Physics 101 Fall 2005: Test 1 Free Response and Instructions

Size: px
Start display at page:

Download "Physics 101 Fall 2005: Test 1 Free Response and Instructions"

Transcription

1 Last Name: First Name: Physics 101 Fall 2005: Test 1 Free Response and Instructions Print your LAST and FIRST name on the front of your blue book, on this question sheet, the multiplechoice question sheet and the multiple-choice answer sheet. TIME ALLOWED 90 MINUTES The test consists of four free-response questions and ten multiple-choice questions. The test is graded on a scale of 100 points; the first free-response question accounts for 15 points, the second for 15 points, the third for 20 points, the fourth for 20 and the multiple-choice questions account for 30 points. Answer the four free-response questions in your blue book. Answer the multiple-choice questions by marking a dark X in the appropriate column and row in the table on the multiple-choice answer sheet. Consult no books or notes of any kind. You may use a hand-held calculator in non-graphing, nonprogrammed mode. Do NOT take test materials outside of the class at any time. Return this question sheet along with your blue book and multiple-choice question sheet. Write and sign the Pledge on the front of your blue book. Show your work for the free-response problems, including neat and clearly labelled figures, in your blue book. It is possible that answers without explanation (even correct answers) will not be given credit. Take g = 9.8 m/s 2 or 32 ft/s (15 pts) A model rocket has a constant vertical acceleration of 40.0 m/s 2 while its engine is running. The rocket is fired vertically, and the engine runs for 2.5 s before it uses up all the fuel. After the engine stops, the rocket continues as a free particle until it reaches the ground. Assume the rocket is initially at rest on the ground. Calculate (a) the highest point the rocket reaches, (b) the total time the rocket is in the air, (c) the speed of the rocket just before it hits the ground. 2. (15 pts) As your jet plane accelerates down the runway during takeoff, you decide to determine its acceleration which is constant. To do this you take out a plumb bob, i.e., a mass on the end of a light string, and suspend it. You note that instead of hanging vertically, its string makes a constant angle of θ with respect to the vertical as shown in the figure below. (a) Draw and label a free-body-diagram for the plumb bob. (b) Derive an expression for the acceleration of the plane in terms of g and θ. (c) If the mass of the bob is m, what is the tension in the string? Figure 1: Problem 2

2 October 4, 2005 PHYS101 Test 1 - Free Response Section Page 2 3. (20 pts) A whale traveling southwest at 7.0 km/hr is spotted 5 km to the northwest off the coast of Malibu. Photographers jump into a boat that can move at 30 km/hr. (a) With what velocity will the photographers intercept the whale assuming that their boat travels a straight-line path? (b) What is the position vector of the whale from the original point on the coast when the photographers reach the whale? 4. (20 pts) A rocket designed to place small payloads into orbit is carried to an altitude of 12.0 km above sea level by a converted airliner. When the airliner is flying in a straight line at a constant speed of 850 km/hr, the rocket is dropped. After the drop, the airliner maintains the same altitude and speed and continues to fly in a straight line. The rocket falls for a brief time, after which its rocket motor turns on. Once its motor is on, the combined effects of thrust and gravity give the rocket a constant acceleration of magnitude 3g directed at an angle of 30 above the horizontal. For safety reasons, it is arranged that the rocket passes 1 km in front of the airliner when it climbs through the airliner s altitude. Ignore air resistance. (a) Sketch a x vs. t graph showing the motions of both the rocket and the airliner (on the same graph). (b) Sketch a y vs. t graph showing the motions of both the rocket and the airliner (on the same graph). (c) What is the time interval between the firing of the rocket and it passing 1 km in front of the airliner?

3 Last Name: First Name: Physics 101 Fall 2005: Test 1 Multiple-Choice Questions 1. A woman swings a stone attached to a rope in a horizontal circle at constant speed. The figure below represents the path of the rock looking down from above moving in a counter-clockwise direction. Which vector could represent the acceleration? 2. Assume that the new Ford Mustang accelerates uniformly from 80 km/h (50 mi/h) at t = 0 to 113 km/h (70 mi/hr) at t = 9 s. Which of the following graphs below best describes the motion of the car?

4 October 4, 2005 PHYS101 Test 1 - Multiple-Choice Section Page 4 3. In which case does block m experience a larger acceleration? In case (1) there is a 10 kg mass hanging from a rope and falling with constant acceleration. In case (2) a hand is providing a constant downward force of 98 N. Take g = 9.8 m/s 2. Assume massless ropes and frictionless surfaces. (a) case 1. (b) both cases are the same. (c) depends on the value of m (d) case 2. Refer to the figure below for questions 4 and Which of the position versus time curves in the figure above best shows the motion of an object of mass m under the influence of a constant resultant force that acts in the +x direction? (a) a (b) b (c) c (d) d (e) e 5. Which of the position versus time curves in the figure above best shows the motion of an object with non-zero speed, but zero acceleration? (a) a (b) b (c) c (d) d (e) e

5 October 4, 2005 PHYS101 Test 1 - Multiple-Choice Section Page 5 Refer to the figure below for questions 6 and 7. The figure below represents the positions of two blocks of equal mass at successive 0.1 s time intervals. The blocks are moving to the right. 6. The magnitude of the resultant forces acting on the blocks are related as follows: (a) The magnitude of the resultant force on block A is greater than the magnitude of the resultant force acting on block B. (b) The magnitude of the resultant force on block A is equal to the magnitude of the resultant force acting on block B, and both resultant forces are not zero. (c) The magnitude of the resultant force on block A is equal to the magnitude of the resultant force acting on block B, and both resultant forces are zero. (d) The magnitude of the resultant force on block B is greater than the magnitude of the resultant force acting on block A. 7. Do the blocks ever have the same speed? (a) No. (b) Yes, at instant 1. (c) Yes, at instant 3. (d) Yes, at instant 4. (e) Yes, at some time during the interval 3 to A force F acts on mass m 1 giving it an acceleration a 1. The same force acts on a different mass m 2 giving it an acceleration a 2 = 2 a 1. If m 1 and m 2 are glued together and the same force F acts on this combination, what is the resulting acceleration? (a) 3 4 a (b) 3 2 a (c) 1 2 a (d) 2 3 a (e) 4 3 a

6 October 4, 2005 PHYS101 Test 1 - Multiple-Choice Section Page 6 9. The figure below shows the trajectory of a ball kicked three different times. For each case, the ball rises to the same height h as indicated in the figure. For which case is the ball launched with the greatest speed? (a) Case 1 (b) Case 2 (c) Case 3 (d) They are all launched with the same speed. 10. Two people (labelled P and Q) are on escalators, both inclined at 45 to the horizontal. P is moving down the escalator at a constant speed and Q is moving up the other escalator at the same constant speed. Of the vectors shown, the one that best represents the velocity of Q with respect to P is

7 Last Name: First Name: Physics 101 Fall 2005: Test 1 Multiple-Choice Answers A B C D E

November 16, 2006 PHYS101 Test2 - Free Response Section Page 3

November 16, 2006 PHYS101 Test2 - Free Response Section Page 3 Last Name: First Name: Print your LAST and FIRST name on the front of your blue book, on this question sheet, the multiple-choice question sheet and the multiple-choice answer sheet. TIME ALLOWED 90 MINUTES

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

Spring 2010 Physics 141 Practice Exam II Phy141_mt1b.pdf

Spring 2010 Physics 141 Practice Exam II Phy141_mt1b.pdf 1. (15 points) You are given two vectors: A has length 10. and an angle of 60. o (with respect to the +x axis). B has length 10. and an angle of 200. o (with respect to the +x axis). a) Calculate the components

More information

Physics 101 Fall 2006: Final Exam Free Response and Instructions

Physics 101 Fall 2006: Final Exam Free Response and Instructions Last Name: First Name: Physics 101 Fall 2006: Final Exam Free Response and Instructions Print your LAST and FIRST name on the front of your blue book, on this question sheet, the multiplechoice question

More information

Unit 2: Vector Dynamics

Unit 2: Vector Dynamics Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

More information

Practice Test 1 1. A steel cylinder is 39 mm in height and 39 mm in diameter.

Practice Test 1 1. A steel cylinder is 39 mm in height and 39 mm in diameter. Practice Test 1 1. A steel cylinder is 39 mm in height and 39 mm in diameter. (a) How much does it weigh? (density of steel: ρ = 7560 kg/m3) 2. An automobile moving along a straight track changes its velocity

More information

Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius cm and height cm.

Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius cm and height cm. Coordinator: W. Al-Basheer Sunday, June 28, 2015 Page: 1 Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius 10.00 cm and height 30.48 cm. A) 25.85

More information

Physics 23 Exam 2 March 3, 2009

Physics 23 Exam 2 March 3, 2009 Use the following to answer question 1: A stationary 4-kg shell explodes into three pieces. Two of the fragments have a mass of 1 kg each and move along the paths shown with a speed of 10 m/s. The third

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In the diagram shown, the unknown vector is 1) Diagram 1 A) B - A. B) A - B. C) A + B.

More information

Summer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.

Summer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

Tutorial 1. Phys 201 Examples

Tutorial 1. Phys 201 Examples Tutorial 1 Phys 201 Examples 0 TUTORIAL 1. PHYS 201 EXAMPLES 1 Examples PHYS 201 - General Physics Eastern Oregon University TUTORIAL 1. PHYS 201 EXAMPLES 2 Chapter 1 Systems of Measurement Example 1.0:

More information

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E Name - 1 -APPH_MidTerm AP Physics Date Mid - Term Exam Part 1: Write your answers to all multiple choice questions in this space. 1) 2) 3) 10) 11) 19) 20) 4) 12) 21) 5) 13) 22) 6) 7) 14) 15) 23) 24) 8)

More information

Exam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 1 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Let vector a! = 4î + 3 ĵ and vector b! = î + 2 ĵ (or b! = î + 4 ĵ ). What is the

More information

Honors Physics Acceleration and Projectile Review Guide

Honors Physics Acceleration and Projectile Review Guide Honors Physics Acceleration and Projectile Review Guide Major Concepts 1 D Motion on the horizontal 1 D motion on the vertical Relationship between velocity and acceleration Difference between constant

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 MIDTERM TEST Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please check): 01 A.

More information

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down) Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Answers without work shown will not be given any credit.

Answers without work shown will not be given any credit. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall Term 2012 Problem 1 of 4 (25 points) Exam 1 Solutions with Grading Scheme Answers without work shown will not be given any

More information

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER MIDTERM REVIEW AP Physics 1 McNutt Name: Date: Period: AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER 1.) A car starts from rest and uniformly accelerates

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

Topic 2 Revision questions Paper

Topic 2 Revision questions Paper Topic 2 Revision questions Paper 1 3.1.2018 1. [1 mark] The graph shows the variation of the acceleration a of an object with time t. What is the change in speed of the object shown by the graph? A. 0.5

More information

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds. Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

More information

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box?

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box? Review Packet Name: _ 1. A box is sliding to the right along a horizontal surface with a velocity of 2 m/s. There is friction between the box and the horizontal surface. The box is tied to a hanging stone

More information

pg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra

pg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra pg 165 A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph above. The object starts from rest at displacement x

More information

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

Exam 2 Phys Fall 2002 Version A. Name ID Section

Exam 2 Phys Fall 2002 Version A. Name ID Section Closed book exam - Calculators are allowed. Only the official formula sheet downloaded from the course web page can be used. You are allowed to write notes on the back of the formula sheet. Use the scantron

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest

More information

Physics 101. Hour Exam I Fall Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

Physics 101. Hour Exam I Fall Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. This is a closed book exam. You have ninety (90) minutes to complete it.

More information

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST NAME FREE RESPONSE PROBLEMS Put all answers on this test. Show your work for partial credit. Circle or box your answers. Include the correct units and the correct

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Phys101-T121-First Major Exam Zero Version, choice A is the correct answer

Phys101-T121-First Major Exam Zero Version, choice A is the correct answer Phys101-T121-First Major Exam Zero Version, choice A is the correct answer Q1. Find the mass of a solid cylinder of copper with a radius of 5.00 cm and a height of 10.0 inches if the density of copper

More information

IB Questionbank Physics NAME. IB Physics 2 HL Summer Packet

IB Questionbank Physics NAME. IB Physics 2 HL Summer Packet IB Questionbank Physics NAME IB Physics 2 HL Summer Packet Summer 2017 About 2 hours 77 marks Please complete this and hand it in on the first day of school. - Mr. Quinn 1. This question is about collisions.

More information

Elementary Physics October 8, 2007

Elementary Physics October 8, 2007 INSTRUCTIONS: For for the multiple choice questions 1 8, you will be scored only on the basis of choosing only the one correct answer for full credit. No partial credit will be given. For questions 9 10,

More information

Phys 111 Exam 1 September 19, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID

Phys 111 Exam 1 September 19, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID Phys 111 Exam 1 September 19, 2017 Name Section University ID Please fill in your computer answer sheet as follows: 1) In the NAME grid, fill in your last name, leave one blank space, then your first name.

More information

Physics 121, Final Exam Do not turn the pages of the exam until you are instructed to do so.

Physics 121, Final Exam Do not turn the pages of the exam until you are instructed to do so. , Final Exam Do not turn the pages of the exam until you are instructed to do so. You are responsible for reading the following rules carefully before beginning. Exam rules: You may use only a writing

More information

Physics 101 Hour Exam 1 March 3, 2014

Physics 101 Hour Exam 1 March 3, 2014 Physics 101 Hour Exam 1 March 3, 2014 Last Name: First Name ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Calculators cannot be share Please keep yours

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

Physics Exam 2 October 11, 2007

Physics Exam 2 October 11, 2007 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

More information

Comprehensive Exam Session III Classical Mechanics Physics Department- Proctor: Dr. Jack Straton (Sun. Jan 11 th, 2015) (3 hours long 1:00 to 4:00 PM)

Comprehensive Exam Session III Classical Mechanics Physics Department- Proctor: Dr. Jack Straton (Sun. Jan 11 th, 2015) (3 hours long 1:00 to 4:00 PM) Letter Comprehensive Exam Session III Classical Mechanics Physics Department- Proctor: Dr. Jack Straton (Sun. Jan 11 th, 2015) (3 hours long 1:00 to 4:00 PM) If you cannot solve the whole problem, write

More information

LAHS Physics Semester 1 Final Practice Multiple Choice

LAHS Physics Semester 1 Final Practice Multiple Choice LAHS Physics Semester 1 Final Practice Multiple Choice The following Multiple Choice problems are practice MC for the final. Some or none of these problems may appear on the real exam. Answers are provided

More information

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph. Kinematics 1993B1 (modified) A student stands in an elevator and records his acceleration as a function of time. The data are shown in the graph above. At time t = 0, the elevator is at displacement x

More information

CHAPTER # 2 VECTORS THEORETICAL QUESTIONS PAST PAPERS

CHAPTER # 2 VECTORS THEORETICAL QUESTIONS PAST PAPERS CHAPTER # 2 VECTORS THEORETICAL QUESTIONS PAST PAPERS 1. What are vectors and scalar quantities? Give one example of each. (1993, 2012) 2. What are the different methods of adding two vectors? (1988) 3.

More information

Physics S Exam 1 March 11th, Last Name: First Name: Discussion Section:

Physics S Exam 1 March 11th, Last Name: First Name: Discussion Section: Physics 7 5S Exam 1 March 11th, 5 Last Name: First Name: Discussion Section: Instructions- This is a closed book exam. No memory aids of any kind, electronic or otherwise, may be used. You have fifty (5)

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2015

AAPT UNITED STATES PHYSICS TEAM AIP 2015 215 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 215 215 F = ma Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = 1 N/kg throughout this contest.

More information

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached.

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached. 1. A ball of mass M attached to a string of length L moves in a circle in a vertical plane as shown above. At the top of the circular path, the tension in the string is twice the weight of the ball. At

More information

Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics)

Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics) Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics) Instructions: Pick the best answer available for Part A. Show all your work for each question in Part B Part A: Multiple-Choice 1. Inertia

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3 A.P. Physics B Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters - 3 * In studying for your test, make sure to study this review sheet along with your quizzes and homework assignments.

More information

Physics 101. Hour Exam I Fall Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

Physics 101. Hour Exam I Fall Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Keep your calculator on your own desk. Calculators cannot be shared. This

More information

Physics I (Navitas) EXAM #2 Spring 2015

Physics I (Navitas) EXAM #2 Spring 2015 95.141 Physics I (Navitas) EXAM #2 Spring 2015 Name, Last Name First Name Student Identification Number: Write your name at the top of each page in the space provided. Answer all questions, beginning each

More information

1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant

1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant 1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90 meters are run with the same velocity

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term = # v x. t " =0. are the values at t = 0.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term = # v x. t  =0. are the values at t = 0. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term 2012 Exam 1: Practice Problems! d r!! d v! One-Dimensional Kinematics: v =, a = dt dt t " =t v x (t)! v x,0 = # a x (

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

More information

(1) (3)

(1) (3) 1. This question is about momentum, energy and power. (a) In his Principia Mathematica Newton expressed his third law of motion as to every action there is always opposed an equal reaction. State what

More information

PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems. Kinetic Energy and PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

This is a closed book exam. You have ninety (90) minutes to complete it.

This is a closed book exam. You have ninety (90) minutes to complete it. Physics 101A Hour Exam I Spring 2012 Last Name: First Name ID Discussion Section: Discussion TA Name: Instructions This is a closed book exam. You have ninety (90) minutes to complete it. 1. Use a #2 pencil;

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 MIDTERM TEST October 22, 2015 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Exam 2--PHYS 101--F17

Exam 2--PHYS 101--F17 Name: Exam 2--PHYS 0--F7 Multiple Choice Identify the choice that best completes the statement or answers the question.. A ball is thrown in the air at an angle of 30 to the ground, with an initial speed

More information

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50. 1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction

More information

3. In the figure below, the coefficient of friction between the center mass and the surface is

3. In the figure below, the coefficient of friction between the center mass and the surface is Physics 04A Exa October 9, 05 Short-answer probles: Do any seven probles in your exa book. Start each proble on a new page and and clearly indicate the proble nuber for each. If you attept ore than seven

More information

Principles and Problems. Chapter 6: Motion in Two Dimensions

Principles and Problems. Chapter 6: Motion in Two Dimensions PHYSICS Principles and Problems Chapter 6: Motion in Two Dimensions CHAPTER 6 Motion in Two Dimensions BIG IDEA You can use vectors and Newton s laws to describe projectile motion and circular motion.

More information

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.

More information

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons.

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

BROCK UNIVERSITY. Circle correct course: PHYS 1P21 or PHYS 1P91. Name: Student #:

BROCK UNIVERSITY. Circle correct course: PHYS 1P21 or PHYS 1P91. Name: Student #: Circle correct course: PHYS 1P21 or PHYS 1P91 Name: Student #: BROCK UNIVERSITY Test 6: June 2016 Number of pages: 6 Course: PHYS 1P21/1P91 Number of students: 111 Examination date: 14 June 2016 Time of

More information

66 Chapter 6: FORCE AND MOTION II

66 Chapter 6: FORCE AND MOTION II Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the

More information

Constants: Acceleration due to gravity = 9.81 m/s 2

Constants: Acceleration due to gravity = 9.81 m/s 2 Constants: Acceleration due to gravity = 9.81 m/s 2 PROBLEMS: 1. In an experiment, it is found that the time t required for an object to travel a distance x is given by the equation = where is the acceleration

More information

Constants: Acceleration due to gravity = 9.81 m/s 2

Constants: Acceleration due to gravity = 9.81 m/s 2 Constants: Acceleration due to gravity = 9.81 m/s 2 PROBLEMS: 1. In an experiment, it is found that the time t required for an object to travel a distance x is given by the equation = where is the acceleration

More information

Advanced Subsidiary / Advanced Level

Advanced Subsidiary / Advanced Level GCE Examinations Mechanics Module M1 Advanced Subsidiary / Advanced Level Paper F Time: 1 hour 30 minutes Instructions and Information Candidates may use any calculator except those with a facility for

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

UIC PHYSICS 105 Fall st Midterm Exam

UIC PHYSICS 105 Fall st Midterm Exam UIC: Physics 105 1st Midterm Exam Fall 2014 Thursday, October 2 # LAST Name (print) FIRST Name (print) Signature: UIN #: Giving or receiving aid in any examination is cause for dismissal from the University.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

PHYSICS 221 SPRING EXAM 1: February 16, 2012; 8:00pm 10:00pm

PHYSICS 221 SPRING EXAM 1: February 16, 2012; 8:00pm 10:00pm PHYSICS 221 SPRING 2012 EXAM 1: February 16, 2012; 8:00pm 10:00pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2017

AAPT UNITED STATES PHYSICS TEAM AIP 2017 2017 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 2017 2017 F = ma Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = 10 N/kg throughout this

More information

a. What is the angular frequency ω of the block in terms of k, l, and m?

a. What is the angular frequency ω of the block in terms of k, l, and m? 1 Problem 1: (4 pts.) Two spherical planets, each of mass M and Radius R, start out at rest with a distance from center to center of 4R. What is the speed of one of the planets at the moment that their

More information

Free Response- Exam Review

Free Response- Exam Review Free Response- Exam Review Name Base your answers to questions 1 through 3 on the information and diagram below and on your knowledge of physics. A 150-newton force, applied to a wooden crate at an angle

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises For all these exercises, assume that all strings are massless and all pulleys are both massless and frictionless. We will improve our model and learn how to account for the mass

More information

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

The net force on a moving object is suddenly reduced to zero. As a consequence, the object The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

More information

SPRING 2005 Midterm Exam #1, Part A

SPRING 2005 Midterm Exam #1, Part A Physics 151 SPRING 2005 Midterm Exam #1, Part A Roster No.: Score: 17 pts. possible Exam time limit: 50 minutes. You may use a calculator and both sides of ONE sheet of notes, handwritten only. Closed

More information

INTI INTERNATIONAL UNIVERSITY FOUNDATION IN SCIENCE (CFSI) PHY1203: GENERAL PHYSICS 1 FINAL EXAMINATION: JUNE 2015 SESSION

INTI INTERNATIONAL UNIVERSITY FOUNDATION IN SCIENCE (CFSI) PHY1203: GENERAL PHYSICS 1 FINAL EXAMINATION: JUNE 2015 SESSION INTI INTERNATIONAL UNIVERSITY PHY1203(F)/Page 1 of 6 FOUNDATION IN SCIENCE (CFSI) PHY1203: GENERAL PHYSICS 1 FINAL EXAMINATION: JUNE 2015 SESSION Instruction: This paper consists of FIVE (5) questions.

More information

Name Student ID Phys121 Win2011

Name Student ID Phys121 Win2011 (1) (3 pts) The airplane in the figure below is travelling at a constant speed and at a fixed altitude with its engines providing forward thrust. Which of the free-body diagrams below best represents the

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information

Physics 101. Hour Exam I Spring Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

Physics 101. Hour Exam I Spring Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Calculators may not be shared. Please keep your calculator on your own desk.

More information

AP Physics 1 Work Energy and Power Practice Test Name

AP Physics 1 Work Energy and Power Practice Test Name AP Physics 1 Work Energy and Power Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two objects, one of mass m and the other

More information

REVIEW SET 2 MIDTERM 2

REVIEW SET 2 MIDTERM 2 Physics 2010 Fall 2012 Orest Symko REVIEW SET 2 MIDTERM 2 1. In a popular amusement park ride, a rotating cylinder of radius 15.0 m rotates with an angular speed of 8.0 rad/s. The floor of then drops away

More information

Chapter 2 Motion in One Dimension

Chapter 2 Motion in One Dimension Chapter 2 Motion in One Dimension Multiple Choice 1. The position of a particle moving along the x axis is given by 2 x = ( 21+ 22t 6 0. t )m, where t is in s. What is the average velocity during the time

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 15, 2001 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

More information

iat is the minimum coe cient of static friction necessary to keep the top block from slipping on " % e bottom block?

iat is the minimum coe cient of static friction necessary to keep the top block from slipping on  % e bottom block? 1. Which one ofthe following terms is used to indicate the natural tendency of an object to remain at rest or in motion at a constant speed along a straight line? A) force B) acceleration C) equilibrium

More information

EXAM 3 MECHANICS 40% of the final grade

EXAM 3 MECHANICS 40% of the final grade EXAM 3 MECHANICS 40% of the final grade Winter 2018 Name: Each multiple-choice question is worth 2 marks. 1. The mass of the two wheels shown in the diagram is the same. A force of 1 N is exerted on the

More information

Physics 20 Practice Problems for Exam 1 Fall 2014

Physics 20 Practice Problems for Exam 1 Fall 2014 Physics 20 Practice Problems for Exam 1 Fall 2014 Multiple Choice Short Questions (1 pt ea.) Circle the best answer. 1. An apple falls from a tree and hits the ground 5 meters below. It hits the ground

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 MIDTERM TEST Alternative Sitting October 011 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE

More information

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS PHYS 14 Section A1 Mid-Term Examination Spring 006 SOLUTIONS Name Student ID Number Instructor Marc de Montigny Date Monday, May 15, 006 Duration 60 minutes Instructions Items allowed: pen or pencil, calculator

More information

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor.

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor. 51 IDENTIFY: for each object Apply to each weight and to the pulley SET UP: Take upward The pulley has negligible mass Let be the tension in the rope and let be the tension in the chain EXECUTE: (a) The

More information

REVIEW SET 2 MIDTERM 2

REVIEW SET 2 MIDTERM 2 Physics 2010 Fall 2009 Sid Rudolph REVIEW SET 2 MIDTERM 2 1. In a popular amusement park ride, a rotating cylinder of radius 15.0 m rotates with an angular speed of 8.0 rad/s. The floor of then drops away

More information

Mechanics M1 Advanced Subsidiary

Mechanics M1 Advanced Subsidiary Paper Reference(s) 6677 Edexcel GCE Mechanics M1 Advanced Subsidiary Wednesday 12 January 2005 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae (Lilac) Items included

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

More information

Family Name (Please print Given Name(s) Student Number Tutorial Group in BLOCK LETTERS) as on student card Code (eg. R3C,etc)

Family Name (Please print Given Name(s) Student Number Tutorial Group in BLOCK LETTERS) as on student card Code (eg. R3C,etc) Family Name (Please print Given Name(s) Student Number Tutorial Group in BLOCK LETTERS) as on student card Code (eg. R3C,etc) PHY131H1S Mid-Term Test version 1 Tuesday, February 24, 2009 Duration: 80 minutes

More information

Force Concept Inventory

Force Concept Inventory Force Concept Inventory 1. Two metal balls are the same size but one weighs twice as much as the other. The balls are dropped from the roof of a single story building at the same instant of time. The time

More information

The next two questions pertain to the situation described below.

The next two questions pertain to the situation described below. PHYS 101 Exams PHYS 101 SP17 Exam 1 PRINT (A) The next two questions pertain to the situation described below. A boat is crossing a river with a speed v b = 8.3 m/s relative to the water. The river is

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

Family Name (Please print Given Name(s) Student Number Practical Group in BLOCK LETTERS) as on student card Code

Family Name (Please print Given Name(s) Student Number Practical Group in BLOCK LETTERS) as on student card Code Family Name (Please print Given Name(s) Student Number Practical Group in BLOCK LETTERS) as on student card Code PHY131H1F - SUMMER Term Test version 1 Thursday, May 27, 2010 Duration: 80 minutes PLEASE

More information