Page 1. Name:

Size: px
Start display at page:

Download "Page 1. Name:"

Transcription

1 Name: Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the motion of a body that is moving with A) decreasing acceleration B) increasing speed C) constant speed D) increasing acceleration 3) A baseball pitcher throws a fastball at 42 meters per second. If the batter is 18 meters from the pitcher, approximately how much time does it take for the ball to reach the batter? A) 1.9 s B) 0.43 s C) 2.3 s D) 0.86 s 4) The average speed of a plane was 600 kilometers per hour. How long did it take the plane to travel 120 kilometers? A) 0.7 hour B) 5 hours C) 0.5 hour D) 0.2 hour 5) A car travels between the 100.-meter and 250.-meter highway markers in 10. seconds. The average speed of the car during this interval is A) 10. m/s B) 35 m/s C) 15 m/s D) 25 m/s 6) A cart starting from rest travels a distance of 3.6 meters in 1.8 seconds. The average speed of the cart is A) 2.0 m/s B) 0.20 m/s C) 5.0 m/s D) 0.50 m/s 7) The graph below represents the motion of an object traveling in a straight line as a function of time. What is the average speed of the object during the first four seconds? A) 0 m/s B) 1 m/s C) 2 m/s D) 0.5 m/s 8) Which graph best represents the motion of an object sliding down a frictionless inclined plane? A) C) B) D)

2 9) Which graph best represents the motion of an object initially at rest and accelerating uniformly? Page 2 A) C) B) D) 10) The graph below represents the relationship between distance and time for an object in motion. During which interval is the speed of the object changing? A) CD B) DE C) BC D) AB 11) The diagram below represents a 20-newton force pulling an object up a hill at a constant rate of 2 meters per second. Which graph best represents the relationship between velocity and time for the object? A) C) B) D)

3 12) An object initially at rest accelerates at 5 meters per second 2 until it attains a speed of 30 meters per second. What distance does the object move while accelerating? A) 3 m B) 90 m C) 30 m D) 600 m 13) A child riding a bicycle at 15 meters per second decelerates at the rate of 3.0 meters per second 2 for 4.0 seconds. What is the child's speed at the end of the 4.0 seconds? A) 7.0 m/s B) 27 m/s C) 12 m/s D) 3.0 m/s 14) An object accelerates uniformly from rest to a speed of 50. meters per second in 5.0 seconds. The average speed of the object during the 5.0-second interval is A) 50. m/s B) 5.0 m/s C) 10. m/s D) 25 m/s 15) A ball is projected horizontally to the right from a height of 50. meters, as shown in the diagram below Page 3 Which diagram best represents the position of the ball at 1.0-second intervals? [Neglect air resistance.] A) B) C) D) Questions 16 and 17 refer to the following: A 10.-kilogram object, starting from rest, slides down a frictionless incline with a constant acceleration of 2.0 m/sec 2 for 4.0 seconds. 16) What is the velocity of the object at the end of the 4.0 seconds? A) 4.0 m/sec B) 2.0 m/sec C) 8.0 m/sec D) 16 m/sec 17) During the 4.0 seconds, the object moves a total distance of A) 8.0 m B) 16 m C) 4.0 m D) 32 m 18) A car is traveling at a constant speed of 14 meters per second along a straight highway. A tree and a speed limit sign are beside the highway. As it passes the tree, the car starts to accelerate. The car is accelerated uniformly at 2.0 meters per second 2 until it reaches the speed limit sign, 5.0 seconds later. When the car reaches the sign, the car's speed is A) less than the speed limit B) equal to the speed limit C) greater than the speed limit

4 19) Which statement explains why a book resting on a table is in equilibrium? A) The weight of the book and the table's upward force on the book are equal in magnitude, but opposite in direction. B) The weight of the book equals the weight of the table. C) The acceleration due to gravity is 9.8 m/s 2 for both the book and the table. D) There is a net force acting downward on the book. 20) The magnitude of the force that a baseball bat exerts on a ball is 50. newtons. The magnitude of the force that the ball exerts on the bat is A) 5.0 N B) 10. N C) 50. N D) 250 N 21) A test booklet is sitting at rest on a desk. Compared to the force of the booklet on the desk, the force of the desk on the booklet is A) greater B) the same C) less 22) A 5.0-kilogram cart moving with a velocity of 4.0 meters per second is brought to a stop in 2.0 seconds. The magnitude of the average force used to stop the cart is A) 2.0 newtons B) 4.0 newtons C) 10. newtons D) 20. newtons Page 4 23) A cart rolls down an inclined plane with constant speed as shown in the diagram below. Which arrow represents the direction of the frictional force? A) A B) B C) C D) D 24) A horizontal force is used to pull a 5.0-kilogram cart at a constant speed of 5.0 meters per second across the floor as shown in the diagram below. If the force of friction between the cart and the floor is 10. newtons, the magnitude of the horizontal force along the handle of the cart is A) 10. N B) 50. N C) 25 N D) 5.0 N 25) A force of 50. newtons causes an object to accelerate at 10. meters per second squared. What is the mass of the object? A) 0.20 kg B) 60. kg C) 500 kg D) 5.0 kg

5 26) In the graph below, the acceleration of an object is plotted against the unbalanced force on the object Page 5 What is the object's mass? A) 1 kg B) 2 kg C) 0.2 kg D) 0.5 kg 27) An 800-newton person is standing in an elevator. If the upward force of the elevator on the person is 600 newtons, the person is A) at rest B) accelerating upward C) accelerating downward D) moving downward at constant speed 28) A 50.0-kilogram object in outer space is attracted to a nearby planet with a net force of 400. newtons. What is the magnitude of the object's acceleration? A) 9.81 m/s 2 B) 8.00 m/s 2 C) 78.4 m/s 2 D) 2,000 m/s 2 29) The graph below represents the velocity-time relationship for a 2.0-kilogram mass moving along a horizontal frictionless surface. The net force on the mass during interval DE is A) 2.0 N B) 4.0 N C) 0 N D) 1.0 N 30) If the mass of a moving object could be doubled, the inertia of the object would be A) quadrupled B) unchanged C) halved D) doubled 31) A net force of 5.0 newtons moves a 2.0-kilogram object a distance of 3.0 meters in 3.0 seconds. How much work is done on the object? A) 10. J B) 15 J C) 1.0 J D) 30. J 32) A 2.2-kilogram mass is pulled by a 30.-newton force through a distance of 5.0 meters as shown in the diagram below. What amount of work is done? A) 66 J B) 11 J C) 330 J D) 150 J

6 Page 6 33) In the diagram below, 55 joules of work is needed to raise a 10.-newton weight 5.0 meters at a constant speed. How much work is done to overcome friction as the weight is raised? A) 5 J B) 50. J C) 11 J D) 5.5 J 34) Which term is a unit of power? A) newton B) watt C) joule D) hertz 35) A motor has an output of 1,000 watts. When the motor is working at full capacity, how much time will it require to lift a 50-newton weight 100 meters? A) 50 s B) 10 s C) 5 s D) 100 s 36) Which mass has the greatest potential energy with respect to the floor? A) 50-kg mass resting on the floor B) 6-kg mass 5 meters above the floor C) 10-kg mass 2 meters above the floor D) 2-kg mass 10 meters above the floor 37) Which graph best represents the relationship between potential energy (PE) and height above ground (h) for a freely falling object released from rest? A) C) B) D) 38) A mass resting on a shelf 10.0 meters above the floor has a gravitational potential energy of 980. joules with respect to the floor. The mass is moved to a shelf 8.00 meters above the floor. What is the new gravitational potential energy? A) 490. J B) 960. J C) 196 J D) 784 J

7 39) Three people of equal mass climb a mountain using paths A, B, and C shown in the diagram below Page 7 Along which path(s) does a person gain the greatest amount of gravitational potential energy from start to finish? A) A, only B) The gain is the same along all paths. C) B, only D) C, only 40) The diagram below represents a flat racetrack as viewed from above, with the radii of its two curves indicated. A car with a mass of 1,000 kilograms moves counterclockwise around the track at a constant speed of 20 meters per second. Compared to the kinetic energy of the car while moving from A to D, the kinetic energy of the car while moving from D to C is A) the same B) greater C) less 41) Which cart shown below has the greatest kinetic energy? A) C) B) D) 42) The graph below represents the velocity-time relationship for a 2.0-kilogram mass moving along a horizontal frictionless surface. The kinetic energy of the mass is greatest during interval A) BC B) DE C) CD D) AB

8 43) A 10.-kilogram object and a 5.0-kilogram object are released simultaneously from a height of 50. meters above the ground. After falling freely for 2.0 seconds, the objects will have different A) displacements B) accelerations C) kinetic energies D) speeds Page 8 44) Which graph best represents the relationship between the kinetic energy (KE) of a moving object as a function of its velocity (v)? A) C) B) D) 45) The diagram below represents a 2.0-kilogram mass placed on a frictionless track at point A and released from rest. Assume the gravitational potential energy of the system to be zero at point E. If the mass were released from rest at point B, its speed at point C would be A) 0 m/sec B) 10. m/sec C) 0.50 m/sec D) 14 m/sec 46) Energy is measured in the same units as A) momentum B) power C) work D) force 47) The work done in raising an object must result in an increase in the object's A) heat energy B) kinetic energy C) internal energy D) gravitational potential energy 48) As an object falls freely near the Earth's surface, the loss in gravitational potential energy of the object is equal to its A) loss of height B) gain in kinetic energy C) gain in velocity D) loss of mass 49) At what point in its fall does the kinetic energy of a freely falling object equal its potential energy? A) at the end of the fall B) at the start of the fall C) halfway between the start and the end D) at all points during the fall

9 Page 9 50) As the pendulum swings from position A to position B as shown in the diagram below, what is the relationship of kinetic energy to potential energy? [Neglect friction.] A) The kinetic energy increase is equal to the potential energy decrease. B) The kinetic energy increase is more than the potential energy decrease. C) The kinetic energy decrease is equal to the potential energy increase. D) The kinetic energy decrease is more than the potential energy increase. 51) A basketball player who weighs 600 newtons jumps 0.5 meter vertically off the floor. What is her kinetic energy just before hitting the floor? A) 30 J B) 600 J C) 60 J D) 300 J Questions 52 and 53 refer to the following: The diagram below represents a 2.0-kilogram mass placed on a frictionless track at point A and released from rest. Assume the gravitational potential energy of the system to be zero at point E. 52) As the mass travels along the track, the maximum height it will reach above point E will be closest to A) 30. m B) 10. m C) 40. m D) 20. m 53) Compared to the total mechanical energy of the system at point A, the total mechanical energy of the system at point F is A) more B) the same C) less 54) A 3.0-kilogram mass is traveling in a circle of 0.20-meter radius with a speed of 2.0 meters per second. What is its centripetal acceleration? A) 10. m/s 2 B) 6.0 m/s 2 C) 60. m/s 2 D) 20. m/s 2 55) The diagram below represents a ball undergoing uniform circular motion as it travels clockwise on a string. At the moment shown in the diagram, what are the correct directions of both the velocity and centripetal acceleration of the ball? A) B) C) D)

10 56) The diagram below shows an object traveling clockwise in a horizontal, circular path at constant speed Page 10 Which arrow best shows the direction of the centripetal acceleration of the object at the instant shown? A) B) C) D) 57) A motorcycle of mass 100 kilograms travels around a flat, circular track of radius 10 meters with a constant speed of 20 meters per second. What force is required to keep the motorcycle moving in a circular path at this speed? A) 400 N B) 2000 N C) 200 N D) 4000 N Questions 58 through 60 refer to the following: The diagram below shows a 5.0-kilogram cart traveling clockwise in a horizontal circle of radius 2.0 meters at a constant speed of 4.0 meters per second. 58) At the position shown, the velocity of the cart is directed toward point A) P B) S C) R D) Q 59) At the position shown, the centripetal acceleration of the cart is directed toward point A) P B) S C) Q D) R 60) What is the magnitude of the centripetal force acting on the cart? A) 40. N B) 8.0 N C) 50. N D) 20. N

11 Questions 61 and 62 refer to the following: Page 11 The diagram below represents a ball of mass M attached to a string. The ball moves at a constant speed around a flat horizontal circle of radius R. 61) The centripetal acceleration of the ball is A) changing in both magnitude and direction B) constant in magnitude, but changing in direction C) constant in direction, but changing in magnitude D) zero 62) If the mass of the ball is decreased, the centripetal force required to keep it moving in the same circle at the same speed A) increases B) remains the same C) decreases Questions 63 and 64 refer to the following: The diagram below represents a flat racetrack as viewed from above, with the radii of its two curves indicated. A car with a mass of 1,000 kilograms moves counterclockwise around the track at a constant speed of 20 meters per second. 63) The net force acting on the car while it is moving from D to C is A) 4,000 N B) 0 N C) 20,000 N D) 200 N 64) Compared to the centripetal acceleration of the car while moving from B to A, the centripetal acceleration of the car while moving from D to C is A) the same B) one-half as great C) 4 times greater D) twice as great

12 Page 12 65) The diagram below represents a simple pendulum with a 2.0-kilogram bob and a length of 10. meters. The pendulum is released from rest at position 1 and swings without friction through position 4. At position 3, its lowest point, the speed of the bob is 6.0 meters per second. At position 4, the centripetal force of the bob is directed toward point A) A B) B C) C D) D 66) The diagram below shows a 2.0-kilogram model airplane attached to a wire. The airplane is flying clockwise in a horizontal circle of radius 20. meters at 30. meters per second. If the wire breaks when the airplane is at the position shown, the airplane will move toward point A) A B) B C) C D) D

13 Questions 67 and 68 refer to the following: Page 13 A 4.0-kilogram model airplane travels in a horizontal circular path of radius 12 meters at a constant speed of 6.0 meters per second. 67) What is the magnitude of the centripetal acceleration of the airplane? A) 2.0 m/s 2 B) 12 m/s 2 C) 0.50 m/s 2 D) 3.0 m/s 2 68) At the position shown, what is the direction of the net force acting on the airplane? A) east B) west C) north D) south

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below.

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram below. The diagram shows the top view of a -kilogram student at point A on an amusement park ride. The ride spins the student in a

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] A) Its vertical speed remains the same, and its horizontal

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

Physics Test Review: Mechanics Session: Name:

Physics Test Review: Mechanics Session: Name: Directions: For each statement or question, write in the answer box, the number of the word or expression that, of those given, best completes the statement or answers the question. 1. The diagram below

More information

Physics: Momentum, Work, Energy, Power

Physics: Momentum, Work, Energy, Power Name: ate: 1. The momentum of a 5-kilogram object moving at 6 meters per second is. 1 kg m/sec. 5 kg m/sec. 11 kg m/sec. 30 kg m/sec 2. 60-kilogram student running at 3.0 meters per second has a kinetic

More information

Name: Class: 903 Active Physics Winter Break Regents Prep December 2014

Name: Class: 903 Active Physics Winter Break Regents Prep December 2014 In this section use the following equations for velocity and displacement to solve: 1. In a drill during basketball practice, a player runs the length of the 30.meter court and back. The player does this

More information

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

More information

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30.

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is 34 m 30. m 17 m 24 m 2) The graph below represents the motion of a body that is moving with 6) Which

More information

St. Mary's H.S. Physics. Midterm Review

St. Mary's H.S. Physics. Midterm Review Name Midterm Review St. Mary's H.S. Physics 1. If a car accelerates uniformly from rest to 15 meters per second over a distance of 100. meters, the magnitude of the car s acceleration is A) 0.15 m/s 2

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Name 09-MAR-04. Work Power and Energy

Name 09-MAR-04. Work Power and Energy Page 1 of 16 Work Power and Energy Name 09-MAR-04 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? 1. 2.4 J 3. 12

More information

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? Page of 3 Work Power And Energy TEACHER ANSWER KEY March 09, 200. A spring has a spring constant of 20 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?. 2.

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Physics 1 Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Date 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. Period 4. Determine the work done by a

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. 1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit?

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit? Name: ate: 1. Which combination correctly pairs a vector quantity with its corresponding unit?. weight and kg. velocity and m/s. speed and m/s. acceleration and m 2 /s 2. 12.0-kilogram cart is moving at

More information

Dynamics-Newton's 2nd Law

Dynamics-Newton's 2nd Law 1. A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time? 2. The diagram below shows a horizontal

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

Dynamics-Newton's 2nd Law

Dynamics-Newton's 2nd Law 1. A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time? 2. The diagram below shows a horizontal

More information

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below.

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram The diagram shows the top view of a 65-kilogram student at point A on an amusement park ride. The ride spins the student in a horizontal

More information

Motion Graphs Practice

Motion Graphs Practice Name Motion Graphs Practice d vs. t Graphs d vs. t Graphs d vs. t Graphs 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. 3. The

More information

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds. Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

5. The graph represents the net force acting on an object as a function of time. During which time interval is the velocity of the object constant?

5. The graph represents the net force acting on an object as a function of time. During which time interval is the velocity of the object constant? 1. A 0.50-kilogram cart is rolling at a speed of 0.40 meter per second. If the speed of the cart is doubled, the inertia of the cart is A) halved B) doubled C) quadrupled D) unchanged 2. A force of 25

More information

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale 1. A 15-kilogram cart is at rest on a horizontal surface. A 5-kilogram box is placed in the cart. Compared to the mass and inertia of the cart, the cart-box system has A) more mass and more inertia B)

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy ***

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy *** Work-Energy Theorem and Energy Conservation *** The function of work is to change energy *** 2 possibilities 1.) Work is done and... or 2.) Work is done and... 1 EX: A 100 N box is 10 m above the ground

More information

AP Physics 1 Lesson 9 Homework Outcomes. Name

AP Physics 1 Lesson 9 Homework Outcomes. Name AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

3.The wrecking crane shown is moving toward a brick wall that is to be torn down.

3.The wrecking crane shown is moving toward a brick wall that is to be torn down. Test Name: Physics Practice Test Section 1 1.Which of the following best classifies a material that has extremely low conductivity? 1. A. semiconductor B. insulator C. metalloid D. conductor 2.Which of

More information

1d forces and motion

1d forces and motion Name: ate: 1. car accelerates uniformly from rest to a speed of 10 meters per second in 2 seconds. The acceleration of the car is 4. book weighing 20. newtons slides at constant velocity down a ramp inclined

More information

Work Energy Review. 1. Base your answer to the following question on the information and diagram below and on your knowledge of physics.

Work Energy Review. 1. Base your answer to the following question on the information and diagram below and on your knowledge of physics. Name: ate: 1. ase your answer to the following question on the information and diagram below and on your knowledge of physics. student pushes a box, weighing 50. newtons, 6.0 meters up an incline at a

More information

RELEASED FORM RELEASED. North Carolina Test of Physics

RELEASED FORM RELEASED. North Carolina Test of Physics Name Physics Form North arolina Test of Physics RELESE Public Schools of North arolina www.ncpublicschools.org State oard of Education epartment of Public Instruction ivision of ccountability Services/North

More information

Practice Final C. 1. The diagram below shows a worker using a rope to pull a cart.

Practice Final C. 1. The diagram below shows a worker using a rope to pull a cart. 1. The diagram below shows a worker using a rope to pull a cart. 6. The graph below represents the relationship between gravitational force and mass for objects near the surface of Earth. The worker s

More information

Test Booklet. Subject: SC, Grade: HS 2008 Grade High School Physics. Student name:

Test Booklet. Subject: SC, Grade: HS 2008 Grade High School Physics. Student name: Test ooklet Subject: S, Grade: HS 2008 Grade High School Physics Student name: uthor: North arolina istrict: North arolina Released Tests Printed: Monday July 09, 2012 1 n object is launched across a room.

More information

Forces Review. A. less than the magnitude of the rock s weight, but greater than zero A. 0 B. 45 C. 90. D. 180.

Forces Review. A. less than the magnitude of the rock s weight, but greater than zero A. 0 B. 45 C. 90. D. 180. Name: ate: 1. Two 20.-newton forces act concurrently on an object. What angle between these forces will produce a resultant force with the greatest magnitude?. 0 B. 45 C. 90.. 180. 5. rock is thrown straight

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass.

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass. Name: ate: 1. The graph given shows the weight of three objects on planet X as a function of their mass. 3. If the circular track were to suddenly become frictionless at the instant shown in the diagram,

More information

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E Name - 1 -APPH_MidTerm AP Physics Date Mid - Term Exam Part 1: Write your answers to all multiple choice questions in this space. 1) 2) 3) 10) 11) 19) 20) 4) 12) 21) 5) 13) 22) 6) 7) 14) 15) 23) 24) 8)

More information

Impulse,Momentum, CM Practice Questions

Impulse,Momentum, CM Practice Questions Name: Date: 1. A 12.0-kilogram cart is moving at a speed of 0.25 meter per second. After the speed of the cart is tripled, the inertia of the cart will be A. unchanged B. one-third as great C. three times

More information

Physics-MC Page 1 of 29 Inertia, Force and Motion 1.

Physics-MC Page 1 of 29 Inertia, Force and Motion 1. Physics-MC 2006-7 Page 1 of 29 Inertia, Force and Motion 1. 3. 2. Three blocks of equal mass are placed on a smooth horizontal surface as shown in the figure above. A constant force F is applied to block

More information

Midterm Review. 1. A car accelerates uniformly from rest to a speed of 10 meters per second in 2 seconds. The acceleration of the car is

Midterm Review. 1. A car accelerates uniformly from rest to a speed of 10 meters per second in 2 seconds. The acceleration of the car is Name: Date: 1. car accelerates uniformly from rest to a speed of 10 meters per second in 2 seconds. The acceleration of the car is 1.. 0.2 m/sec 2. 5 m/sec 2 C. 10 m/sec 2 D. 20 m/sec 2 2. steel ball is

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

Additional Practice Test 1 Physics

Additional Practice Test 1 Physics Name: ate: 1. person walks 5.0 kilometers north, then 5.0 kilometers east. His displacement is closest to 7.1 kilometers northeast 7.1 kilometers northwest 5. lab cart is loaded with different masses and

More information

Accl g Motion graph prac

Accl g Motion graph prac Accl g Motion graph prac 1. An object starts from rest and falls freely. What is the velocity of the object at the end of 3.00 seconds? A) 9.81 m/s B) 19.6 m/s C) 29.4 m/s D) 88.2 m/s 2. An object is dropped

More information

Upon collision, the clay and steel block stick together and move to the right with a speed of

Upon collision, the clay and steel block stick together and move to the right with a speed of 1. A 2.0-kilogram ball traveling north at 4.0 meters per second collides head on with a 1.0-kilogram ball traveling south at 8.0 meters per second. What is the magnitude of the total momentum of the two

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

3) 4) Which car has the greatest acceleration during the time interval 10. seconds to 15 seconds? 1) A 2) B 3) C 4) D

3) 4) Which car has the greatest acceleration during the time interval 10. seconds to 15 seconds? 1) A 2) B 3) C 4) D 1. A cart travels with a constant nonzero acceleration along a straight line. Which graph best represents the relationship between the distance the cart travels and time of travel? 1) 2) 3) 4) 2. On a

More information

WEP-Work and Power. What is the amount of work done against gravity as an identical mass is moved from A to C? J J J 4.

WEP-Work and Power. What is the amount of work done against gravity as an identical mass is moved from A to C? J J J 4. 1. The work done in accelerating an object along a frictionless horizontal surface is equal to the change in the object s 1. momentum 2. velocity 3. potential energy 4. kinetic energy 2. The graph below

More information

1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

1. Which one of the following situations is an example of an object with a non-zero kinetic energy? Name: Date: 1. Which one of the following situations is an example of an object with a non-zero kinetic energy? A) a drum of diesel fuel on a parked truck B) a stationary pendulum C) a satellite in geosynchronous

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons.

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Circular Motion PreTest

Circular Motion PreTest Circular Motion PreTest Date: 06/03/2008 Version #: 0 Name: 1. In a series of test runs, a car travels around the same circular track at different velocities. Which graph best shows the relationship between

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

Physics 130: Questions to study for midterm #1 from Chapter 7

Physics 130: Questions to study for midterm #1 from Chapter 7 Physics 130: Questions to study for midterm #1 from Chapter 7 1. Kinetic energy is defined to be one-half the a. mass times the speed. b. mass times the speed squared. c. mass times the acceleration. d.

More information

Multiple Choice Practice

Multiple Choice Practice Class: Date: Multiple Choice Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An ice skater moving at 10.0 m/s coasts to a halt in 1.0 10 2 m on

More information

Circular Motion Class:

Circular Motion Class: Circular Motion Class: Name: Date: 1. What is the magnitude of the centripetal acceleration of a 4-kilogram mass orbiting at 10 meters per second with a radius of 2 meters? (1) 5 m/sec 2 (2) 50 m/sec 2

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Page 1. Name: 1) The diagram below represents two concurrent forces.

Page 1. Name: 1) The diagram below represents two concurrent forces. Name: 3434-1 - Page 1 1) The diagram below represents two concurrent forces. Which vector represents the force that will produce equilibrium with these two forces? 2) Which diagram represents a box in

More information

Unit 6: Forces II PRACTICE PROBLEMS

Unit 6: Forces II PRACTICE PROBLEMS Regents Physics Mrs. Long Unit 6: Forces II PRACTICE PROBLEMS Essential Understanding for the Unit: The net force can be determined by using force diagrams in order to show all forces acting, and thereby

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

2014 Physics Exam Review

2014 Physics Exam Review Name: ate: 1. The diagrams below show a model airplane. Which energy transformation occurs in a rubber band powered model airplane when it is flown?. Thermal energy stored in the rubber band is transformed

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40

More information

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial =

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial = Practice Template K.E. = 1 2 mv2 P.E. height = mgh P.E. spring = 1 2 kx2 dw =! F! d! r = Fdr cosθ Energy Conservation T.E. initial = T.E. Final (1) Isolated system P.E. initial (2) Energy added E added

More information

Regents Physics Most Missed Questions of 2014 Review

Regents Physics Most Missed Questions of 2014 Review Regents Physics Most Missed Questions of 2014 Review Answers And Explanations Here: http://youtu.be/meoporthklo 1. A sound wave traveling eastward through air causes the air molecules to 1) vibrate east

More information

Physics Christmas Break Packet w/ Answers Which vector below represents the resultant of the two displacement vectors shown?

Physics Christmas Break Packet w/ Answers Which vector below represents the resultant of the two displacement vectors shown? Physics hristmas reak Packet w/ nswers 2018 Name: ate: 1. Which vector below represents the resultant of the two displacement vectors shown? 4. The accompanying diagram represents a block sliding down

More information

pg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra

pg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra pg 165 A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph above. The object starts from rest at displacement x

More information

1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below.

1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below. Name Vectors Practice 1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below. What additional force, when applied to the object, will establish

More information

AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

More information

KINETIC ENERGY AND WORK

KINETIC ENERGY AND WORK Chapter 7: KINETIC ENERGY AND WORK 1 Which of the following is NOT a correct unit for work? A erg B ft lb C watt D newton meter E joule 2 Which of the following groups does NOT contain a scalar quantity?

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

AP Physics 1 Work Energy and Power Practice Test Name

AP Physics 1 Work Energy and Power Practice Test Name AP Physics 1 Work Energy and Power Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two objects, one of mass m and the other

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet

More information

Name: Date: Period: AP Physics C Work HO11

Name: Date: Period: AP Physics C Work HO11 Name: Date: Period: AP Physics C Work HO11 1.) Rat pushes a 25.0 kg crate a distance of 6.0 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

Pre-Comp Review Questions- 8 th Grade

Pre-Comp Review Questions- 8 th Grade Pre-Comp Review Questions- 8 th Grade Section 1- Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s. Temperature K Fahrenheit Length

More information

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN 2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN Topics: Forces Motion Momentum Gravity Electrostatics DATE: TIME: ROOM: PROCTOR: YOU ARE REQUIRED TO BRING: 1. CALCULATOR (YOUR OWN NO SHARING) 2. PENCIL

More information

1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0.

1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0. Newton's Laws 1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0.71 m/s 2 2. An astronaut applies a force of 500 N to an

More information

Energy and Momentum Review Problems

Energy and Momentum Review Problems Energy and Momentum Review Problems NAME 1. In which one of the following situations is zero net work done? A) A ball rolls down an inclined plane. B) A physics student stretches a spring. C) A projectile

More information

Physics 23 Exam 2 March 3, 2009

Physics 23 Exam 2 March 3, 2009 Use the following to answer question 1: A stationary 4-kg shell explodes into three pieces. Two of the fragments have a mass of 1 kg each and move along the paths shown with a speed of 10 m/s. The third

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

Circular Motion & Gravitation MC Question Database

Circular Motion & Gravitation MC Question Database (Questions #4,5,6,27,37,38,42 and 58 each have TWO correct answers.) 1) A record player has four coins at different distances from the center of rotation. Coin A is 1 cm away, Coin B is 2 cm away. Coin

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

AP Physics Free Response Practice Dynamics

AP Physics Free Response Practice Dynamics AP Physics Free Response Practice Dynamics 14) In the system shown above, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless

More information

Review PHYS114 Chapters 4-7

Review PHYS114 Chapters 4-7 Review PHYS114 Chapters 4-7 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 27 kg object is accelerated at a rate of 1.7 m/s 2. What force does

More information