Control of thermal radiation for energy applications. Shanhui Fan Ginzton Laboratory and Department of Electrical Engineering Stanford University

Size: px
Start display at page:

Download "Control of thermal radiation for energy applications. Shanhui Fan Ginzton Laboratory and Department of Electrical Engineering Stanford University"

Transcription

1 Control of thermal radiation for energy applications Shanhui Fan Ginzton Laboratory and Department of Electrical Engineering Stanford University

2 Thermal radiation: an ubiquitous aspect of nature Sun (6000K) Human Body (~ 310K) Tungsten light bulb (~3000K) Outer Space (3K)

3 Conventional view of a blackbody 2000K (Well, it is black.) Typically strongly absorbing/emitting in both the solar and the thermal wavelength range Broad-band, broad-angle absorption.

4 Strong angular emission from SiC grating Greffet et al, Nature 416, 61 (2002)

5 Narrow-band thermal radiation from gold antenna w=0.4µm, l = 1.7µm Gold L. Zhu et al, APL 102, (2013) X. Liu et al, PRL 107, (2011)

6 Daytime radiative cooling emissivity Wavelength (micron) A mirror in the solar wavelength range. black in the 8-13 micron window. E. Rephaeli, A. Raman and S. Fan, Nano Letters 13, 1451 (2013).

7 Radiative access to the universe 300K Blackbody Spectrum

8 Stanford daytime radiative cooling experiment Sample: 8 inch wafer A. Raman, M. Anoma, L. Zhu, E. Rephaeli, and S. Fan, Nature 515, 540 (2014).

9 Emissivity of the photonic cooler Strong solar reflection Strong and selective thermal emission

10 Rooftop Setup

11 Daytime Cooling Experiment: Results A. Raman, M. Anoma, L. Zhu, E. Rephaeli, and S. Fan, Nature (2014).

12 Towards Fundamental Limit of Radiative Cooling Z. Chen, L. Zhu, A. Raman, and S. Fan, Nature Communications (2016, in press) (Supported by a GCEP project)

13 Ultra-High Performance Continuous Radiative Cooling Over Day and Night Z. Chen, L. Zhu, A. Raman, and S. Fan, Nature Communications (2016, in press)

14 Indoor cooling In a typical office environment, 40-60% of heat dissipation of human body is through thermal radiation. Controlling thermal radiation is therefore important for indoor cooling.

15 Design textile for indoor cooling application Normal textile (such as cotton) Cooling textile Visible Thermal IR Visible Thermal IR Blocks both IR and visible Blocks visible, but allow IR to go through

16 Nanoporous polyethylene (PE) P. Hsu et al, Science 353, 1019 (2016). collaboration with Prof. Y. Cui s group at Stanford

17 Visible and thermal spectra Visible spectrum Thermal infrared spectrum Transmission Transmission Wavelength (nm) Wavelength (micron) P. Hsu et al, Science 353, 1019 (2016). collaboration with Prof. Y. Cui s group at Stanford

18 Shockley-Queisser Limit P N V Sun Semiconductor PN junction Photons with energy below band gap are not absorbed by the semiconductor Photons above the band gap are absorbed, but each photon only contributes part of its energy % efficiency limit depending on concentration

19 Solar thermophotovolatics Broadband absorber Selective emitter P N Compress the spectral bandwidth of light that is incident on the PV cell R. M. Swanson, Proc. IEEE 67, (1979) S. Fan, Nature Nanotechnology 9, 92 (2014).

20 Solar Thermo-Photovoltaics (STPV) P N Sun (T s = 6000K) Intermediate Absorber and Emitter (T i = 2544K) Solar Cell (T e = 300K) The sun to the intermediate The intermediate to the cell P. Harder and P. Wurfel, Semicond. Sci. Technol. 18, S151 (2003);

21 The record today in solar thermophotovoltaics Solar to electric energy conversion of 6.8% D. M. Bierman, Nature Energy 1, (2016)

22 6000K Our GCEP Project 2544K 300K P N PIs: Shanhui Fan, Mark Brongersma, and James Harris To develop structures and materials for emitters that are stable at high temperature. To achieve high efficiency cell specifically tailored for TPV applications.

23 Enhancing stability of thermal emitter under high temperature Tungsten inverted opal ~3000 o C No thermal treatment 1000 o C 1 micron 1200 o C 1400 o C K. Arpin, S. Fan and P. Braun et al, Nature Communications 4, 2630 (2013).

24 Flat Tungsten Thermal Emitter With Spectral Tailoring SiC W Y. Guo and S. Fan, Optics Express (2016, in press).

25 Thermal Metasurfaces for Full Control of Thermal Radiation Brongersma group

26 Phase-gradient thermal metasurface for the focusing of the thermal radiation Brongersma group

27 Previous work: world-record multi-junction cell J sc,tandem = min{j sc,top, J sc,mid, J sc,bot } J out InGaP GaAs GaInNAsSb bottom middle top Combined V app Harris group Solar Junction record efficiency 44% V oc,tandem =V oc,top +V oc,mid +V oc,bottom

28 High-efficiency low band gap cell for TPV applications n + n p p + InP window In 0.53 Ga 0.47 As emitter In 0.53 Ga 0.47 As base InP BSF n + GaSb window n In 0.2 Ga 0.8 As 0.18 Sb 0.82 emitter p In 0.2 Ga 0.8 As 0.18 Sb 0.82 base p + GaSb BSF Harris group

29 Summary Sun (6000K) Human Body (~ 310K) Tungsten light bulb (3000K) Outer Space (3K) Control of thermal radiation offers tremendous opportunity for energy applications.

Nanophotonics: solar and thermal applications

Nanophotonics: solar and thermal applications Nanophotonics: solar and thermal applications Shanhui Fan Ginzton Laboratory and Department of Electrical Engineering Stanford University http://www.stanford.edu/~shanhui Nanophotonic Structures Photonic

More information

Night-time radiative cooling: harvesting the darkness of the universe

Night-time radiative cooling: harvesting the darkness of the universe Night-time radiative cooling: harvesting the darkness of the universe Shanhui Fan Ginzton Laboratory and Department of Electrical Engineering Stanford University Thermodynamic resources in the sky Sun

More information

Ultra High Efficiency Thermo-Photovoltaic Solar Cells Using Metallic Photonic Crystals As Intermediate Absorber and Emitter

Ultra High Efficiency Thermo-Photovoltaic Solar Cells Using Metallic Photonic Crystals As Intermediate Absorber and Emitter Ultra High Efficiency Thermo-Photovoltaic Solar Cells Using Metallic Photonic Crystals As Intermediate Absorber and Emitter A. Investigators Shanhui Fan, Associate Professor, Electrical Engineering, Stanford

More information

Ultra High Efficiency Thermo-Photovoltaic Solar Cells Using Metallic Photonic Crystals As Intermediate Absorber and Emitter

Ultra High Efficiency Thermo-Photovoltaic Solar Cells Using Metallic Photonic Crystals As Intermediate Absorber and Emitter Ultra High Efficiency Thermo-Photovoltaic Solar Cells Using Metallic Photonic Crystals As Intermediate Absorber and Emitter A. Investigators Shanhui Fan, Associate Professor, Electrical Engineering, Stanford

More information

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013 High-efficiency thin film nano-structured multi-junction solar James S. cells Harris (PI) (Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University GCEP Research Symposium 2013 Stanford, CA October

More information

Enhanced selective thermal emission with a meta-mirror following Generalized Snell s Law

Enhanced selective thermal emission with a meta-mirror following Generalized Snell s Law Mater. Res. Soc. Symp. Proc. Vol. 1728 2015 Materials Research Society DOI: 10.1557/opl.2015. 357 Enhanced selective thermal emission with a meta-mirror following Generalized Snell s Law M. Ryyan Khan

More information

Introduction to Electromagnetic Radiation and Radiative Transfer

Introduction to Electromagnetic Radiation and Radiative Transfer Introduction to Electromagnetic Radiation and Radiative Transfer Temperature Dice Results Visible light, infrared (IR), ultraviolet (UV), X-rays, γ-rays, microwaves, and radio are all forms of electromagnetic

More information

High temperature plasmonics: Narrowband, tunable, nearfield. thermal sources

High temperature plasmonics: Narrowband, tunable, nearfield. thermal sources High temperature plasmonics: Narrowband, tunable, nearfield thermal sources Yu Guo, S. Molesky, C. Cortes and Zubin Jacob * Department of Electrical and Computer Engineering, University of Alberta, Edmonton,

More information

Sub-wavelength electromagnetic structures

Sub-wavelength electromagnetic structures Sub-wavelength electromagnetic structures Shanhui Fan, Z. Ruan, L. Verselegers, P. Catrysse, Z. Yu, J. Shin, J. T. Shen, G. Veronis Ginzton Laboratory, Stanford University http://www.stanford.edu/group/fan

More information

PHOTOVOLTAICS Fundamentals

PHOTOVOLTAICS Fundamentals PHOTOVOLTAICS Fundamentals PV FUNDAMENTALS Semiconductor basics pn junction Solar cell operation Design of silicon solar cell SEMICONDUCTOR BASICS Allowed energy bands Valence and conduction band Fermi

More information

Supplemental Discussion for Multijunction Solar Cell Efficiencies: Effect of Spectral Window, Optical Environment and Radiative Coupling

Supplemental Discussion for Multijunction Solar Cell Efficiencies: Effect of Spectral Window, Optical Environment and Radiative Coupling Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supplemental Discussion for Multijunction Solar Cell Efficiencies: Effect

More information

Given any heat flow across a temperature difference, it is

Given any heat flow across a temperature difference, it is Thermodynamic limits of energy harvesting from outgoing thermal radiation Siddharth uddhiraju a,1, Parthiban Santhanam a, and Shanhui Fan a,1 a Ginzton Laboratory, Department of Electrical Engineering,

More information

PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA.

PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA. SOLAR CELL AND ITS APPLICATION PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA. OUTLINE OF THE PRESENTATION Objective of the work. A brief introduction to Solar Cell

More information

Thermal extraction: enhancing thermal emission of finite size macroscopic blackbody to far-field vacuum

Thermal extraction: enhancing thermal emission of finite size macroscopic blackbody to far-field vacuum Thermal extraction: enhancing thermal emission of finite size macroscopic blackbody to far-field vacuum Zongfu Yu 1, Nicholas Sergeant 1, Torbjorn Skauli 1,2, Gang Zhang 3, Hailiang Wang 4, and Shanhui

More information

Daytime radiative cooling using near-black infrared emitters

Daytime radiative cooling using near-black infrared emitters Article Subscriber access provided by Caltech Library Daytime radiative cooling using near-black infrared emitters Jun-long Kou, Zoila Jurado, Zhen Chen, Shanhui Fan, and Austin J. Minnich ACS Photonics,

More information

Molecular Solar Cells Progress Report

Molecular Solar Cells Progress Report MolecularSolarCellsProgressReport Investigators Faculty:Prof.PeterPeumans(ElectricalEngineering,Stanford) Graduateresearchers:MukulAgrawal,ShanbinZhao,AlbertLiu,SeungRim,Jung YongLee,JunboWu Summary We

More information

Third generation solar cells - How to use all the pretty colours?

Third generation solar cells - How to use all the pretty colours? Third generation solar cells - How to use all the pretty colours? Erik Stensrud Marstein Department for Solar Energy Overview The trouble with conventional solar cells Third generation solar cell concepts

More information

Nano-Engineering Metamaterials and Metafilms. for High-Efficiency Solar Energy Harvesting and Conversion. Hao Wang

Nano-Engineering Metamaterials and Metafilms. for High-Efficiency Solar Energy Harvesting and Conversion. Hao Wang Nano-Engineering Metamaterials and Metafilms for High-Efficiency Solar Energy Harvesting and Conversion by Hao Wang A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor

More information

Evolution of High Efficiency. Silicon Solar Cell Design

Evolution of High Efficiency. Silicon Solar Cell Design Australian Centre for Advanced Photovoltaics Evolution of High Efficiency Silicon Solar Cell Design Martin A. Green University of New South Wales Outline Lecture 2 1. Enter the modern era 2. Principle

More information

The Shockley-Queisser Limit. Jake Friedlein 7 Dec. 2012

The Shockley-Queisser Limit. Jake Friedlein 7 Dec. 2012 The Shockley-Queisser Limit Jake Friedlein 7 Dec. 2012 1 Outline A. Loss factors 1. Bandgap energy 2. Geometric factor 3. Recombination of electrons and holes B. Overall efficiency C. Optimum bandgap 2

More information

PLASMONICS/METAMATERIALS

PLASMONICS/METAMATERIALS PLASMONICS/METAMATERIALS Interconnects Optical processing of data Subwavelength confinement Electrodes are in place Coupling to other on-chip devices Combination of guiding, detection, modulation, sensing

More information

Fundamentals of Photovoltaics: C1 Problems. R.Treharne, K. Durose, J. Major, T. Veal, V.

Fundamentals of Photovoltaics: C1 Problems. R.Treharne, K. Durose, J. Major, T. Veal, V. Fundamentals of Photovoltaics: C1 Problems R.Treharne, K. Durose, J. Major, T. Veal, V. Dhanak @cdtpv November 3, 2015 These problems will be highly relevant to the exam that you will sit very shortly.

More information

Thermal Radiation By: Prof. K M Joshi

Thermal Radiation By: Prof. K M Joshi Thermal Radiation By: Prof. K M Joshi Radiation originate due to emission of matter and its subsequent transports does not required any matter / medium. Que: Then what is the nature of this transport???

More information

Electromagnetic Radiation. Physical Principles of Remote Sensing

Electromagnetic Radiation. Physical Principles of Remote Sensing Electromagnetic Radiation Physical Principles of Remote Sensing Outline for 4/3/2003 Properties of electromagnetic radiation The electromagnetic spectrum Spectral emissivity Radiant temperature vs. kinematic

More information

Photonic Crystals: Shaping the Flow of Thermal Radiation. Ivan Čelanović Massachusetts Institute of Technology Cambridge, MA 02139

Photonic Crystals: Shaping the Flow of Thermal Radiation. Ivan Čelanović Massachusetts Institute of Technology Cambridge, MA 02139 Photonic Crystals: Shaping the Flow of Thermal Radiation Ivan Čelanović Massachusetts Institute of Technology Cambridge, MA 02139 Overview: Thermophotovoltaic (TPV) power generation Photonic crystals,

More information

Supporting Information: Semiconductor-based Multilayer Selective Absorber for Unconcentrated Solar Thermal Energy Conversion

Supporting Information: Semiconductor-based Multilayer Selective Absorber for Unconcentrated Solar Thermal Energy Conversion Supporting Information: Semiconductor-based Multilayer Selective Absorber for Unconcentrated Solar Thermal Energy Conversion Nathan H. Thomas, 1 Zhen Chen, 2, 3 Shanhui Fan, 2 and Austin J. Minnich 1,

More information

Thin film interference in ultra-thin layers: color coatings, tunable absorbers, and thermal emitters

Thin film interference in ultra-thin layers: color coatings, tunable absorbers, and thermal emitters Thin film interference in ultra-thin layers: color coatings, tunable absorbers, and thermal emitters Mikhail A. Kats Harvard University School of Engineering and Applied Sciences NanoLight [Benasque] March

More information

Monday, Oct. 2: Clear-sky radiation; solar attenuation, Thermal. nomenclature

Monday, Oct. 2: Clear-sky radiation; solar attenuation, Thermal. nomenclature Monday, Oct. 2: Clear-sky radiation; solar attenuation, Thermal nomenclature Sun Earth Y-axis: Spectral radiance, aka monochromatic intensity units: watts/(m^2*ster*wavelength) Blackbody curves provide

More information

Limiting acceptance angle to maximize efficiency in solar cells

Limiting acceptance angle to maximize efficiency in solar cells Limiting acceptance angle to maximize efficiency in solar cells Emily D. Kosten a and Harry A. Atwater a,b a Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena,

More information

Design strategy for Low e windows with effective insulation

Design strategy for Low e windows with effective insulation Design strategy for Low e windows with effective insulation Michael P.C. Watts, Impattern Solutions, www.impattern.com Keywords; insulating windows. low emission glass, ABSTRACT Optimal window glass assemblies

More information

Quantum Dot Technology for Low-Cost Space Power Generation for Smallsats

Quantum Dot Technology for Low-Cost Space Power Generation for Smallsats SSC06-VI- Quantum Dot Technology for Low-Cost Space Power Generation for Smallsats Theodore G. DR Technologies, Inc. 7740 Kenamar Court, San Diego, CA 92020 (858)677-230 tstern@drtechnologies.com The provision

More information

HIGH EFFICIENCY THERMOPHOTOVOLTAIC SYSTEMS. Anubha Mathur, Enas Said Sakr, Professor Peter Bermel Purdue University

HIGH EFFICIENCY THERMOPHOTOVOLTAIC SYSTEMS. Anubha Mathur, Enas Said Sakr, Professor Peter Bermel Purdue University HIGH EFFICIENCY THERMOPHOTOVOLTAIC SYSTEMS Anubha Mathur, Enas Said Sakr, Professor Peter Bermel Purdue University PRESENTATION OVERVIEW Motivation and Introduction Background Research and Methodology

More information

performance using a genetic algorithm

performance using a genetic algorithm Determination of thermal emission spectra maximizing thermophotovoltaic performance using a genetic algorithm John DeSutter, Michael P. Bernardi and Mathieu Francoeur Radiative Energy Transfer Lab, Department

More information

The Broadband Fixed-Angle Source Technique (BFAST) LUMERICAL SOLUTIONS INC

The Broadband Fixed-Angle Source Technique (BFAST) LUMERICAL SOLUTIONS INC The Broadband Fixed-Angle Source Technique (BFAST) LUMERICAL SOLUTIONS INC. 1 Outline Introduction Lumerical s simulation products Simulation of periodic structures The new Broadband Fixed-Angle Source

More information

Thermophotovoltaic devices for solar and thermal energy conversion

Thermophotovoltaic devices for solar and thermal energy conversion Journées Nationales sur l'énergie Solaire «Congrès JNES 2018» 27-29 June 2018 Campus de LyonTech-la Doua, Villeurbanne, France Thermophotovoltaic devices for solar and thermal energy conversion Rodolphe

More information

Fundamentals of Light Trapping

Fundamentals of Light Trapping Fundamentals of Light Trapping James R. Nagel, PhD November 16, 2017 Salt Lake City, Utah About Me PhD, Electrical Engineering, University of Utah (2011) Research Associate for Dept. of Metallurgical Engineering

More information

Chapter 7. Solar Cell

Chapter 7. Solar Cell Chapter 7 Solar Cell 7.0 Introduction Solar cells are useful for both space and terrestrial application. Solar cells furnish the long duration power supply for satellites. It converts sunlight directly

More information

1 Introduction. Keywords: radiative cooling; nanophotonics; selective thermal emission; photovoltaics; infrared detectors; thermophotovoltaics;

1 Introduction. Keywords: radiative cooling; nanophotonics; selective thermal emission; photovoltaics; infrared detectors; thermophotovoltaics; Nanophotonics 2017; 6(5): 997 1015 Review article Open Access Xingshu Sun, Yubo Sun, Zhiguang Zhou, Muhammad Ashraful Alam and Peter Bermel* Radiative sky cooling: fundamental physics, materials, structures,

More information

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner 10.1149/1.2986844 The Electrochemical Society Ge Quantum Well Modulators on Si D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner Ginzton Laboratory, 450 Via Palou, Stanford CA 94305-4088,

More information

Theoretical Approach to Simulate Efficient Selective Solar Absorbers With Micro or Nano Structured Arrays. 1. Introduction

Theoretical Approach to Simulate Efficient Selective Solar Absorbers With Micro or Nano Structured Arrays. 1. Introduction Materials Research. 218; 21(): e217126 DOI: http://dx.doi.org/1.159/198-57-mr-217-126 Theoretical Approach to Simulate Efficient Selective Solar Absorbers With Micro or Nano Structured Arrays Jhong-sian

More information

NSF EPSCoR Kansas Center for Solar Energy Research Annual Program Review June 12-14, 2011

NSF EPSCoR Kansas Center for Solar Energy Research Annual Program Review June 12-14, 2011 NSF EPSCoR Kansas Center for Solar Energy Research Annual Program Review June 12-14, 2011 Plasmonic and Photonic Photovoltaics based on graphene and other carbon nanostructures Fengli Wang, Guowei Xu,

More information

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA 1 Candidates should be able to : EMISSION LINE SPECTRA Explain how spectral lines are evidence for the existence of discrete energy levels in isolated atoms (i.e. in a gas discharge lamp). Describe the

More information

Modeling of an efficient Thermo-Photovoltaic (TPV) cell as a power source for space application

Modeling of an efficient Thermo-Photovoltaic (TPV) cell as a power source for space application Modeling of an efficient Thermo-Photovoltaic (TPV) cell as a power source for space application Khomdram Jolson Singh Dept. of ECE. Manipur I nst it ut e of T echnology Imphal-795004 (India) jolly4u2@rediffmail.com

More information

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Kinds of energy Energy transfer mechanisms Radiation: electromagnetic spectrum, properties & principles Solar constant Atmospheric influence

More information

Beam-controlled spectral-selective architecture with planar polydimethylsiloxane/metal-films for all-day radiative cooling

Beam-controlled spectral-selective architecture with planar polydimethylsiloxane/metal-films for all-day radiative cooling Beam-controlled spectral-selective architecture with planar polydimethylsiloxane/metal-films for all-day radiative cooling Lyu Zhou 1,*, Haomin Song 1,2*, Jianwei Liang 2,*, Matthew Singer 1, Ming Zhou

More information

Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing!

Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing! Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing! Course Philosophy" Rendering! Computer graphics! Estimation! Computer vision! Robot vision" Remote sensing! lhm

More information

ATMOS 5140 Lecture 7 Chapter 6

ATMOS 5140 Lecture 7 Chapter 6 ATMOS 5140 Lecture 7 Chapter 6 Thermal Emission Blackbody Radiation Planck s Function Wien s Displacement Law Stefan-Bolzmann Law Emissivity Greybody Approximation Kirchhoff s Law Brightness Temperature

More information

Selective emitters design and optimization for thermophotovoltaic applications

Selective emitters design and optimization for thermophotovoltaic applications Selective emitters design and optimization for thermophotovoltaic applications E. Nefzaoui, J. Drevillon, and K. Joulain Institut Pprime, CNRS-Université de Poitiers-ENSMA, Département Fluides, Thermique,

More information

Photovoltaic Energy Conversion. Frank Zimmermann

Photovoltaic Energy Conversion. Frank Zimmermann Photovoltaic Energy Conversion Frank Zimmermann Solar Electricity Generation Consumes no fuel No pollution No greenhouse gases No moving parts, little or no maintenance Sunlight is plentiful & inexhaustible

More information

The Spectrophotometer and Atomic Spectra of Hydrogen Physics 246

The Spectrophotometer and Atomic Spectra of Hydrogen Physics 246 The Spectrophotometer and Atomic Spectra of Hydrogen Physics 46 Introduction: When heated sufficiently, most elements emit light. With a spectrometer, the emitted light can be broken down into its various

More information

arxiv: v1 [physics.optics] 12 Jun 2014

arxiv: v1 [physics.optics] 12 Jun 2014 Intermediate Mirrors to Reach Theoretical Efficiency Limits of Multi-Bandgap Solar Cells arxiv:1406.3126v1 [physics.optics] 12 Jun 2014 Abstract Vidya Ganapati, Chi-Sing Ho, Eli Yablonovitch University

More information

Monday 9 September, :30-11:30 Class#03

Monday 9 September, :30-11:30 Class#03 Monday 9 September, 2013 10:30-11:30 Class#03 Topics for the hour Solar zenith angle & relationship to albedo Blackbody spectra Stefan-Boltzman Relationship Layer model of atmosphere OLR, Outgoing longwave

More information

Detailed balance analysis of nanophotonic solar cells

Detailed balance analysis of nanophotonic solar cells Detailed balance analysis of nanophotonic solar cells Sunil Sandhu, Zongfu Yu, and Shanhui Fan Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA shanhui@stanford.edu

More information

Lecture 2. Photon in, Electron out: Basic Principle of PV

Lecture 2. Photon in, Electron out: Basic Principle of PV Lecture 2 Photon in, Electron out: Basic Principle of PV References: 1. Physics of Solar Cells. Jenny Nelson. Imperial College Press, 2003. 2. Third Generation Photovoltaics: Advanced Solar Energy Conversion.

More information

Preview from Notesale.co.uk Page 1 of 38

Preview from Notesale.co.uk Page 1 of 38 F UNDAMENTALS OF PHOTONICS Module 1.1 Nature and Properties of Light Linda J. Vandergriff Director of Photonics System Engineering Science Applications International Corporation McLean, Virginia Light

More information

Thin film Thermal Well Emitters and Absorbers for High Efficiency Thermophotovoltaics

Thin film Thermal Well Emitters and Absorbers for High Efficiency Thermophotovoltaics Thin film Thermal Well Emitters and Absorbers for High Efficiency Thermophotovoltaics Jonathan K. Tong 1, Wei Chun Hsu 1, Yi Huang 1, Svetlana V. Boriskina 1,*, and Gang Chen 1,* 1 Department of Mechanical

More information

Next quiz: Monday, October 24 Chp. 6 (nothing on telescopes) Chp. 7 a few problems from previous material cough, cough, gravity, cough, cough...

Next quiz: Monday, October 24 Chp. 6 (nothing on telescopes) Chp. 7 a few problems from previous material cough, cough, gravity, cough, cough... Next quiz: Monday, October 24 Chp. 6 (nothing on telescopes) Chp. 7 a few problems from previous material cough, cough, gravity, cough, cough... 1 Chapter 7 Atoms and Starlight Kirchhoff s Laws of Radiation

More information

ASTRONOMY 103: THE EVOLVING UNIVERSE. Lecture 4 COSMIC CHEMISTRY Substitute Lecturer: Paul Sell

ASTRONOMY 103: THE EVOLVING UNIVERSE. Lecture 4 COSMIC CHEMISTRY Substitute Lecturer: Paul Sell ASTRONOMY 103: THE EVOLVING UNIVERSE Lecture 4 COSMIC CHEMISTRY Substitute Lecturer: Paul Sell Two Blackbody Trends 1. Wein s (Veen s) Law λp 1 / T or λp = 2900 / T (λp is the peak wavelength in micrometers

More information

arxiv: v2 [physics.optics] 7 Feb 2018

arxiv: v2 [physics.optics] 7 Feb 2018 Ultra-Efficient Thermophotovoltaics Exploiting Spectral Filtering by the Photovoltaic Band-Edge arxiv:1611.3544v2 [physics.optics] 7 Feb 218 1 Abstract Vidya Ganapati, T. Patrick Xiao, Eli Yablonovitch

More information

Semiconductor Disk Laser on Microchannel Cooler

Semiconductor Disk Laser on Microchannel Cooler Semiconductor Disk Laser on Microchannel Cooler Eckart Gerster An optically pumped semiconductor disk laser with a double-band Bragg reflector mirror is presented. This mirror not only reflects the laser

More information

Glazing selection for solar design

Glazing selection for solar design Glazing selection for solar design Visible light transmittance: A measure of the amount of visible light that passes through the glazing material of a window, door, or skylight. Visible light transmittance,

More information

Temperature Measurement

Temperature Measurement Temperature Measurement Dr. Clemens Suter, Prof. Sophia Haussener Laboratory of Renewable Energy Sciences and Engineering Suter Temperature Measurement Mar, 2017 1/58 Motivation Suter Temperature Measurement

More information

Lecture 4: Heat, and Radiation

Lecture 4: Heat, and Radiation Lecture 4: Heat, and Radiation Heat Heat is a transfer of energy from one object to another. Heat makes things warmer. Heat is measured in units called calories. A calorie is the heat (energy) required

More information

Photo-Thermal Engineering for Clean Energy and Water Applications

Photo-Thermal Engineering for Clean Energy and Water Applications Photo-Thermal Engineering for Clean Energy and Water Applications Ravi Prasher Associate Lab Director Energy Technology Area Lawrence Berkeley National Lab Adjunct Professor Department of Mechanical Engineering

More information

Angular dependence of the photoelectron energy distribution of InP(100) and. GaAs(100) negative electron affinity photocathodes

Angular dependence of the photoelectron energy distribution of InP(100) and. GaAs(100) negative electron affinity photocathodes SLAC-PUB-12881 October 2007 Angular dependence of the photoelectron energy distribution of InP(100) and GaAs(100) negative electron affinity photocathodes Dong-Ick Lee Department of Materials Science and

More information

Today. Kirchoff s Laws. Emission and Absorption. Stellar Spectra & Composition. Doppler Effect & Motion. Extrasolar Planets

Today. Kirchoff s Laws. Emission and Absorption. Stellar Spectra & Composition. Doppler Effect & Motion. Extrasolar Planets Today Kirchoff s Laws Emission and Absorption Stellar Spectra & Composition Doppler Effect & Motion Extrasolar Planets Three basic types of spectra Continuous Spectrum Intensity Emission Line Spectrum

More information

Heat Transfer: A Practical Approach - Yunus A Cengel Assignment 11 Fall 2003 Tuesday, November 18, 2003 Chapter 11, Problem 49

Heat Transfer: A Practical Approach - Yunus A Cengel Assignment 11 Fall 2003 Tuesday, November 18, 2003 Chapter 11, Problem 49 Heat Transer: A Practical Approach - Yunus A Cengel Assignment Fall 00 Tuesday, November 8, 00 Chapter, Problem 9 The variation o the spectral transmissivity o a 0.6- cm-thick glass window is as given

More information

Solar cells operation

Solar cells operation Solar cells operation photovoltaic effect light and dark V characteristics effect of intensity effect of temperature efficiency efficency losses reflection recombination carrier collection and quantum

More information

ATMOS 5140 Lecture 1 Chapter 1

ATMOS 5140 Lecture 1 Chapter 1 ATMOS 5140 Lecture 1 Chapter 1 Atmospheric Radiation Relevance for Weather and Climate Solar Radiation Thermal Infrared Radiation Global Heat Engine Components of the Earth s Energy Budget Relevance for

More information

ENERGY NANOTECHNOLOGY --- A Few Examples

ENERGY NANOTECHNOLOGY --- A Few Examples ENERGY NANOTECHNOLOGY --- A Few Examples Gang Chen Nanoengineering Group Rohsenow Heat and Mass Transfer Laboratory Massachusetts Institute of Technology Cambridge, MA 02139 Email: gchen2@mit.edu http://web.mit.edu/nanoengineering

More information

Astro 1050 Wed. Feb. 18, 2015

Astro 1050 Wed. Feb. 18, 2015 Astro 1050 Wed. Feb. 18, 2015 Today: Begin Chapter 5: Light the Cosmic Messenger For Friday: Study for Test #1 Be sure to bring green bubble sheet, #2 pencil and a calculator. 1 Chapter 5: Light, the Cosmic

More information

Signal regeneration - optical amplifiers

Signal regeneration - optical amplifiers Signal regeneration - optical amplifiers In any atom or solid, the state of the electrons can change by: 1) Stimulated absorption - in the presence of a light wave, a photon is absorbed, the electron is

More information

AST 301, Lecture 2. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. January 29, 2019

AST 301, Lecture 2. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. January 29, 2019 AST 301, Lecture 2 James Lattimer Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University January 29, 2019 Cosmic Catastrophes (AKA Collisions) james.lattimer@stonybrook.edu Properties of

More information

A100H Exploring the Universe: The interaction of light and matter. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: The interaction of light and matter. Martin D. Weinberg UMass Astronomy A100H Exploring the Universe: The interaction of light and matter Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu February 11, 2016 Read: Chap 5 02/11/16 slide 1 Exam #1: Thu 18 Feb

More information

Where and How is Entropy Generated in Solar Energy Conversion Systems?

Where and How is Entropy Generated in Solar Energy Conversion Systems? Where and How is Entropy Generated in Solar Energy Conversion Systems? Bolin Liao 1* 1 Department of Mechanical Engineering, University of California, Santa Barbara, CA, 93106, USA Abstract The hotness

More information

Chapter 6. Atoms and Starlight

Chapter 6. Atoms and Starlight Chapter 6 Atoms and Starlight What is light? Light is an electromagnetic wave. Wavelength and Frequency wavelength frequency = speed of light = constant Particles of Light Particles of light are called

More information

Light and electromagnetic radiation Energy Harvesting

Light and electromagnetic radiation Energy Harvesting Light and electromagnetic radiation Energy Harvesting Maurizio Mattarelli NiPS Laboratory, Dipartimento di Fisica e Geologia Università di Perugia NiPS Summer School 2017 Energy Harvesting: models and

More information

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. RADIATION INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. Radiation: The energy emitted by matter in the form

More information

Near-Field Thermophotovoltaic System Design and Calculation based on Coupled-Mode Analysis

Near-Field Thermophotovoltaic System Design and Calculation based on Coupled-Mode Analysis MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Near-Field Thermophotovoltaic System Design and Calculation based on Coupled-Mode Analysis Wang, B.; Lin, C.; Teo, K.H. TR2017-227 October

More information

Outline HST HST. HST& JWST CARMA and ALMA SOFIA Chandra Blackbodies. Doppler Effect. Homework #5 was due today.

Outline HST HST. HST& JWST CARMA and ALMA SOFIA Chandra Blackbodies. Doppler Effect. Homework #5 was due today. Outline Homework #5 was due today. Next homework is #6 due next Friday at 11:50 am. There will be another make-up nighttime observing session in November. Stay tuned. I will be teaching Paul s class on

More information

Overview of Measured SSI and Its Variability

Overview of Measured SSI and Its Variability Overview of Measured SSI and Its Variability Jerald Harder, Martin Snow, Juan Fontenla, and William McClintock Laboratory for Atmospheric and Space Physics, University of Colorado jerald.harder@lasp.colorado.edu,

More information

Physics of the thermal behavior of photovoltaic cells

Physics of the thermal behavior of photovoltaic cells Physics of the thermal behavior of photovoltaic cells O. Dupré *,2, Ph.D. candidate R. Vaillon, M. Green 2, advisors Université de Lyon, CNRS, INSA-Lyon, UCBL, CETHIL, UMR58, F-6962 Villeurbanne, France

More information

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer Journal of Electrical and Electronic Engineering 2015; 3(2-1): 78-82 Published online February 10, 2015 (http://www.sciencepublishinggroup.com/j/jeee) doi: 10.11648/j.jeee.s.2015030201.27 ISSN: 2329-1613

More information

GE510 Physical Principles of the Envt

GE510 Physical Principles of the Envt GE510 Physical Principles of the Envt Earth s Energy Balance: 1. Types and key properties of energy 2. Blackbody radiation revisited and Wein s displacement law 3. Transformations of the sun s radiant

More information

THERMODYNAMICS METHODS OF HEAT TRANSFER RADIATION

THERMODYNAMICS METHODS OF HEAT TRANSFER RADIATION VISUAL PHYSICS ONLINE THERMODYNAMICS METHODS OF HEAT TRANSFER RADIATION Radiation is the energy transferred by electromagnetic waves mainly infrared (IR), visible and ultraviolet (UV). All materials radiate

More information

Absorptivity, Reflectivity, and Transmissivity

Absorptivity, Reflectivity, and Transmissivity cen54261_ch21.qxd 1/25/4 11:32 AM Page 97 97 where f l1 and f l2 are blackbody functions corresponding to l 1 T and l 2 T. These functions are determined from Table 21 2 to be l 1 T (3 mm)(8 K) 24 mm K

More information

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition Today Spectra Thermal Radiation Wien s Law Stefan-Boltzmann Law Kirchoff s Laws Emission and Absorption Spectra & Composition Spectrum Originally, the range of colors obtained by passing sunlight through

More information

Nanostructure enhanced near-field radiative heat transfer and designs for energy conversion devices

Nanostructure enhanced near-field radiative heat transfer and designs for energy conversion devices MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Nanostructure enhanced near-field radiative heat transfer and designs for energy conversion devices Wang, B.; Lin, C.; Teo, K.H. TR2017-110

More information

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour (Cu) All operate by vaporizing metal in container Helium

More information

Properties of Thermal Radiation

Properties of Thermal Radiation Observing the Universe: Telescopes Astronomy 2020 Lecture 6 Prof. Tom Megeath Today s Lecture: 1. A little more on blackbodies 2. Light, vision, and basic optics 3. Telescopes Properties of Thermal Radiation

More information

9/12/2011. Training Course Remote Sensing - Basic Theory & Image Processing Methods September 2011

9/12/2011. Training Course Remote Sensing - Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing - Basic Theory & Image Processing Methods 19 23 September 2011 Introduction to Remote Sensing Michiel Damen (September 2011) damen@itc.nl 1 Overview Electro Magnetic (EM)

More information

Lecture 6 Optical Characterization of Inorganic Semiconductors Dr Tim Veal, Stephenson Institute for Renewable Energy and Department of Physics,

Lecture 6 Optical Characterization of Inorganic Semiconductors Dr Tim Veal, Stephenson Institute for Renewable Energy and Department of Physics, Lecture 6 Optical Characterization of Inorganic Semiconductors Dr Tim Veal, Stephenson Institute for Renewable Energy and Department of Physics, University of Liverpool Lecture Outline Lecture 6: Optical

More information

Development of spectrally selective infrared emitter for thermophotovoltaic power generation

Development of spectrally selective infrared emitter for thermophotovoltaic power generation Development of spectrally selective infrared emitter for thermophotovoltaic power generation 波長選択機能を有する熱光起電力発電用赤外線源の開発 Motofumi Suzuki, Department of Micro Engineering, Kyoto University 1. Introduction

More information

High Efficiency Triple-Junction Solar Cells Employing Biomimetic Antireflective Structures

High Efficiency Triple-Junction Solar Cells Employing Biomimetic Antireflective Structures High Efficiency Triple-Junction Solar Cells Employing Biomimetic Antireflective Structures M.Y. Chiu, C.-H. Chang, F.-Y. Chang, and Peichen Yu, Green Photonics Laboratory Department of Photonics National

More information

IEEE JOURNAL OF PHOTOVOLTAICS 1. Vidya Ganapati, Chi-Sing Ho, and Eli Yablonovitch

IEEE JOURNAL OF PHOTOVOLTAICS 1. Vidya Ganapati, Chi-Sing Ho, and Eli Yablonovitch IEEE JOURNAL OF PHOTOVOLTAICS 1 Air Gaps as Intermediate Selective Reflectors to Reach Theoretical Efficiency Limits of Multibandgap Solar Cells Vidya Ganapati, Chi-Sing Ho, and Eli Yablonovitch Abstract

More information

Photon Extraction: the key physics for approaching solar cell efficiency limits

Photon Extraction: the key physics for approaching solar cell efficiency limits Photon Extraction: the key physics for approaching solar cell efficiency limits Owen Miller*: Post-doc, MIT Math Eli Yablonovitch: UC Berkeley, LBNL Slides/Codes/Relevant Papers: math.mit.edu/~odmiller/publications

More information

aka Light Properties of Light are simultaneously

aka Light Properties of Light are simultaneously Today Interaction of Light with Matter Thermal Radiation Kirchhoff s Laws aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves).

More information

Lecture 6. Rapid Thermal Processing. Reading: Chapter 6

Lecture 6. Rapid Thermal Processing. Reading: Chapter 6 Lecture 6 Rapid Thermal Processing Reading: Chapter 6 (Chapter 6) Categories: Rapid Thermal Anneal (RTA) Rapid Thermal Oxidation (RTO) Rapid Thermal Nitridation (RTN) (and oxynitrides) Rapid Thermal Diffusion

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information