Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object. 1. The object is moving away from the origin at a constant (steady) speed. 2. The object

More information

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Kinetic Energy Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =

More information

4Kinematics ONLINE PAGE PROOFS. 4.1 Kick off with CAS

4Kinematics ONLINE PAGE PROOFS. 4.1 Kick off with CAS 4. Kick off with CAS 4Kinematics 4. Constant acceleration 4. Motion under gravity 4.4 Velocity time graphs 4.5 Variable acceleration 4.6 Review 4. Kick off with CAS Kinematics involves the study of position,

More information

Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius cm and height cm.

Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius cm and height cm. Coordinator: W. Al-Basheer Sunday, June 28, 2015 Page: 1 Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius 10.00 cm and height 30.48 cm. A) 25.85

More information

Interactive Engagement via Thumbs Up. Today s class. Next class. Chapter 2: Motion in 1D Example 2.10 and 2.11 Any Question.

Interactive Engagement via Thumbs Up. Today s class. Next class. Chapter 2: Motion in 1D Example 2.10 and 2.11 Any Question. PHYS 01 Interactive Engagement via Thumbs Up 1 Chap.1 Sumamry Today s class SI units Dimensional analysis Scientific notation Errors Vectors Next class Chapter : Motion in 1D Example.10 and.11 Any Question

More information