Lecture 6. Rapid Thermal Processing. Reading: Chapter 6
|
|
- Clemence Blair
- 1 years ago
- Views:
Transcription
1 Lecture 6 Rapid Thermal Processing Reading: Chapter 6
2 (Chapter 6) Categories: Rapid Thermal Anneal (RTA) Rapid Thermal Oxidation (RTO) Rapid Thermal Nitridation (RTN) (and oxynitrides) Rapid Thermal Diffusion (RTD) Rapid Thermal Chemical Vapor Deposition (RTCVD) Silicides and Contact formation Advantages: 1.) Single wafer processing produces the best uniformity, especially for large wafer sizes..) Minimize redistribution of dopants, minimal sqrt(dt) with maximal D (high Temperature) allows repair of damage from ion implantation. 3.) Cold walls allow multiple processes to occur without cross contamination. 4.) Photochemistry can be exploited. Disadvantages: 1.) Absolute temperatures are almost never known..) Nonthermal-equilibrium conditions make modeling and predicting difficult. 3.) Uniform heating is more critical than traditional furnace processing due to high ramp rates and the resulting stress. Definitions: stress: force per area => units are the same as pressure
3 RTP Physics Heat Flow Mechanisms can be related to temperature rise by: dt dt ( C p )( )( thickness) Where C p is the specific heat ( [J/K] a measure of how much energy a material can absorb before it manifests in a temperature rise), is the gram/cm 3 density, and q-dot is the heat flow density (W/cm ) Note your book is inconsistent on how it uses q-dot. Watts cm Joules Second cm Temperature ramp rate can be enormous!!!!!
4 Types of RTP 1.) Adiabatic (without heat transfer): Excimer laser pulses (<us) anneal the thin skin of material.=>huge vertical temperature gradients.) Thermal flux: rastering a focused beam (electron or laser) across a wafer. =>huge vertical and lateral temperature gradients 3.) Isothermal: Broad area optical illumination. => minimal temperature gradients. RTP Physics 3 types of Heat Flow Mechanisms: 1.) Conduction: Flow of heat between two bodies in intimate contact. Heat flow per unit area in a solid is expressed in terms of a solids thermal conductivity, k(t), as, k( Where k(t) has units of Watts/(cm-K) and x is the thickness measured between the two temperatures. Note this is different from your book..) Convection: Flow of heat between two bodies through an intermediate medium (a gas in our case) For a gas with effective heat transfer coefficient, h with units (Watts/cm -K) is, Notice that both of these expressions are linear in temperature T x h( Twafer T )
5 Example: Assuming constant power delivery, what is the initial temperature rise rate for a 700 um thick Si wafer in a furnace heated from T=30 C to T=1000 C in a gas with a effective heat transfer coefficient of e-4 W/(cm -C)? Power density needed to get to 1000 degrees C dt dt dt dt h( T ( C p ) wafer 0.75( J T e 4( ) T ( ) ) 30) ( thickness) / gm C) 0.19W 0.19W / cm / cm.33( gm / cm 3 ) 0.07( cm) 1.7 C / sec For an 8 inch wafer this only requires about 60 W IF all other losses such as radiative losses are ignored. However, radiative losses become dominant at high temperatures (~>400 degrees C)
6 3.) Radiation: Flow of heat between two bodies through radiation and absorption of light. We can use the spectral radiant exitance= the radiated power per area per unit wavelength, M ( ( ) c 5 e 1 c T 1 16 where c x10 W m,c x10 m K and ε(λ) is the wavelength dependant emissivity. If ε(λ)is independent of where x10 λ, then thetotalpower radiatedper unit area, the totalexitance, W/m M ( q ( T NOTE:1). The unit change to meters and ) The radiated power depends on temperature to the forth while conduction and convection depend on temperature linearly. Thus, radiation is the dominate mechanism at high temperature while conduction and convection dominate heat flow at lower temperatures. The emissivity is related to the absorbance by Kirchoff s law of conversation of power which states that in steady state at (constant temperature and absorbed and emitted power), the power absorbed by a wafer must be equal to the power emitted. -8 K 4 is the Stefan - Boltzmann constant. 4
7 The net heat flow between hot bodies is, F to q to1 ( 1T1 T ) A1 FA 1 to A where F A is the view factor 1 to A q 1 cos( )cos( ) 1 A1 to A A da 1 A 1dA A1 r For most real life surfaces (even flat wafers have finite thicknesses) this equation is not very useful unless computer calculations or simplifying assumptions are used.
8 Hardware for RTP Rapid Thermal Processing (RTP) Bulbs can be classified by their color temperature, max spectral radiant exitance cm K T The more power per unit area emitted by a bulb, the higher the color temperature (peak of exitance moves to lower wavelengths). Tungsten Halogen Bulbs: Moderate color temperatures~moderate output power density. As tungsten filament gets hot, the W evaporates and begins to coat the glass. The halogen species forms volatile (gases with high vapor pressures) W-halogen compounds that diffuse back to the hot filament, break apart and redeposit the W. Thus, longer bulb life is obtained. Arc Noble Gas Discharge Lamps: A fused silica tube containing a noble gas (or mixtures) is ignited with a high voltage pulse to ionize the gas. Once ionized the bulb can carry a huge DC current. The effect is a very intense light source with very high color temperature and additional discrete gas line spectra superimposed on the radiant exitance. Low melting point metals such as Hg are also used to increase output power in certain desired wavelengths.
9 Uniformity Issues: Multizone bulb arrangements are used to supply more power to wafer edges to compensate for increased radiated power loss and lower optical view factors. Loss of uniformity results in inconsistent dopant activation, inconsistent dielectric properties, inconsistent stress resulting in defect generation and many other problems. Temperature Measurement: Most often in today s RTP systems a combination of pyrometry, acoustic and in some rare cases thermocouples in a susceptor are used. 1.) Pyrometry measures the intensity of light within a certain operating bandwidth emitted from a wafer and relates it to the the spectral exitance. Disadvantages are that transmission through process gases and glassware, errors in the assumed emissivity, pickup of background radiation from the lamps themselves, and even destructive interference from deposited layers can result in errors in the measurement. Several points on the wafer must be sampled to adjust the wafer uniformity..) Acoustic Measurements: The velocity of sound is measured between pairs of quartz pins supporting the wafer. The sound velocity is a linear function of temperature. Thus, with proper calibrations, the temperature at many positions can be measured. 3.) Thermocouples in a susceptor: High thermal conductivity materials such as a silicon, SiC or Graphite susceptor may be used to absorb the lamp power and re-radiate a more uniform distribution of light to the wafer to be processed. In this configuration, a thermocouple (metal junction of dissimilar metals whose difference in work functions produces a measurable voltage that depends on the temperature of the metal junction) can monitor the susceptor temperature. The wafer temperature can be found from the total exitance.
10 Rapid Thermal Annealing of Implanted Dopants Rapid Thermal Processing (RTP) Due to lower activation energies in implanted regions (point defects already exist in high concentrations, so the defect formation energy is not needed) the implants tend to diffuse faster than standard diffusion theory would predict. If longer time (minutes) low temperature anneals are performed before the high temperature anneal used to activate the implant, the enhanced diffusion goes away. Since thermal equilibrium may not be reached, doping profiles can actually exceed the solid solubility limit. Chemical and electrical profiles may not be the same (peaks and tails may not be activated). The electrical junction follows the implanted junction very well, even though the impurities may diffuse.
11 Dielectric Processing Very high quality ultra-thin oxides can be produced by introducing oxygen, fluorine (NF 3 ) and/or nitrogen gases during a RTA high temperature step. These rival diluted gas thermal oxides, but can have better uniformity (if strain near the edges is controlled).
Law of Heat Transfer
Law of Heat Transfer The Fundamental Laws which are used in broad area of applications are: 1. The law of conversion of mass 2. Newton s second law of motion 3. First and second laws of thermodynamics
Emission spectrum of H
Atomic Spectroscopy Atomic spectroscopy measures the spectra of elements in their atomic/ionized states. Atomic spectrometry, exploits quantized electronic transitions characteristic of each individual
DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD
Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering
Chapter 8 Ion Implantation
Chapter 8 Ion Implantation 2006/5/23 1 Wafer Process Flow Materials IC Fab Metalization CMP Dielectric deposition Test Wafers Masks Thermal Processes Implant PR strip Etch PR strip Packaging Photolithography
3 - Atomic Absorption Spectroscopy
3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,
Physics 17 Spring 2003 The Stefan-Boltzmann Law
Physics 17 Spring 2003 The Stefan-Boltzmann Law Theory The spectrum of radiation emitted by a solid material is a continuous spectrum, unlike the line spectrum emitted by the same material in gaseous form.
Introduction to Infrared Radiation.
Introduction to Infrared Radiation. 1. Starting at the source the Heating Coil. 2. Electrical Issues some basic calculations. 3. The basics of Heat Transfer 4. The Electromagnetic Spectrum 5. Infrared
CHAPTER 3: Epitaxy. City University of Hong Kong
1 CHAPTER 3: Epitaxy Epitaxy (epi means "upon" and taxis means "ordered") is a term applied to processes used to grow a thin crystalline layer on a crystalline substrate. The seed crystal in epitaxial
Experiment 3 1. The Michelson Interferometer and the He- Ne Laser Physics 2150 Experiment No. 3 University of Colorado
Experiment 3 1 Introduction The Michelson Interferometer and the He- Ne Laser Physics 2150 Experiment No. 3 University of Colorado The Michelson interferometer is one example of an optical interferometer.
k T m 8 B P m k T M T
I. INTRODUCTION AND OBJECTIVE OF THE EXPERIENT The techniques for evaporation of chemicals in a vacuum are widely used for thin film deposition on rigid substrates, leading to multiple applications: production
Chamber Development Plan and Chamber Simulation Experiments
Chamber Development Plan and Chamber Simulation Experiments Farrokh Najmabadi HAPL Meeting November 12-13, 2001 Livermore, CA Electronic copy: http://aries.ucsd.edu/najmabadi/talks UCSD IFE Web Site: http://aries.ucsd.edu/ife
Simultaneous Conduction and Radiation Energy Transfer
Simultaneous Conduction and Radiation Energy Transfer Radiant energy can transfer from a colder to a warmer radiator. ###########, PhD Chemical Process Control Systems Engineer, PE TX & CA Abstract The
Module 1. Illumination Engineering Basics. Version 2 EE IIT, Kharagpur 1
Module 1 Illumination Engineering Basics Version 2 EE IIT, Kharagpur 1 Lesson 2 Radiation Version 2 EE IIT, Kharagpur 2 Instructional objectives 1. State the Visible Range of light. 2. State the range
Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law
Phys316 Exploration 2: Verifying Stefan-Boltzmann Relationship Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law Where A is the effective radiating area,
Introduction to Spectroscopic methods
Introduction to Spectroscopic methods Spectroscopy: Study of interaction between light* and matter. Spectrometry: Implies a quantitative measurement of intensity. * More generally speaking electromagnetic
Chapter 1. Blackbody Radiation. Theory
Chapter 1 Blackbody Radiation Experiment objectives: explore radiation from objects at certain temperatures, commonly known as blackbody radiation ; make measurements testing the Stefan-Boltzmann law in
Lecture 9: Metal-semiconductor junctions
Lecture 9: Metal-semiconductor junctions Contents 1 Introduction 1 2 Metal-metal junction 1 2.1 Thermocouples.......................... 2 3 Schottky junctions 4 3.1 Forward bias............................
= (fundamental constants c 0, h, k ). (1) k
Introductory Physics Laboratory, Faculty of Physics and Geosciences, University of Leipzig W 12e Radiation Thermometers Tasks 1 Measure the black temperature T s of a glowing resistance wire at eight different
Spectroscopy. Page 1 of 8 L.Pillay (2012)
Spectroscopy Electromagnetic radiation is widely used in analytical chemistry. The identification and quantification of samples using electromagnetic radiation (light) is called spectroscopy. Light has
Chapter 17 Temperature and heat
Chapter 17 Temperature and heat 1 Temperature and Thermal Equilibrium When we speak of objects being hot and cold, we need to quantify this by some scientific method that is quantifiable and reproducible.
atomic absorption spectroscopy general can be portable and used in-situ preserves sample simpler and less expensive
Chapter 9: End-of-Chapter Solutions 1. The following comparison provides general trends, but both atomic absorption spectroscopy (AAS) and atomic absorption spectroscopy (AES) will have analyte-specific
PHYSICAL VAPOR DEPOSITION OF THIN FILMS
PHYSICAL VAPOR DEPOSITION OF THIN FILMS JOHN E. MAHAN Colorado State University A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS
Semiconductor Detectors
Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge
DAY LABORATORY EXERCISE: SPECTROSCOPY
AS101 - Day Laboratory: Spectroscopy Page 1 DAY LABORATORY EXERCISE: SPECTROSCOPY Goals: To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are
What makes the color pink? Black and white TV summary. Different color phosphors. Color TV. Different color pixels
Energy What makes the color pink? Black and white TV summary Picture made from a grid of dots (pixels) Dots illuminated when electron beam hits phosphor Beam scanned across entire screen ~ 50 times a second
5. Light-matter interactions: Blackbody radiation
5. Light-matter interactions: Blackbody radiation REMINDER: no lecture on Monday Feb. 6th The electromagnetic spectrum Sources of light Boltzmann's Law Blackbody radiation The cosmic microwave background
Lecture 11. Etching Techniques Reading: Chapter 11. ECE Dr. Alan Doolittle
Lecture 11 Etching Techniques Reading: Chapter 11 Etching Techniques Characterized by: 1.) Etch rate (A/minute) 2.) Selectivity: S=etch rate material 1 / etch rate material 2 is said to have a selectivity
Secondary ion mass spectrometry (SIMS)
Secondary ion mass spectrometry (SIMS) ELEC-L3211 Postgraduate Course in Micro and Nanosciences Department of Micro and Nanosciences Personal motivation and experience on SIMS Offers the possibility to
Chapter 3 Engineering Science for Microsystems Design and Fabrication
Lectures on MEMS and MICROSYSTEMS DESIGN and MANUFACTURE Chapter 3 Engineering Science for Microsystems Design and Fabrication In this Chapter, we will present overviews of the principles of physical and
Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar
Experiment 1 Measurement of Thermal Conductivity of a Metal (Brass) Bar Introduction: Thermal conductivity is a measure of the ability of a substance to conduct heat, determined by the rate of heat flow
Auger Electron Spectroscopy (AES)
1. Introduction Auger Electron Spectroscopy (AES) Silvia Natividad, Gabriel Gonzalez and Arena Holguin Auger Electron Spectroscopy (Auger spectroscopy or AES) was developed in the late 1960's, deriving
Figure 1 Relaxation processes within an excited state or the ground state.
Excited State Processes and Application to Lasers The technology of the laser (Light Amplified by Stimulated Emission of Radiation) was developed in the early 1960s. The technology is based on an understanding
Chapter 7. Solar Cell
Chapter 7 Solar Cell 7.0 Introduction Solar cells are useful for both space and terrestrial application. Solar cells furnish the long duration power supply for satellites. It converts sunlight directly
Oxide growth model. Known as the Deal-Grove or linear-parabolic model
Oxide growth model Known as the Deal-Grove or linear-parabolic model Important elements of the model: Gas molecules (oxygen or water) are incident on the surface of the wafer. Molecules diffuse through
HOW ADVANCED PYROMETERS INCREASE THERMAL PROCESS REPEATABILITY AND PRODUCT QUALITY
HOW ADVANCED PYROMETERS INCREASE THERMAL PROCESS REPEATABILITY AND PRODUCT QUALITY Accurate temperature measurement is key for controlling the stability and repeatability of many temperature-critical processes.
Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source
3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi
CORRELATION BETWEEN HOT PLATE EMISSIVITY AND WAFER TEMPERATURE AT LOW TEMPERATURES
CORRELATION BETWEEN HOT PLATE EMISSIVITY AND WAFER TEMPERATURE AT LOW TEMPERATURES Tomomi Murakami 1*, Takashi Fukada 1 and Woo Sik Yoo 2 1 WaferMasters Service Factory, 2020-3 Oaza Tabaru, Mashiki, Kamimashiki,
Peltier Application Note
Peltier Application Note Early 19th century scientists, Thomas Seebeck and Jean Peltier, first discovered the phenomena that are the basis for today s thermoelectric industry. Seebeck found that if you
The effect of self-absorption in hollow cathode lamp on its temperature
Plasma Science and Applications (ICPSA 2013) International Journal of Modern Physics: Conference Series Vol. 32 (2014) 1460349 (9 pages) The Author DOI: 10.1142/S2010194514603494 The effect of self-absorption
Introduction to FT-IR Spectroscopy
Introduction to FT-IR Spectroscopy An FT-IR Spectrometer is an instrument which acquires broadband NIR to FIR spectra. Unlike a dispersive instrument, i.e. grating monochromator or spectrograph, an FT-IR
The term "black body" was introduced by Gustav Kirchhoff in The light emitted by a black body is called black-body radiation.
Black body (Redirected from Black-body radiation) As the temperature decreases, the peak of the black body radiation curve moves to lower intensities and longer wavelengths. The black-body radiation graph
Chem 434 Instrumental Analysis Test 1
Chem 434 Instrumental Analysis Test 1 Name: 1. (15 points) In Chapter 5 we discussed four sources of instrumental noise: Thermal Noise, Shot Noise, Flicker Noise, and Environmental noise. Discuss the differences
Thermal Analysis. with SolidWorks Simulation 2013 SDC. Paul M. Kurowski. Better Textbooks. Lower Prices.
Thermal Analysis with SolidWorks Simulation 2013 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites to
2/15/2013. Chapter 6 6.1
Chapter 6 In a self-service store, the products are grouped according to similar characteristics. With a logical classification system, finding and comparing products is easy. You will learn how elements
Lecture 7: Atomic Spectroscopy
Lecture 7: Atomic Spectroscopy 1 Atomic spectroscopy The wavelengths of absorbance and emission from atoms in the gas phase are characteristic of atomic orbitals. 2 In the lowest energy transition, the
What can laser light do for (or to) me?
What can laser light do for (or to) me? Phys 1020, Day 15: Questions? Refection, refraction LASERS: 14.3 Next Up: Finish lasers Cameras and optics 1 Eyes to web: Final Project Info Light travels more slowly
Physics 1CL OPTICAL SPECTROSCOPY Spring 2010
Introduction In this lab, you will use a diffraction grating to split up light into the various colors which make up the different wavelengths of the visible electromagnetic spectrum. You will assemble
8.5 GREENHOUSE EFFECT 8.6 GLOBAL WARMING HW/Study Packet
8.5 GREENHOUSE EFFECT 8.6 GLOBAL WARMING HW/Study Packet Required: READ Tsokos, pp 434-450 Hamper pp 294-307 SL/HL Supplemental: none REMEMBER TO. Work through all of the example problems in the texts
Lecture 150 Basic IC Processes (10/10/01) Page ECE Analog Integrated Circuits and Systems P.E. Allen
Lecture 150 Basic IC Processes (10/10/01) Page 1501 LECTURE 150 BASIC IC PROCESSES (READING: TextSec. 2.2) INTRODUCTION Objective The objective of this presentation is: 1.) Introduce the fabrication of
Today. Kirchoff s Laws. Emission and Absorption. Stellar Spectra & Composition. Doppler Effect & Motion. Extrasolar Planets
Today Kirchoff s Laws Emission and Absorption Stellar Spectra & Composition Doppler Effect & Motion Extrasolar Planets Three basic types of spectra Continuous Spectrum Intensity Emission Line Spectrum
Laser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1
Laser Diodes Revised: 3/14/14 14:03 2014, Henry Zmuda Set 6a Laser Diodes 1 Semiconductor Lasers The simplest laser of all. 2014, Henry Zmuda Set 6a Laser Diodes 2 Semiconductor Lasers 1. Homojunction
ME 476 Solar Energy UNIT TWO THERMAL RADIATION
ME 476 Solar Energy UNIT TWO THERMAL RADIATION Unit Outline 2 Electromagnetic radiation Thermal radiation Blackbody radiation Radiation emitted from a real surface Irradiance Kirchhoff s Law Diffuse and
Saveetha Engineering College, Thandalam, Chennai. Department of Physics. First Semester. Ph6151 Engineering Physics I (NOV/DEC 2014)
Saveetha Engineering College, Thandalam, Chennai. Department of Physics First Semester Ph6151 Engineering Physics I (NOV/DEC 2014) Part A (Questions and Answers) 1. Distinguish between Crystalline and
Dr. Linlin Ge The University of New South Wales
GMAT 9600 Principles of Remote Sensing Week2 Electromagnetic Radiation: Definition & Physics Dr. Linlin Ge www.gmat.unsw.edu.au/linlinge Basic radiation quantities Outline Wave and quantum properties Polarization
Semiconductor Technology
Semiconductor Technology from A to Z Deposition www.halbleiter.org Contents Contents List of Figures II 1 Deposition 1 1.1 Plasma, the fourth aggregation state of a material............. 1 1.1.1 Plasma
International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 ISSN
ISSN 2229-5518 916 Laser Damage Effect Studies with Hollow Metallic Targets Satyender Kumar, S Jain, K C Sati, S Goyal, R Malhotra, R Rajan, N R Das & A K Srivastava Laser Science & Technology Centre Metcalfe
Atomic Absorption Spectroscopy (AAS)
Atomic Absorption Spectroscopy (AAS) Alex Miller ABC s of Electrochemistry 3/8/2012 Contents What is Atomic Absorption Spectroscopy? Basic Anatomy of an AAS system Theory of Operation Practical Operation
K20: Temperature, Heat, and How Heat Moves
K20: Temperature, Heat, and How Heat Moves Definition of Temperature Definition of Heat How heat flows (Note: For all discussions here, particle means a particle of mass which moves as a unit. It could
Optimization of Thermal Radiation Source for High Temperature Infrared Thermometer Calibration
Optimization of Thermal Radiation Source for High Temperature Infrared Thermometer Calibration Gavin McQuillan NLA T&M Conference Guateng, September 26-28, 2016 2011 Fluke Calibration 1 Outline Introduction
The Stefan-Boltzmann Law
The Stefan-Boltzmann Law Department of Physics Ryerson University 1 Introduction Thermal radiation is typically considered the starting point in many texts for discussions of old quantum theory and the
4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium?
Physics Module Form 4 Chapter 4 - Heat GCKL 2010 4.1 4 UNDERSTANDING THERMAL EQUILIBRIUM What is thermal equilibrium? 1. (, Temperature ) is a form of energy that flows from a hot body to a cold body.
Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.
What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]
Vacuum Pumps. Two general classes exist: Gas transfer physical removal of matter. Mechanical, diffusion, turbomolecular
Vacuum Technology Vacuum Pumps Two general classes exist: Gas transfer physical removal of matter Mechanical, diffusion, turbomolecular Adsorption entrapment of matter Cryo, sublimation, ion Mechanical
PH2200 Practice Final Exam Summer 2003
INSTRUCTIONS 1. Write your name and student identification number on the answer sheet. 2. Please cover your answer sheet at all times. 3. This is a closed book exam. You may use the PH2200 formula sheet
Solar Flat Plate Thermal Collector
Solar Flat Plate Thermal Collector INTRODUCTION: Solar heater is one of the simplest and basic technologies in the solar energy field. Collector is the heart of any solar heating system. It absorbs and
ELEMENT2 High Resolution- ICP-MS INSTRUMENT OVERVIEW
ELEMENT2 High Resolution- ICP-MS INSTRUMENT OVERVIEW Inductively Coupled Plasma Mass Spectrometry (ICP-MS) What is a Plasma? - The magnetic field created by a RF (radio frequency) coil produces
Teacher: Mr. gerraputa. Name: Base your answer to the question on the information below. Given the electron dot diagram:
Teacher: Mr. gerraputa Print Close Name: 1. Given the electron dot diagram: The valence electrons represented by the electron dot diagram could be those of atoms in Group 1. 13 3. 3 2. 15 4. 16 2. Which
High Power Diode Lasers
Lecture 10/1 High Power Diode Lasers Low Power Lasers (below tenth of mw) - Laser as a telecom transmitter; - Laser as a spectroscopic sensor; - Laser as a medical diagnostic tool; - Laser as a write-read
AT 350 EXAM #1 February 21, 2008
This exam covers Ahrens Chapters 1 and 2, plus related lecture notes Write the letter of the choice that best completes the statement or answers the question. b_ 1. The Earth s atmosphere is currently
Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition
Today Spectra Thermal Radiation Wien s Law Stefan-Boltzmann Law Kirchoff s Laws Emission and Absorption Spectra & Composition Spectrum Originally, the range of colors obtained by passing sunlight through
Name: Partner(s): 1102 or 3311: Desk # Date: Spectroscopy Part I
Name: Partner(s): 1102 or 3311: Desk # Date: Spectroscopy Part I Purpose Investigate Kirchhoff s Laws for continuous, emission and absorption spectra Analyze the solar spectrum and identify unknown lines
Report No.: EASZF Page 2 of 14
Report No.: EASZF01050007 age 2 of 14 Test item particulars... : Tested lamp... : continuous wave lamps pulsed lamps Tested lamp system... : Lamp classification group... : exempt risk 1 risk 2 risk 3 Lamp
Lecture 3: Global Energy Cycle
Lecture 3: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Flux and Flux Density Solar Luminosity (L)
IGNITABILITY ANALYSIS USING THE CONE CALORIMETER AND LIFT APPARATUS
189 IGNITABILITY ANALYSIS USING THE CONE CALORIMETER AND LIFT APPARATUS Mark A. Dietenberger USDA Forest Service Forest Products Laboratory* Madison, WI 53705-2398 ABSTRACT The irradiance plotted as function
Beer-Lambert (cont.)
The Beer-Lambert Law: Optical Depth Consider the following process: F(x) Absorbed flux df abs F(x + dx) Scattered flux df scat x x + dx The absorption or scattering of radiation by an optically active
Single Photon detectors
Single Photon detectors Outline Motivation for single photon detection Semiconductor; general knowledge and important background Photon detectors: internal and external photoeffect Properties of semiconductor
per chip (approx) 1 SSI (Small Scale Integration) Up to 99
Q.2 a. Classify the integration technology as per the scale of integration. Explain in brief the various steps involved in fabrication of monolithic IC. Scales of Integration (Basic) Various steps involved
Chapter 11 Thermal Transport
Chapter 11 Thermal Transport GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define the following terms, and use them in an operational
Temperature Measurement
Temperature Measurement Dr. Clemens Suter, Prof. Sophia Haussener Laboratory of Renewable Energy Sciences and Engineering Suter Temperature Measurement Mar, 2017 1/58 Motivation Suter Temperature Measurement
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 143 Fall 2008 Exam 1 Professor Ali Javey Answer Key Name: SID: 1337 Closed book. One sheet
SPH3U1 Lesson 03 Energy
THERMAL ENERGY AND LATENT HEAT LEARNING GOALS Students will learn: Heat changes the amount of thermal energy in an object Temperature is a measure of the average thermal energy in an object Heat capacity
exp ( κh/ cos θ) whereas as that of the diffuse source is never zero (expect as h ).
Homework 3: Due Feb 4 1. 2.11 Solution done in class 2. 2.8 The transmissivity along any dection is exp ( κh/ cos θ) where h is the slab thickness and θ is the angle between that dection and the normal
Emissivity: Understanding the difference between apparent and actual infrared temperatures
Emissivity: Understanding the difference between apparent and actual infrared temperatures By L. Terry Clausing, P.E. ASNT Certified NDT Level III T/IR, for Fluke Corporation Application Note Taking infrared
QUANTUM DOTS, ADVANTAGES AND DRAWBACKS FOR LIGHTING APPLICATIONS. David Schmidmayr, Johann Zehetner
Abstract QUANTUM DOTS, ADVANTAGES AND DRAWBACKS FOR LIGHTING APPLICATIONS David Schmidmayr, Johann Zehetner Research Centre for Microtechnology, Vorarlberg University of Applied Sciences, Hochschulstrasse
X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu
X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-ray Photoelectron Spectroscopy Introduction Qualitative analysis Quantitative analysis Charging compensation Small area analysis and XPS imaging
Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence.
Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence http://apod.nasa.gov/apod/astropix.html Outline of today s lecture Hydrostatic equilibrium: balancing gravity and pressure
DIRECT RADIOMETRIC TECHNIQUES
EMISSIVITY AND OTHER INFRARED-OPTICAL PROPERTIES MEASUREMENT METHODS DIRECT RADIOMETRIC TECHNIQUES Measuring principle The principle of direct radiometric techniques is shown schematically in the figure
Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev
Electromagnetic Spectra AST443, Lecture 13 Stanimir Metchev Administrative Homework 2: problem 5.4 extension: until Mon, Nov 2 Reading: Bradt, chapter 11 Howell, chapter 6 Tenagra data: see bottom of Assignments
Plasma Spectroscopy Inferences from Line Emission
Plasma Spectroscopy Inferences from Line Emission Ø From line λ, can determine element, ionization state, and energy levels involved Ø From line shape, can determine bulk and thermal velocity and often
Radiation, Sensible Heat Flux and Evapotranspiration
Radiation, Sensible Heat Flux and Evapotranspiration Climatological and hydrological field work Figure 1: Estimate of the Earth s annual and global mean energy balance. Over the long term, the incoming
Film Deposition Part 1
1 Film Deposition Part 1 Chapter 11 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Spring Semester 2013 Saroj Kumar Patra Semidonductor Manufacturing Technology, Norwegian University of
Atomic Structure Practice Questions
Atomic Structure Practice Questions 1. Experiments performed to reveal the structure of atoms led scientists to conclude that an atom s (1) positive charge is evenly distributed throughout its volume (2)
Etching Issues - Anisotropy. Dry Etching. Dry Etching Overview. Etching Issues - Selectivity
Etching Issues - Anisotropy Dry Etching Dr. Bruce K. Gale Fundamentals of Micromachining BIOEN 6421 EL EN 5221 and 6221 ME EN 5960 and 6960 Isotropic etchants etch at the same rate in every direction mask
Experiment Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado
Experiment 10 1 Introduction Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Some radioactive isotopes formed billions of years ago have half- lives so long
ARGON EXCIMER LAMP. A. Sobottka, L. Prager, L. Drößler, M. Lenk. Leibniz Institute of Surface Modification
ARGON EXCIMER LAMP A. Sobottka, L. Prager, L. Drößler, M. Lenk 1 Introduction Ar-Zufuhr Excimer-Plasma Inertisierung Polymerfolie Sintermetall Inertisierung Post curing [1] EP 1050395 A2 2 Introduction
Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH
Semiconductor X-Ray Detectors Tobias Eggert Ketek GmbH Semiconductor X-Ray Detectors Part A Principles of Semiconductor Detectors 1. Basic Principles 2. Typical Applications 3. Planar Technology 4. Read-out
OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626
OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #6 is assigned, due May 1 st Final exam May 8, 10:30-12:30pm
Single-bubble Sonoluminescence
Single-bubble Sonoluminescence Stephen Holleman Dr. Kimball Milton University of Oklahoma 16 May 2013 http://en.wikipedia.org/wiki/file:single_bubble_cropped.jpg Background What is sonoluminescence? History
Thermal Resistance Measurement
Optotherm, Inc. 2591 Wexford-Bayne Rd Suite 304 Sewickley, PA 15143 USA phone +1 (724) 940-7600 fax +1 (724) 940-7611 www.optotherm.com Optotherm Sentris/Micro Application Note Thermal Resistance Measurement