4.317 d 4 y. 4 dx d 2 y dy. 20. dt d 2 x. 21. y 3y 3y y y 6y 12y 8y y (4) y y y (4) 2y y 0. d 4 y 26.

Size: px
Start display at page:

Download "4.317 d 4 y. 4 dx d 2 y dy. 20. dt d 2 x. 21. y 3y 3y y y 6y 12y 8y y (4) y y y (4) 2y y 0. d 4 y 26."

Transcription

1 38 CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS sstems are also able, b means of their dsolve commands, to provide eplicit solutions of homogeneous linear constant-coefficient differential equations. In the classic tet Differential Equations b Ralph Palmer Agnew * (used b the author as a student) the following statement is made: It is not reasonable to epect students in this course to have computing skill and equipment necessar for efficient solving of equations such as 4.37 d 4 (3) d.79 d 3 4 d.46 d d d d Although it is debatable whether computing skills have improved in the intervening ears, it is a certaint that technolog has. If one has access to a computer algebra sstem, equation (3) could now be considered reasonable. After simplification and some relabeling of output, Mathematica ields the (approimate) general solution c e.7885 cos(.6865) c e.7885 sin(.6865) c 3 e cos(.7598) c 4 e sin(.7598). Finall, if we are faced with an initial-value problem consisting of, sa, a fourth-order equation, then to fit the general solution of the DE to the four initial conditions, we must solve four linear equations in four unknowns (the c, c, c 3, c 4 in the general solution). Using a CAS to solve the sstem can save lots of time. See Problems 59 and 6 in Eercises 4.3 and Problem 35 in Chapter 4 in Review. * McGraw-Hill, New York, 96. EXERCISES 4.3 In Problems 4 find the general solution of the given second-order differential equation Answers to selected odd-numbered problems begin on page ANS-4. d 3. d (4) 4. (4) 5. 6 d 4 d 4 d 9 4 d d 4 6. d 7 d 8 4 d In Problems 5 8 find the general solution of the given higher-order differential equation. 7. d 5 u dr 5 d 4 u 5 dr d 3 u 4 dr d u du 3 dr dr 5u d 3 u d u u 3 8. In Problems 9 36 solve the given initial-value problem. 9. 6, (), () 3. d 5 ds 5 7 d 4 ds 4 d 3 ds 3 8 d ds d, d 3, 3

2 4.3 HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS d d 4 5, (), () , (), () 5 33., () () 34., () 5, () , (), (), () , () (), () In Problems 37 4 solve the given boundar-value problem , (), () 38. 4, (), (p) 39., (), 4., (), (p) In Problems 4 and 4 solve the given problem first using the form of the general solution given in (). Solve again, this time using the form given in (). FIGURE Graph for Problem FIGURE Graph for Problem , (), () 5 4., (), () In Problems each figure represents the graph of a particular solution of one of the following differential equations: (a) 34 (b) 4 (c) (d) (e) (f) 3 Match a solution curve with one of the differential equations. Eplain our reasoning. 43. π FIGURE Graph for Problem π FIGURE Graph for Problem 48 FIGURE 4.3. Graph for Problem FIGURE Graph for Problem 44 Discussion Problems 49. The roots of a cubic auiliar equation are m 4 and m m 3 5. What is the corresponding homogeneous linear differential equation? Discuss: Is our answer unique? 5. Two roots of a cubic auiliar equation with real coefficients are m and m 3 i. What is the corresponding homogeneous linear differential equation?

3 4.6 VARIATION OF PARAMETERS 6 The first n equations in this sstem, like u u in (4), are assumptions that are made to simplif the resulting equation after p u () () u n () n () is substituted in (9). In this case Cramer s rule gives u k W k, k,,..., n, W where W is the Wronskian of,,..., n and W k is the determinant obtained b replacing the kth column of the Wronskian b the column consisting of the righthand side of () that is, the column consisting of (,,..., f ()). When n, we get (5). When n 3, the particular solution is p u u u 3 3, where,, and 3 constitute a linearl independent set of solutions of the associated homogeneous DE and u, u, u 3 are determined from u W W, u W W, u 3 W 3 W, () W p f () 3 3 p, 3 W p f () 3 3 p, W 3 p 3 f () p, and W p 3 3 p. 3 See Problems 5 and 6 in Eercises 4.6. REMARKS (i) Variation of parameters has a distinct advantage over the method of undetermined coefficients in that it will alwas ield a particular solution p provided that the associated homogeneous equation can be solved. The present method is not limited to a function f () that is a combination of the four tpes listed on page 4. As we shall see in the net section, variation of parameters, unlike undetermined coefficients, is applicable to linear DEs with variable coefficients. (ii) In the problems that follow, do not hesitate to simplif the form of p. Depending on how the antiderivatives of u and u are found, ou might not obtain the same p as given in the answer section. For eample, in Problem 3 in Eercises 4.6 both p sin cos and p 4 sin cos are valid answers. In either case the general solution c p simplifies to c cos c sin cos. Wh? EXERCISES 4.6 In Problems 8 solve each differential equation b variation of parameters.. sec. tan 3. sin 4. sec u tan u 5. cos 6. sec 7. cosh 8. sinh 9. 4 e. 9 9 e 3 Answers to selected odd-numbered problems begin on page ANS e e sin e 4. e t arctan t 5. e t ln t e sec e /

4 6 CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS In Problems 9 solve each differential equation b variation of parameters, subject to the initial conditions (), (). 9. 4e /.. 8 e e. 44 ( 6)e In Problems 3 and 4 the indicated functions are known linearl independent solutions of the associated homogeneous differential equation on (, ). Find the general solution of the given nonhomogeneous equation. 3. ( 4) 3/ ; / cos, / sin 4. sec(ln ); cos(ln ), sin(ln ) In Problems 5 and 6 solve the given third-order differential equation b variation of parameters. 5. tan 6. 4sec Discussion Problems In Problems 7 and 8 discuss how the methods of undetermined coefficients and variation of parameters can be combined to solve the given differential equation. Carr out our ideas sin e tan e 9. What are the intervals of definition of the general solutions in Problems, 7, 9, and 8? Discuss wh the interval of definition of the general solution in Problem 4 is not (, ). 3. Find the general solution of given that is a solution of the associated homogeneous equation. 3. Suppose p () u () () u () (), where u and u are defined b (5) is a particular solution of () on an interval I for which P, Q, and f are continuous. Show that p can be written as p () where and are in I, G(, t)f(t), G(, t) (t) () () (t), W(t) () (3) and W(t) W( (t), (t)) is the Wronskian. The function G(, t) in (3) is called the Green s function for the differential equation (). 3. Use (3) to construct the Green s function for the differential equation in Eample 3. Epress the general solution given in (8) in terms of the particular solution (). 33. Verif that () is a solution of the initial-value problem d Pd d d Q f(), ( ), ( ). on the interval I. [Hint: Look up Leibniz s Rule for differentiation under an integral sign.] 34. Use the results of Problems 3 and 33 and the Green s function found in Problem 3 to find a solution of the initial-value problem e, (), () using (). Evaluate the integral. 4.7 CAUCHY-EULER EQUATION REVIEW MATERIAL Review the concept of the auiliar equation in Section 4.3. INTRODUCTION The same relative ease with which we were able to find eplicit solutions of higher-order linear differential equations with constant coefficients in the preceding sections does not, in general, carr over to linear equations with variable coefficients. We shall see in Chapter 6 that when a linear DE has variable coefficients, the best that we can usuall epect is to find a solution in the form of an infinite series. However, the tpe of differential equation that we consider in this section is an eception to this rule; it is a linear equation with variable coefficients whose general solution can alwas be epressed in terms of powers of, sines, cosines, and logarithmic functions. Moreover, its method of solution is quite similar to that for constant-coefficient equations in that an auiliar equation must be solved.

5 ANS-4 ANSWERS FOR SELECTED ODD-NUMBERED PROBLEMS ANSWERS FOR SELECTED ODD-NUMBERED PROBLEMS CHAPTER 4 EXERCISES 3.3 (PAGE ). (t) e t 3. 5,, 47 das. The time when (t) and z(t) are the same makes sense because most of A and half of B are gone, so half of C should have been formed (a) 3. d t 3 t (b) (t) (t) 5; (3) 47.4 lb 5. i() i, s() n i, r() CHAPTER 3 IN REVIEW (PAGE 3). dp.5p 3. P(45) 8.99 billion (a) 9. d d (b). (t) ac e ak t c e, (t) c ak t ( c e akt ) k /k 3. c e 5. (a) (t) (e t e t ) z(t) d 3 t t L di (R R )i R i 3 e t e t L di 3 R i (R R 3 ) i 3 E(t) ln BT T B, BT T B T(t) BT T B T T B ek(b)t i(t) 4t 5 t, t, t E(t) p() r()g Kq() d (b) The ratio is increasing; the ratio is constant. Kp (d) r() gk q() d ; r() Kp B(CKp bg) EXERCISES 4. (PAGE 8). e e ln 9. (, ). (a) e (b) sinh e (e e ) sinh 3. (a) e cos e sin (b) no solution (c) e cos e p/ e sin (d) c e sin, where c is arbitrar 5. dependent 7. dependent 9. dependent. independent 3. The functions satisf the DE and are linearl independent on the interval since W(e 3, e 4 ) 7e ; c e 3 c e The functions satisf the DE and are linearl independent on the interval since W(e cos, e sin ) e ; c e cos c e sin. 7. The functions satisf the DE and are linearl independent on the interval since W( 3, 4 ) 6 ; c 3 c The functions satisf the DE and are linearl independent on the interval since W(,, ln ) 9 6 ; c c c 3 ln. 35. (b) p 3 3e ; p 6 3 e EXERCISES 4. (PAGE 3). e 3. sin 4 5. sinh 7. e / ln. 3. cos (ln ) e, p 9. e, p 5 e3 EXERCISES 4.3 (PAGE 38). c c e /4 3. c e 3 c e 5. c e 4 c e 4 7. c e /3 c e /4 9. c cos 3 c sin 3. e (c cos c sin ) 3. e /3 (c cos 5. c c e 3 c sin c 3 e 5 3 ) 7. c e c e 3 c 3 e 3 9. u c e t e t (c cos t c 3 sin t). c e c e c 3 e 3. c c e / (c 3 cos 3 c 5. c cos 3 c sin 3 4 sin 3 ) c 3 cos 3 c 4 sin 3 7. u c e r c re r c 3 e r c 4 re r c 5 e 5r 9. cos 4 3. sin 4 3 e(t) 3 e5(t) 33.

6 ANSWERS FOR SELECTED ODD-NUMBERED PROBLEMS ANS e6 6 e6 35. c e 3 c e e 5 e c c e c e c e e3 3 5 e3 ; 4. c c c 3 e c e 3 c e 4 7 e4 cosh sinh3 45. c e c e 3 e c cos 5 c sin 5 sin c e 3 c e 3 49 e4 343 e4 EXERCISES 4.4 (PAGE 48) 5. c e c e 6 3 e 4 e 4 e 5. c e c e 53. e 3 (c cos c sin ) 3 e sin 3. c e 5 c e c cos 5 c sin 5 cos c e c e e 7. c cos 3 c / c sin 3 ( )e 3 cos 3 c sin 3 9. c c e sin cos cos 3. c e / c e / e / 59. c c c 3 e c cos c sin 3 4 cos 6. c e c e c 3 e 6 3 e c cos c sin cos sin c e cos c e sin 4 e sin c e c e cos 63. c c c 3 e c 4 e e e8 5 8 e e sin 5 cos 69. cos 3 sin 8 3 cos cos. c c c 3 e cos 37 sin 7. e cos 3 64 e sin c e c e c 3 e e 5. c cos c sin c 3 cos c 4 sin 3 EXERCISES 4.6 (PAGE 6). c cos c sin sin cos ln cos 7. sin 9. e / c 3 cos c sin cos 3. e cos 9e sin 7e 4 5. c cos c sin 6 cos 33. F t F 7. c e c e sinh t cos t 9. c 35. e 9e e e c e 4 e 4t e ln e e5 t, cos 6(cot ) sin sin 3. c e c e (e e ) ln( e ) sin 3 3 cos 3 3. c e c e e sin e 4. cos 5 sin 6 3 sin, > 3 cos 5 6 sin, > EXERCISES 4.5 (PAGE 56). (3D )(3D ) sin 3. (D 6)(D ) 6 5. D(D 5) e 7. (D )(D )(D 5) e 9. D(D )(D D 4) 4 5. D 4 7. D(D ) 9. D 4. D 3 (D 6) 3. (D )(D ) 3 5. D(D D 5) 7.,,, 3, 4 9. e 6, e 3/ 3. cos 5, sin 5 33., e 5, e 5 5. c e t c te t t e t ln t 3 4 t e t 7. c e sin c e cos 3 e sin 9. 4 e/ 3 4 e/ 8 e / 4 e/. 4 9 e e 4 e 9 e 3. c / cos c / sin / 5. 3 e cos ln cos c c cos c 3 sin ln cos sin ln sec tan EXERCISES 4.7 (PAGE 68). c c 3. c c ln 5. c cos( ln ) c sin( ln ) ANSWERS FOR SELECTED ODD-NUMBERED PROBLEMS CHAPTER 4

Additional Topics in Differential Equations

Additional Topics in Differential Equations 0537_cop6.qd 0/8/08 :6 PM Page 3 6 Additional Topics in Differential Equations In Chapter 6, ou studied differential equations. In this chapter, ou will learn additional techniques for solving differential

More information

2.2 SEPARABLE VARIABLES

2.2 SEPARABLE VARIABLES 44 CHAPTER FIRST-ORDER DIFFERENTIAL EQUATIONS 6 Consider the autonomous DE 6 Use our ideas from Problem 5 to find intervals on the -ais for which solution curves are concave up and intervals for which

More information

INTRODUCTION TO DIFFERENTIAL EQUATIONS

INTRODUCTION TO DIFFERENTIAL EQUATIONS INTRODUCTION TO DIFFERENTIAL EQUATIONS. Definitions and Terminolog. Initial-Value Problems.3 Differential Equations as Mathematical Models CHAPTER IN REVIEW The words differential and equations certainl

More information

SEPARABLE EQUATIONS 2.2

SEPARABLE EQUATIONS 2.2 46 CHAPTER FIRST-ORDER DIFFERENTIAL EQUATIONS 4. Chemical Reactions When certain kinds of chemicals are combined, the rate at which the new compound is formed is modeled b the autonomous differential equation

More information

Additional Topics in Differential Equations

Additional Topics in Differential Equations 6 Additional Topics in Differential Equations 6. Eact First-Order Equations 6. Second-Order Homogeneous Linear Equations 6.3 Second-Order Nonhomogeneous Linear Equations 6.4 Series Solutions of Differential

More information

Math 214 Spring problem set (a) Consider these two first order equations. (I) dy dx = x + 1 dy

Math 214 Spring problem set (a) Consider these two first order equations. (I) dy dx = x + 1 dy Math 4 Spring 08 problem set. (a) Consider these two first order equations. (I) d d = + d (II) d = Below are four direction fields. Match the differential equations above to their direction fields. Provide

More information

Second-Order Linear Differential Equations C 2

Second-Order Linear Differential Equations C 2 C8 APPENDIX C Additional Topics in Differential Equations APPENDIX C. Second-Order Homogeneous Linear Equations Second-Order Linear Differential Equations Higher-Order Linear Differential Equations Application

More information

Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3. Separable ODE s

Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3. Separable ODE s Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3 Separable ODE s What ou need to know alread: What an ODE is and how to solve an eponential ODE. What ou can learn

More information

39. (a) Use trigonometric substitution to verify that. 40. The parabola y 2x divides the disk into two

39. (a) Use trigonometric substitution to verify that. 40. The parabola y 2x divides the disk into two 35. Prove the formula A r for the area of a sector of a circle with radius r and central angle. [Hint: Assume 0 and place the center of the circle at the origin so it has the equation. Then is the sum

More information

y sin n x dx cos x sin n 1 x n 1 y sin n 2 x cos 2 x dx y sin n xdx cos x sin n 1 x n 1 y sin n 2 x dx n 1 y sin n x dx

y sin n x dx cos x sin n 1 x n 1 y sin n 2 x cos 2 x dx y sin n xdx cos x sin n 1 x n 1 y sin n 2 x dx n 1 y sin n x dx SECTION 7. INTEGRATION BY PARTS 57 EXAPLE 6 Prove the reduction formula N Equation 7 is called a reduction formula because the eponent n has been reduced to n and n. 7 sin n n cos sinn n n sin n where

More information

Particular Solutions

Particular Solutions Particular Solutions Our eamples so far in this section have involved some constant of integration, K. We now move on to see particular solutions, where we know some boundar conditions and we substitute

More information

APPENDIX D Rotation and the General Second-Degree Equation

APPENDIX D Rotation and the General Second-Degree Equation APPENDIX D Rotation and the General Second-Degree Equation Rotation of Aes Invariants Under Rotation After rotation of the - and -aes counterclockwise through an angle, the rotated aes are denoted as the

More information

Fitting Integrands to Basic Rules

Fitting Integrands to Basic Rules 6_8.qd // : PM Page 8 8 CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8. Basic Integration Rules Review proceres for fitting an integrand to one of the basic integration

More information

1.6 CONTINUITY OF TRIGONOMETRIC, EXPONENTIAL, AND INVERSE FUNCTIONS

1.6 CONTINUITY OF TRIGONOMETRIC, EXPONENTIAL, AND INVERSE FUNCTIONS .6 Continuit of Trigonometric, Eponential, and Inverse Functions.6 CONTINUITY OF TRIGONOMETRIC, EXPONENTIAL, AND INVERSE FUNCTIONS In this section we will discuss the continuit properties of trigonometric

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

5.6. Differential equations

5.6. Differential equations 5.6. Differential equations The relationship between cause and effect in phsical phenomena can often be formulated using differential equations which describe how a phsical measure () and its derivative

More information

67. (a) Use a computer algebra system to find the partial fraction CAS. 68. (a) Find the partial fraction decomposition of the function CAS

67. (a) Use a computer algebra system to find the partial fraction CAS. 68. (a) Find the partial fraction decomposition of the function CAS SECTION 7.5 STRATEGY FOR INTEGRATION 483 6. 2 sin 2 2 cos CAS 67. (a) Use a computer algebra sstem to find the partial fraction decomposition of the function 62 63 Find the area of the region under the

More information

1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION

1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION . Limits at Infinit; End Behavior of a Function 89. LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION Up to now we have been concerned with its that describe the behavior of a function f) as approaches some

More information

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS Page of 6 FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS 6. HYPERBOLIC FUNCTIONS These functions which are defined in terms of e will be seen later to be related to the trigonometic functions via comple

More information

Rising HONORS Algebra 2 TRIG student Summer Packet for 2016 (school year )

Rising HONORS Algebra 2 TRIG student Summer Packet for 2016 (school year ) Rising HONORS Algebra TRIG student Summer Packet for 016 (school ear 016-17) Welcome to Algebra TRIG! To be successful in Algebra Trig, ou must be proficient at solving and simplifing each tpe of problem

More information

Introduction to Differential Equations

Introduction to Differential Equations Introduction to Differential Equations. Definitions and Terminolog.2 Initial-Value Problems.3 Differential Equations as Mathematical Models Chapter in Review The words differential and equations certainl

More information

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f APPENDIX C Additional Topics in Differential Equations APPENDIX C. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Chapter 6, ou studied applications

More information

24. x 2 y xy y sec(ln x); 1 e x y 1 cos(ln x), y 2 sin(ln x) 25. y y tan x 26. y 4y sec 2x 28.

24. x 2 y xy y sec(ln x); 1 e x y 1 cos(ln x), y 2 sin(ln x) 25. y y tan x 26. y 4y sec 2x 28. 16 CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS 11. y 3y y 1 4. x yxyy sec(ln x); 1 e x y 1 cos(ln x), y sin(ln x) ex 1. y y y 1 x 13. y3yy sin e x 14. yyy e t arctan t 15. yyy e t ln t 16. y y y 41x

More information

SPS Mathematical Methods

SPS Mathematical Methods SPS 2281 - Mathematical Methods Assignment No. 2 Deadline: 11th March 2015, before 4:45 p.m. INSTRUCTIONS: Answer the following questions. Check our answer for odd number questions at the back of the tetbook.

More information

Fitting Integrands to Basic Rules. x x 2 9 dx. Solution a. Use the Arctangent Rule and let u x and a dx arctan x 3 C. 2 du u.

Fitting Integrands to Basic Rules. x x 2 9 dx. Solution a. Use the Arctangent Rule and let u x and a dx arctan x 3 C. 2 du u. 58 CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8 Basic Integration Rules Review proceres for fitting an integrand to one of the basic integration rules Fitting Integrands

More information

Math 308 Week 8 Solutions

Math 308 Week 8 Solutions Math 38 Week 8 Solutions There is a solution manual to Chapter 4 online: www.pearsoncustom.com/tamu math/. This online solutions manual contains solutions to some of the suggested problems. Here are solutions

More information

Section 1.2: A Catalog of Functions

Section 1.2: A Catalog of Functions Section 1.: A Catalog of Functions As we discussed in the last section, in the sciences, we often tr to find an equation which models some given phenomenon in the real world - for eample, temperature as

More information

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve:

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve: .2 INITIAL-VALUE PROBLEMS 3.2 INITIAL-VALUE PROBLEMS REVIEW MATERIAL Normal form of a DE Solution of a DE Famil of solutions INTRODUCTION We are often interested in problems in which we seek a solution

More information

Engineering Mathematics I

Engineering Mathematics I Engineering Mathematics I_ 017 Engineering Mathematics I 1. Introduction to Differential Equations Dr. Rami Zakaria Terminolog Differential Equation Ordinar Differential Equations Partial Differential

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS. Parametric Equations Preliminar Questions. Describe the shape of the curve = cos t, = sin t. For all t, + = cos t + sin t = 9cos t + sin t =

More information

In everyday speech, a continuous. Limits and Continuity. Critical Thinking Exercises

In everyday speech, a continuous. Limits and Continuity. Critical Thinking Exercises 062 Chapter Introduction to Calculus Critical Thinking Eercises Make Sense? In Eercises 74 77, determine whether each statement makes sense or does not make sense, and eplain our reasoning. 74. I evaluated

More information

Try It Exploration A Exploration B Open Exploration. Fitting Integrands to Basic Rules. A Comparison of Three Similar Integrals

Try It Exploration A Exploration B Open Exploration. Fitting Integrands to Basic Rules. A Comparison of Three Similar Integrals 58 CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8 Basic Integration Rules Review procedures for fitting an integrand to one of the basic integration rules Fitting

More information

Finding Limits Graphically and Numerically. An Introduction to Limits

Finding Limits Graphically and Numerically. An Introduction to Limits 60_00.qd //0 :05 PM Page 8 8 CHAPTER Limits and Their Properties Section. Finding Limits Graphicall and Numericall Estimate a it using a numerical or graphical approach. Learn different was that a it can

More information

2. Higher-order Linear ODE s

2. Higher-order Linear ODE s 2. Higher-order Linear ODE s 2A. Second-order Linear ODE s: General Properties 2A-1. On the right below is an abbreviated form of the ODE on the left: (*) y + p()y + q()y = r() Ly = r() ; where L is the

More information

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description Unit C3 Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics C3. Unit description Algebra and functions; trigonometry; eponentials and logarithms; differentiation;

More information

y sec 3 x dx sec x tan x y sec x tan 2 x dx y sec 3 x dx 1 2(sec x tan x ln sec x tan x ) C

y sec 3 x dx sec x tan x y sec x tan 2 x dx y sec 3 x dx 1 2(sec x tan x ln sec x tan x ) C SECTION 7. TRIGONOETRIC INTEGRLS 465 Then sec 3 sec tan sec tan sec tan sec sec sec tan sec 3 sec Using ormula and solving for the required integral, we get sec 3 (sec tan ln sec tan ) C Integrals such

More information

7.7. Inverse Trigonometric Functions. Defining the Inverses

7.7. Inverse Trigonometric Functions. Defining the Inverses 7.7 Inverse Trigonometric Functions 57 7.7 Inverse Trigonometric Functions Inverse trigonometric functions arise when we want to calculate angles from side measurements in triangles. The also provide useful

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

TO THE STUDENT: To best prepare for Test 4, do all the problems on separate paper. The answers are given at the end of the review sheet.

TO THE STUDENT: To best prepare for Test 4, do all the problems on separate paper. The answers are given at the end of the review sheet. MATH TEST 4 REVIEW TO THE STUDENT: To best prepare for Test 4, do all the problems on separate paper. The answers are given at the end of the review sheet. PART NON-CALCULATOR DIRECTIONS: The problems

More information

f ax ; a 0 is a periodic function b is a periodic function of x of p b. f which is assumed to have the period 2 π, where

f ax ; a 0 is a periodic function b is a periodic function of x of p b. f which is assumed to have the period 2 π, where (a) (b) If () Year - Tutorial: Toic: Fourier series Time: Two hours π π n Find the fundamental eriod of (i) cos (ii) cos k k f a ; a is a eriodic function b is a eriodic function of of b. f is a eriodic

More information

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes Differentiating ProductsandQuotients 11.4 Introduction We have seen, in the first three Sections, how standard functions like n, e a, sin a, cos a, ln a may be differentiated. In this Section we see how

More information

Handout 1. Research shows that students learn when they MAKE MISTAKES and not when they get it right. SO MAKE MISTAKES, because MISTAKES ARE GOOD!

Handout 1. Research shows that students learn when they MAKE MISTAKES and not when they get it right. SO MAKE MISTAKES, because MISTAKES ARE GOOD! Handout Research shows that students learn when they MAKE MISTAKES and not when they get it right. SO MAKE MISTAKES, because MISTAKES ARE GOOD! Review:. The Substitution Rule Indefinite f (g()) g ()d =

More information

1 Solution to Homework 4

1 Solution to Homework 4 Solution to Homework Section. 5. The characteristic equation is r r + = (r )(r ) = 0 r = or r =. y(t) = c e t + c e t y = c e t + c e t. y(0) =, y (0) = c + c =, c + c = c =, c =. To find the maximum value

More information

INSTRUCTOR S SOLUTIONS MANUAL SECTION 17.1 (PAGE 902)

INSTRUCTOR S SOLUTIONS MANUAL SECTION 17.1 (PAGE 902) INSTRUCTOR S SOLUTIONS MANUAL SECTION 7 PAGE 90 CHAPTER 7 ORDINARY DIFFEREN- TIAL EQUATIONS Section 7 Classifing Differential Equations page 90 = 5: st order, linear, homogeneous d d + = : nd order, linear,

More information

DIFFERENTIAL EQUATION

DIFFERENTIAL EQUATION MDE DIFFERENTIAL EQUATION NCERT Solved eamples upto the section 9. (Introduction) and 9. (Basic Concepts) : Eample : Find the order and degree, if defined, of each of the following differential equations

More information

Finding Limits Graphically and Numerically. An Introduction to Limits

Finding Limits Graphically and Numerically. An Introduction to Limits 8 CHAPTER Limits and Their Properties Section Finding Limits Graphicall and Numericall Estimate a it using a numerical or graphical approach Learn different was that a it can fail to eist Stud and use

More information

MA 113 Calculus I Fall 2009 Exam 4 December 15, 2009

MA 113 Calculus I Fall 2009 Exam 4 December 15, 2009 MA 3 Calculus I Fall 009 Eam December 5, 009 Answer all of the questions - 7 and two of the questions 8-0. Please indicate which problem is not to be graded b crossing through its number in the table below.

More information

EXERCISES FOR SECTION 3.1

EXERCISES FOR SECTION 3.1 174 CHAPTER 3 LINEAR SYSTEMS EXERCISES FOR SECTION 31 1 Since a > 0, Paul s making a pro t > 0 has a bene cial effect on Paul s pro ts in the future because the a term makes a positive contribution to

More information

AP Calculus (AB/BC) Prerequisite Packet Paint Branch High School Math Department

AP Calculus (AB/BC) Prerequisite Packet Paint Branch High School Math Department Updated 6/015 The problems in this packet are designed to help ou review topics from previous math courses that are important to our success in AP Calculus AB / BC. It is important that ou take time during

More information

MA 242 Review Exponential and Log Functions Notes for today s class can be found at

MA 242 Review Exponential and Log Functions Notes for today s class can be found at MA 242 Review Exponential and Log Functions Notes for today s class can be found at www.xecu.net/jacobs/index242.htm Example: If y = x n If y = x 2 then then dy dx = nxn 1 dy dx = 2x1 = 2x Power Function

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

Integration Techniques, L Hôpital s Rule, and Improper Integrals

Integration Techniques, L Hôpital s Rule, and Improper Integrals 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals In previous chapters, ou studied several basic techniques for evaluating simple integrals. In this chapter, ou will stud other integration

More information

UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH *

UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH * 4.4 UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH 19 Discussion Problems 59. Two roots of a cubic auxiliary equation with real coeffi cients are m 1 1 and m i. What is the corresponding homogeneous

More information

2.5 CONTINUITY. a x. Notice that Definition l implicitly requires three things if f is continuous at a:

2.5 CONTINUITY. a x. Notice that Definition l implicitly requires three things if f is continuous at a: SECTION.5 CONTINUITY 9.5 CONTINUITY We noticed in Section.3 that the it of a function as approaches a can often be found simpl b calculating the value of the function at a. Functions with this propert

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

We have examined power functions like f (x) = x 2. Interchanging x

We have examined power functions like f (x) = x 2. Interchanging x CHAPTER 5 Eponential and Logarithmic Functions We have eamined power functions like f =. Interchanging and ields a different function f =. This new function is radicall different from a power function

More information

Section B. Ordinary Differential Equations & its Applications Maths II

Section B. Ordinary Differential Equations & its Applications Maths II Section B Ordinar Differential Equations & its Applications Maths II Basic Concepts and Ideas: A differential equation (D.E.) is an equation involving an unknown function (or dependent variable) of one

More information

Trigonometric. equations. Topic: Periodic functions and applications. Simple trigonometric. equations. Equations using radians Further trigonometric

Trigonometric. equations. Topic: Periodic functions and applications. Simple trigonometric. equations. Equations using radians Further trigonometric Trigonometric equations 6 sllabusref eferenceence Topic: Periodic functions and applications In this cha 6A 6B 6C 6D 6E chapter Simple trigonometric equations Equations using radians Further trigonometric

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. Section. Rolle s Theorem and the Mean Value Theorem. 7 Section. Increasing and Decreasing Functions and the First Derivative

More information

Ordinary Differential Equations

Ordinary Differential Equations 58229_CH0_00_03.indd Page 6/6/6 2:48 PM F-007 /202/JB0027/work/indd & Bartlett Learning LLC, an Ascend Learning Compan.. PART Ordinar Differential Equations. Introduction to Differential Equations 2. First-Order

More information

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Section. Logarithmic Functions and Their Graphs 7. LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Ariel Skelle/Corbis What ou should learn Recognize and evaluate logarithmic functions with base a. Graph logarithmic

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

Higher Order Linear ODEs

Higher Order Linear ODEs im03.qxd 9/21/05 11:04 AM Page 59 CHAPTER 3 Higher Order Linear ODEs This chapter is new. Its material is a rearranged and somewhat extended version of material previously contained in some of the sections

More information

CHAPTER 5 Logarithmic, Exponential, and Other Transcendental Functions

CHAPTER 5 Logarithmic, Exponential, and Other Transcendental Functions CHAPTER 5 Logarithmic, Eponential, and Other Transcendental Functions Section 5. The Natural Logarithmic Function: Differentiation.... 9 Section 5. The Natural Logarithmic Function: Integration...... 98

More information

24. ; Graph the function and observe where it is discontinuous. 2xy f x, y x 2 y 3 x 3 y xy 35. 6x 3 y 2x 4 y 4 36.

24. ; Graph the function and observe where it is discontinuous. 2xy f x, y x 2 y 3 x 3 y xy 35. 6x 3 y 2x 4 y 4 36. SECTION. LIMITS AND CONTINUITY 877. EXERCISES. Suppose that, l 3, f, 6. What can ou sa about the value of f 3,? What if f is continuous?. Eplain wh each function is continuous or discontinuous. (a) The

More information

Trigonometric integrals by basic methods

Trigonometric integrals by basic methods Roberto s Notes on Integral Calculus Chapter : Integration methods Section 7 Trigonometric integrals by basic methods What you need to know already: Integrals of basic trigonometric functions. Basic trigonometric

More information

Integration by Tables and Other Integration Techniques. Integration by Tables

Integration by Tables and Other Integration Techniques. Integration by Tables 3346_86.qd //4 3:8 PM Page 56 SECTION 8.6 and Other Integration Techniques 56 Section 8.6 and Other Integration Techniques Evaluate an indefinite integral using a table of integrals. Evaluate an indefinite

More information

Introduction to Differential Equations

Introduction to Differential Equations Math0 Lecture # Introduction to Differential Equations Basic definitions Definition : (What is a DE?) A differential equation (DE) is an equation that involves some of the derivatives (or differentials)

More information

Determinants. We said in Section 3.3 that a 2 2 matrix a b. Determinant of an n n Matrix

Determinants. We said in Section 3.3 that a 2 2 matrix a b. Determinant of an n n Matrix 3.6 Determinants We said in Section 3.3 that a 2 2 matri a b is invertible if and onl if its c d erminant, ad bc, is nonzero, and we saw the erminant used in the formula for the inverse of a 2 2 matri.

More information

13.1. For further details concerning the physics involved and animations of the trajectories of the particles, see the following websites:

13.1. For further details concerning the physics involved and animations of the trajectories of the particles, see the following websites: 8 CHAPTER 3 VECTOR FUNCTIONS N Some computer algebra sstems provie us with a clearer picture of a space curve b enclosing it in a tube. Such a plot enables us to see whether one part of a curve passes

More information

Fourier Analysis Fourier Series C H A P T E R 1 1

Fourier Analysis Fourier Series C H A P T E R 1 1 C H A P T E R Fourier Analysis 474 This chapter on Fourier analysis covers three broad areas: Fourier series in Secs...4, more general orthonormal series called Sturm iouville epansions in Secs..5 and.6

More information

Algebra/Pre-calc Review

Algebra/Pre-calc Review Algebra/Pre-calc Review The following pages contain various algebra and pre-calculus topics that are used in the stud of calculus. These pages were designed so that students can refresh their knowledge

More information

The Fundamental Theorem of Calculus Part 3

The Fundamental Theorem of Calculus Part 3 The Fundamental Theorem of Calculus Part FTC Part Worksheet 5: Basic Rules, Initial Value Problems, Rewriting Integrands A. It s time to find anti-derivatives algebraically. Instead of saying the anti-derivative

More information

Differential Equations

Differential Equations 6 Differential Equations In this chapter, ou will stu one of the most important applications of calculus differential equations. You will learn several methods for solving different tpes of differential

More information

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x)

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x) L Hôpital s Rule In this note we will evaluate the its of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0 f() Suppose a f() = 0 and a g() = 0. Then a g() the indeterminate

More information

b. Create a graph that gives a more complete representation of f.

b. Create a graph that gives a more complete representation of f. or Use Onl in Pilot Program F 96 Chapter Limits 6 7. Steep secant lines a. Given the graph of f in the following figures, find the slope of the secant line that passes through, and h, f h in terms of h,

More information

LESSON #48 - INTEGER EXPONENTS COMMON CORE ALGEBRA II

LESSON #48 - INTEGER EXPONENTS COMMON CORE ALGEBRA II LESSON #8 - INTEGER EXPONENTS COMMON CORE ALGEBRA II We just finished our review of linear functions. Linear functions are those that grow b equal differences for equal intervals. In this unit we will

More information

Math098 Practice Final Test

Math098 Practice Final Test Math098 Practice Final Test Find an equation of the line that contains the points listed in the table. 1) 0-6 1-2 -4 3-3 4-2 Find an equation of the line. 2) 10-10 - 10 - -10 Solve. 3) 2 = 3 + 4 Find the

More information

Properties of Limits

Properties of Limits 33460_003qd //04 :3 PM Page 59 SECTION 3 Evaluating Limits Analticall 59 Section 3 Evaluating Limits Analticall Evaluate a it using properties of its Develop and use a strateg for finding its Evaluate

More information

Infinite Limits. Let f be the function given by. f x 3 x 2.

Infinite Limits. Let f be the function given by. f x 3 x 2. 0_005.qd //0 :07 PM Page 8 SECTION.5 Infinite Limits 8, as Section.5, as + f() = f increases and decreases without bound as approaches. Figure.9 Infinite Limits Determine infinite its from the left and

More information

Analytic Geometry in Three Dimensions

Analytic Geometry in Three Dimensions Analtic Geometr in Three Dimensions. The Three-Dimensional Coordinate Sstem. Vectors in Space. The Cross Product of Two Vectors. Lines and Planes in Space The three-dimensional coordinate sstem is used

More information

Brief Notes on Differential Equations

Brief Notes on Differential Equations Brief Notes on Differential Equations (A) Searable First-Order Differential Equations Solve the following differential equations b searation of variables: (a) (b) Solution ( 1 ) (a) The ODE becomes d and

More information

McKinney High School AP Calculus Summer Packet

McKinney High School AP Calculus Summer Packet McKinne High School AP Calculus Summer Packet (for students entering AP Calculus AB or AP Calculus BC) Name:. This packet is to be handed in to our Calculus teacher the first week of school.. ALL work

More information

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0 Eact Equations An eact equation is a first order differential equation that can be written in the form M(, + N(,, provided that there eists a function ψ(, such that = M (, and N(, = Note : Often the equation

More information

8.3. Integration of Rational Functions by Partial Fractions. 570 Chapter 8: Techniques of Integration

8.3. Integration of Rational Functions by Partial Fractions. 570 Chapter 8: Techniques of Integration 570 Chapter 8: Techniques of Integration 8.3 Integration of Rational Functions b Partial Fractions This section shows how to epress a rational function (a quotient of polnomials) as a sum of simpler fractions,

More information

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Variation of Parameters Page 1

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Variation of Parameters Page 1 Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Variation of Parameters Page Questions Example (3.6.) Find a particular solution of the differential equation y 5y + 6y = 2e

More information

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals Math Summar of Important Algebra & Trigonometr Concepts Chapter & Appendi D, Stewart, Calculus Earl Transcendentals Function a rule that assigns to each element in a set D eactl one element, called f (

More information

Fixed Point Theorem and Sequences in One or Two Dimensions

Fixed Point Theorem and Sequences in One or Two Dimensions Fied Point Theorem and Sequences in One or Two Dimensions Dr. Wei-Chi Yang Let us consider a recursive sequence of n+ = n + sin n and the initial value can be an real number. Then we would like to ask

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 0 Section. Rolle s Theorem and the Mean Value Theorem. 07 Section. Increasing and Decreasing Functions and the First

More information

MA 15800, Summer 2016 Lesson 25 Notes Solving a System of Equations by substitution (or elimination) Matrices. 2 A System of Equations

MA 15800, Summer 2016 Lesson 25 Notes Solving a System of Equations by substitution (or elimination) Matrices. 2 A System of Equations MA 800, Summer 06 Lesson Notes Solving a Sstem of Equations b substitution (or elimination) Matrices Consider the graphs of the two equations below. A Sstem of Equations From our mathematics eperience,

More information

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes Mathematics 309 Conic sections and their applicationsn Chapter 2. Quadric figures In this chapter want to outline quickl how to decide what figure associated in 2D and 3D to quadratic equations look like.

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012 The Second Fundamental Theorem of Calculus Functions Defined by Integrals Given the functions, f(t), below, use F( ) f ( t) dt to find F() and F () in terms of.. f(t) = 4t t. f(t) = cos t Given the functions,

More information

A.5. Complex Numbers AP-12. The Development of the Real Numbers

A.5. Complex Numbers AP-12. The Development of the Real Numbers AP- A.5 Comple Numbers Comple numbers are epressions of the form a + ib, where a and b are real numbers and i is a smbol for -. Unfortunatel, the words real and imaginar have connotations that somehow

More information

Worksheet Week 7 Section

Worksheet Week 7 Section Worksheet Week 7 Section 8.. 8.4. This worksheet is for improvement of your mathematical writing skill. Writing using correct mathematical epression and steps is really important part of doing math. Please

More information

TImath.com Calculus. Topic: Techniques of Integration Derive the formula for integration by parts and use it to compute integrals

TImath.com Calculus. Topic: Techniques of Integration Derive the formula for integration by parts and use it to compute integrals Integration by Parts ID: 985 Time required 45 minutes Activity Overview In previous activities, students have eplored the differential calculus through investigations of the methods of first principles,

More information

Chapter 1 Overview: Review of Derivatives

Chapter 1 Overview: Review of Derivatives Chapter Overview: Review of Derivatives The purpose of this chapter is to review the how of ifferentiation. We will review all the erivative rules learne last year in PreCalculus. In the net several chapters,

More information

13.1. For further details concerning the physics involved and animations of the trajectories of the particles, see the following websites:

13.1. For further details concerning the physics involved and animations of the trajectories of the particles, see the following websites: 8 CHAPTER VECTOR FUNCTIONS N Some computer algebra sstems provide us with a clearer picture of a space curve b enclosing it in a tube. Such a plot enables us to see whether one part of a curve passes in

More information

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video SECTION and Decreasing Functions and the First Derivative Test 79 Section and Decreasing Functions and the First Derivative Test Determine intervals on which a unction is increasing or decreasing Appl

More information