Photovoltaic Energy Conversion. Frank Zimmermann

Size: px
Start display at page:

Download "Photovoltaic Energy Conversion. Frank Zimmermann"

Transcription

1 Photovoltaic Energy Conversion Frank Zimmermann

2 Solar Electricity Generation Consumes no fuel No pollution No greenhouse gases No moving parts, little or no maintenance Sunlight is plentiful & inexhaustible Cost competitive with fossil fuels/nuclear. Cost coming down every year. Considerably cheaper than electricity from coal if cost of carbon capture is factored in Great promise for solving global warming and fossil fuel depletion problems!

3 Photovoltaics: Explosive Growth Sustained growth of % per year

4 Extrapolation of historical PV module prices

5 Actual 2013 PV Module Cost: ~ 50 cents/watt! Grid Parity has been reached in India, Italy, Spain, and other countries

6 Challenges Make solar cells more efficient Theoretical energy conversion efficiency limit of single junction solar cell is 31% Actual efficiencies are even lower: ~20% Make solar cells cheaper Grid Parity has been achieved in some countries, others are soon to follow Require high reliability, long service life Use only abundant, nontoxic materials

7 Power reaching earth 1.37 KW/m2

8 Solar cell Working Principle Operating diode in fourth quadrant generates power

9 Semiconductor Bandgaps Crystalline silicon is by far the most important PV material.

10 Thin Film Solar Cells Produced from polycrystalline thin films Cheaper than single crystal silicon High optical absorption coefficients Bandgap suited to solar spectrum Poly-Si CdTe CIGS (Copper-Indium-Gallium-Selenide) Organic and Dye-Sensitized Solar Cells

11 CuInSe 2 (with Ga: CIGS )

12 CIGS Solar Cell

13 Band Diagram CIGS Solar Cell

14 Organic Solar Cells

15 Plasmon Resonances of Metal Nanoparticles

16 Plasmon Resonances of Metal Nanoparticles

17 Light Concentration using Nanoparticle Plasmon Resonances

18 Dye Sensitized Solar Cells

19 Dye Sensitizer Molecules COOH O N N Pd N N COOH O OH N Pd N N N OH HO O N N Pd N N HOOC O OH COOH O O OH OH 1a 1b 2

20 Dye Sensitized Solar Cells Energy Levels (Dark) Transparent Conductive Oxide TiO 2 Nanoparticles Dye Electrolyte Counter Electrode Conduction Band 1 D* 3 D* I - /I 3 - E F Fermi Level Valence Band 1 D Redox Potential E F Transparent Conductive Oxide Energy Levels (Illuminated) TiO 2 Nanoparticles Dye Electrolyte Counter Electrode Injection 1 D* Conduction Band 3 D* E F Fermi Level h Photo Voltage Valence Band 1 D I - /I 3 - Redox Potential E F

21 Efficiency Losses in Solar Cell 1 = Thermalization loss 2 and 3 = Junction and contact voltage loss 4 = Recombination loss

22 Conversion Efficiency Limits Thermodynamic limit: Carnot efficiency: 1 T c T s = 1 300K 6000K = 0.95 Ultimate efficiency (T = 0) for single junction: 45% Detailed balance limit for single junction: Shockley and Queisser (1961)

23 Ultimate Efficiency Sub-bandgap photons are not absorbed: gap photon Carrier relaxation to band edges: Photon energy exceeding bandgap is lost electron hole

24 Ultimate Efficiency Let Q(T) be the photon flux in blackbody radiation of temperature T with photon energy h > E g : Q T = 2 c 2 E g /h 2 d e hν/kt 1 photon flux = number of photons / (unit area unit time) The total energy flux in the blackbody radiation is: I s = 2 h c 2 3 d e hν/kt 1 0 Energy flux = energy / (unit area unit time)

25 Ultimate Efficiency Incident solar power: P in = A I s Electrical output power: P out = A E g Q T s Ultimate efficiency: ult = P out P in = E gq(t s ) I s For T s = 6000 K, the ultimate efficiency is maximized for a band gap of E g = 1.1 ev, reaching ult 45%. Ultimate efficiency can only be achieved if there is perfect absorption of blackbody radiation at T = T s and the cell temperature T c = 0. It does not take into account carrier recombination, which must occur at T c > 0.

26 Detailed Balance Limit For finite cell temperature, need to take into account carrier recombination. Use the principle of detailed balance (Shockley and Queisser, 1961). First consider solid angle of sun, as seen from earth: solid angle sun = steradians (no concentration) solar cell (area A) may be greatly enhanced using solar concentrators (lenses, parabolic reflectors). Set θ = 0 from here on (normal incidence).

27 Detailed Balance Limit Incident solar power (= absorbed power) P s = A I s # of e-h pairs created (given by # of absorbed photons): F s = A Q(T s ) Now consider solar cell in thermal equilibrium, i.e., surrounded by a box at T = T c : T c T c e-h pair creation rate = F c = 2 A Q(T c ) = recombination rate both sides detailed balance F c = F c 0 (zero voltage)

28 Detailed Balance Limit Apply a voltage V across the junction: μ n E v V E c μ p recombination rate: F c V n p hole density electron density From the Fermi distribution: (β = 1 k B T ) n = 1 e β(e c μn) +1 e β E c μ n p = 1 thus n p = e βe g e βqv (qv = μ n μ p ) and F c V = F c 0 e βqv 1 e β(e v μp) +1 e β E v μ p

29 Detailed Balance Limit Photocurrent: i = q F s F c V = q F s F c 0 e βqv number of e-h pairs created recombination rate

30 Detailed Balance Limit Output power: P out = iv = q F s F c 0 e βqv V Maximize output power: set d(iv) dv i max = i(v max ) = 0, solve for V max Maximum output power: P max = i max V max

31 Detailed Balance Limit maximum efficiency: max = P max P s = i maxv max AI s Ω/π re-write in terms of ultimate efficiency ult = E gf s and P s short-circuit current i sh = i 0 = q F s F c (0) qf s : max = ult q V oc E g V max V oc i max i sh fill factor reduction of V oc from zero-temperature value E g q

32 Detailed Balance Limit In the limit T c 0, the efficiency max ult ult 31% for 6000 K blackbody (no concentration) This is an idealized result. In real life, < max due to non-radiative recombination, contact resistance, reflection losses, etc.

33 Strategies to Exceed Shockley- Queisser Efficiency Limit: Multi-junction cells ( Tandem cells ) Multiple electron-hole pairs per photon Intermediate-band solar cells Quantum-dot solar cells Thermophotovoltaic cells

34 Multiple Junctions: Tandem Cells Current output matched for individual cells Ideal efficiency for infinite stack is 86.8% GaInP/GaAs/Ge tandem cells (efficiency 40%)

35 Triple Junction Solar Cell

36 Triple Junction Solar Cell

37 Triple Junction Solar Cell

38 Multi-Junction Solar Cells

39 Multiple E-H pairs Many E-H pairs created by incident photon through impact ionization of hot carriers Theoretical efficiency is 85.9%

40 Intermediate-Band PV cell Intermediate band created by: Impurity levels Quantum dot states ( quantum dot solar cell )

41 Thermophotovoltaic Cell Filter passes photons of energy equal to bandgap of solar cell material Emitter radiation matched with spectral sensitivity of cell

42 Thermophotovoltaic Cells Theoretical efficiency almost twice of ordinary photocell

43 Comparison and history of PV conversion efficiencies

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

Third generation solar cells - How to use all the pretty colours?

Third generation solar cells - How to use all the pretty colours? Third generation solar cells - How to use all the pretty colours? Erik Stensrud Marstein Department for Solar Energy Overview The trouble with conventional solar cells Third generation solar cell concepts

More information

PHOTOVOLTAICS Fundamentals

PHOTOVOLTAICS Fundamentals PHOTOVOLTAICS Fundamentals PV FUNDAMENTALS Semiconductor basics pn junction Solar cell operation Design of silicon solar cell SEMICONDUCTOR BASICS Allowed energy bands Valence and conduction band Fermi

More information

ET3034TUx Utilization of band gap energy

ET3034TUx Utilization of band gap energy ET3034TUx - 3.3.1 - Utilization of band gap energy In the last two weeks we have discussed the working principle of a solar cell and the external parameters that define the performance of a solar cell.

More information

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Tuesday, September 23, 2014 Lecture 07 1 Introduction to Solar Cells Topics to be covered: Solar cells and sun light Review on semiconductor

More information

Basic Limitations to Third generation PV performance

Basic Limitations to Third generation PV performance Basic Limitations to Third generation PV performance Pabitra K. Nayak Weizmann Institute of Science, Rehovot, Israel THANKS to my COLLEAGUES Lee Barnea and David Cahen. Weizmann Institute of Science Juan

More information

Fundamental Limitations of Solar Cells

Fundamental Limitations of Solar Cells 2018 Lecture 2 Fundamental Limitations of Solar Cells Dr Kieran Cheetham MPhys (hons) CPhys MInstP MIET L3 Key Question Why can't a solar cell have a 100% efficiency? (Or even close to 100%?) Can you answer

More information

Chapter 7. Solar Cell

Chapter 7. Solar Cell Chapter 7 Solar Cell 7.0 Introduction Solar cells are useful for both space and terrestrial application. Solar cells furnish the long duration power supply for satellites. It converts sunlight directly

More information

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC FUNDAMENTAL PROPERTIES OF SOLAR CELLS February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of

More information

PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA.

PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA. SOLAR CELL AND ITS APPLICATION PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA. OUTLINE OF THE PRESENTATION Objective of the work. A brief introduction to Solar Cell

More information

Fundamentals of Photovoltaics: C1 Problems. R.Treharne, K. Durose, J. Major, T. Veal, V.

Fundamentals of Photovoltaics: C1 Problems. R.Treharne, K. Durose, J. Major, T. Veal, V. Fundamentals of Photovoltaics: C1 Problems R.Treharne, K. Durose, J. Major, T. Veal, V. Dhanak @cdtpv November 3, 2015 These problems will be highly relevant to the exam that you will sit very shortly.

More information

Physics of the thermal behavior of photovoltaic cells

Physics of the thermal behavior of photovoltaic cells Physics of the thermal behavior of photovoltaic cells O. Dupré *,2, Ph.D. candidate R. Vaillon, M. Green 2, advisors Université de Lyon, CNRS, INSA-Lyon, UCBL, CETHIL, UMR58, F-6962 Villeurbanne, France

More information

Introduction. Katarzyna Skorupska. Silicon will be used as the model material however presented knowledge applies to other semiconducting materials

Introduction. Katarzyna Skorupska. Silicon will be used as the model material however presented knowledge applies to other semiconducting materials Introduction Katarzyna Skorupska Silicon will be used as the model material however presented knowledge applies to other semiconducting materials 2 June 26 Intrinsic and Doped Semiconductors 3 July 3 Optical

More information

MODELING THE FUNDAMENTAL LIMIT ON CONVERSION EFFICIENCY OF QD SOLAR CELLS

MODELING THE FUNDAMENTAL LIMIT ON CONVERSION EFFICIENCY OF QD SOLAR CELLS MODELING THE FUNDAMENTAL LIMIT ON CONVERSION EFFICIENCY OF QD SOLAR CELLS Ա.Մ.Կեչիյանց Ara Kechiantz Institute of Radiophysics and Electronics (IRPhE), National Academy of Sciences (Yerevan, Armenia) Marseille

More information

Photovoltaic cell and module physics and technology

Photovoltaic cell and module physics and technology Photovoltaic cell and module physics and technology Vitezslav Benda, Prof Czech Technical University in Prague benda@fel.cvut.cz www.fel.cvut.cz 6/21/2012 1 Outlines Photovoltaic Effect Photovoltaic cell

More information

FYS 3028/8028 Solar Energy and Energy Storage. Calculator with empty memory Language dictionaries

FYS 3028/8028 Solar Energy and Energy Storage. Calculator with empty memory Language dictionaries Faculty of Science and Technology Exam in: FYS 3028/8028 Solar Energy and Energy Storage Date: 11.05.2016 Time: 9-13 Place: Åsgårdvegen 9 Approved aids: Type of sheets (sqares/lines): Number of pages incl.

More information

Solar cells operation

Solar cells operation Solar cells operation photovoltaic effect light and dark V characteristics effect of intensity effect of temperature efficiency efficency losses reflection recombination carrier collection and quantum

More information

Comparison of Ge, InGaAs p-n junction solar cell

Comparison of Ge, InGaAs p-n junction solar cell ournal of Physics: Conference Series PAPER OPEN ACCESS Comparison of Ge, InGaAs p-n junction solar cell To cite this article: M. Korun and T. S. Navruz 16. Phys.: Conf. Ser. 77 135 View the article online

More information

arxiv: v1 [physics.optics] 12 Jun 2014

arxiv: v1 [physics.optics] 12 Jun 2014 Intermediate Mirrors to Reach Theoretical Efficiency Limits of Multi-Bandgap Solar Cells arxiv:1406.3126v1 [physics.optics] 12 Jun 2014 Abstract Vidya Ganapati, Chi-Sing Ho, Eli Yablonovitch University

More information

The Opto-Electronic Physics That Just Broke the Efficiency Record in Solar Cells

The Opto-Electronic Physics That Just Broke the Efficiency Record in Solar Cells The Opto-Electronic Physics That Just Broke the Efficiency Record in Solar Cells Solar Energy Mini-Series Jen-Hsun Huang Engineering Center Stanford, California Sept. 26, 2011 Owen D. Miller & Eli Yablonovitch

More information

Solar Photovoltaics & Energy Systems

Solar Photovoltaics & Energy Systems Solar Photovoltaics & Energy Systems Lecture 4. Crystalline Semiconductor Based Solar Cells ChE-600 Wolfgang Tress, May 2016 1 Photovoltaic Solar Energy Conversion 2 Semiconductor vs. Heat Engine spectral

More information

Quantum Dot Solar Cells

Quantum Dot Solar Cells Quantum Dot Solar Cells 2 INTRODUCTION: As industrialization speeds up in developing and under-developed countries with an alarming rise in population, global power consumption has become a big question

More information

Lab #5 Current/Voltage Curves, Efficiency Measurements and Quantum Efficiency

Lab #5 Current/Voltage Curves, Efficiency Measurements and Quantum Efficiency Lab #5 Current/Voltage Curves, Efficiency Measurements and Quantum Efficiency R.J. Ellingson and M.J. Heben November 4, 2014 PHYS 4580, 6280, and 7280 Simple solar cell structure The Diode Equation Ideal

More information

Lecture 2. Photon in, Electron out: Basic Principle of PV

Lecture 2. Photon in, Electron out: Basic Principle of PV Lecture 2 Photon in, Electron out: Basic Principle of PV References: 1. Physics of Solar Cells. Jenny Nelson. Imperial College Press, 2003. 2. Third Generation Photovoltaics: Advanced Solar Energy Conversion.

More information

Solar Photovoltaics & Energy Systems

Solar Photovoltaics & Energy Systems Solar Photovoltaics & Energy Systems Lecture 3. Crystalline Semiconductor Based Solar Cells ChE-600 Wolfgang Tress, March 2018 1 Photovoltaic Solar Energy Conversion 2 Outline Recap: Thermodynamics of

More information

High efficiency silicon and perovskite-silicon solar cells for electricity generation

High efficiency silicon and perovskite-silicon solar cells for electricity generation High efficiency silicon and perovskite-silicon solar cells for electricity generation Ali Dabirian Email: dabirian@ipm.ir 1 From Solar Energy to Electricity 2 Global accumulative PV installed In Iran it

More information

Challenges in to-electric Energy Conversion: an Introduction

Challenges in to-electric Energy Conversion: an Introduction Challenges in Solar-to to-electric Energy Conversion: an Introduction Eray S. Aydil Chemical Engineering and Materials Science Department Acknowledgements: National Science Foundation Minnesota Initiative

More information

Photovoltaic cell and module physics and technology. Vitezslav Benda, Prof Czech Technical University in Prague

Photovoltaic cell and module physics and technology. Vitezslav Benda, Prof Czech Technical University in Prague Photovoltaic cell and module physics and technology Vitezslav Benda, Prof Czech Technical University in Prague benda@fel.cvut.cz www.fel.cvut.cz 1 Outlines Photovoltaic Effect Photovoltaic cell structure

More information

Chapter 1. Solar energy conversion: from amorphous silicon to Dye-Sensitized Solar Cells. 1.1 Photovoltaic history.

Chapter 1. Solar energy conversion: from amorphous silicon to Dye-Sensitized Solar Cells. 1.1 Photovoltaic history. Chapter 1 Solar energy conversion: from amorphous silicon to Dye-Sensitized Solar Cells 1.1 Photovoltaic history. 1.2 Operation of traditional photovoltaic devices. 1.3 Thin film solar cells. 1.4 Multijunction

More information

A. K. Das Department of Physics, P. K. College, Contai; Contai , India.

A. K. Das Department of Physics, P. K. College, Contai; Contai , India. IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 7, Issue 2 Ver. II (Mar. - Apr. 2015), PP 08-15 www.iosrjournals.org Efficiency Improvement of p-i-n Structure over p-n Structure and

More information

Qualitative Picture of the Ideal Diode. G.R. Tynan UC San Diego MAE 119 Lecture Notes

Qualitative Picture of the Ideal Diode. G.R. Tynan UC San Diego MAE 119 Lecture Notes Qualitative Picture of the Ideal Diode G.R. Tynan UC San Diego MAE 119 Lecture Notes Band Theory of Solids: From Single Attoms to Solid Crystals Isolated Li atom (conducting metal) Has well-defined, isolated

More information

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell Galvanic cells convert different forms of energy (chemical fuel, sunlight, mechanical pressure, etc.) into electrical energy and heat. In this lecture, we are interested in some examples of galvanic cells.

More information

Nanophotonics: solar and thermal applications

Nanophotonics: solar and thermal applications Nanophotonics: solar and thermal applications Shanhui Fan Ginzton Laboratory and Department of Electrical Engineering Stanford University http://www.stanford.edu/~shanhui Nanophotonic Structures Photonic

More information

Goal for next generation solar cells: Efficiencies greater than Si with low cost (low temperature) processing

Goal for next generation solar cells: Efficiencies greater than Si with low cost (low temperature) processing Multi-junction cells MBE growth > 40% efficient Expensive Single crystal Si >20% efficient expensive Thin film cells >10% efficient Less expensive Toxic materials Polymers

More information

Supplemental Discussion for Multijunction Solar Cell Efficiencies: Effect of Spectral Window, Optical Environment and Radiative Coupling

Supplemental Discussion for Multijunction Solar Cell Efficiencies: Effect of Spectral Window, Optical Environment and Radiative Coupling Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supplemental Discussion for Multijunction Solar Cell Efficiencies: Effect

More information

Chapter 3 Modeling and Simulation of Dye-Sensitized Solar Cell

Chapter 3 Modeling and Simulation of Dye-Sensitized Solar Cell Chapter 3 Modeling and Simulation of Dye-Sensitized Solar Cell 3.1. Introduction In recent years, dye-sensitized solar cells (DSSCs) based on nanocrystalline mesoporous TiO 2 films have attracted much

More information

The photovoltaic effect occurs in semiconductors where there are distinct valence and

The photovoltaic effect occurs in semiconductors where there are distinct valence and How a Photovoltaic Cell Works The photovoltaic effect occurs in semiconductors where there are distinct valence and conduction bands. (There are energies at which electrons can not exist within the solid)

More information

Nanotechnology and Solar Energy. Solar Electricity Photovoltaics. Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells

Nanotechnology and Solar Energy. Solar Electricity Photovoltaics. Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells Nanotechnology and Solar Energy Solar Electricity Photovoltaics Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells Solar cell A photon from the Sun generates an electron-hole pair in a semiconductor.

More information

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV 3.1 Introduction to Semiconductors Y. Baghzouz ECE Department UNLV Introduction In this lecture, we will cover the basic aspects of semiconductor materials, and the physical mechanisms which are at the

More information

EE 446/646 Photovoltaic Devices I. Y. Baghzouz

EE 446/646 Photovoltaic Devices I. Y. Baghzouz EE 446/646 Photovoltaic Devices I Y. Baghzouz What is Photovoltaics? First used in about 1890, the word has two parts: photo, derived from the Greek word for light, volt, relating to electricity pioneer

More information

Nanomaterials for Photovoltaics (v11) 14. Intermediate-Band Solar Cells

Nanomaterials for Photovoltaics (v11) 14. Intermediate-Band Solar Cells 1 14. Intermediate-Band Solar Cells Intermediate (impurity) band solar cells (IBSCs) (I) Concept first proposed by A. Luque and A. Martí in 1997. Establish an additional electronic band within the band

More information

Lecture 5 Junction characterisation

Lecture 5 Junction characterisation Lecture 5 Junction characterisation Jon Major October 2018 The PV research cycle Make cells Measure cells Despair Repeat 40 1.1% 4.9% Data Current density (ma/cm 2 ) 20 0-20 -1.0-0.5 0.0 0.5 1.0 Voltage

More information

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00 1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:00-11:00 INSTRUCTIONS: 1. Answer all seven (7) questions.

More information

EE495/695 Introduction to Semiconductors I. Y. Baghzouz ECE Department UNLV

EE495/695 Introduction to Semiconductors I. Y. Baghzouz ECE Department UNLV EE495/695 Introduction to Semiconductors I Y. Baghzouz ECE Department UNLV Introduction Solar cells have always been aligned closely with other electronic devices. We will cover the basic aspects of semiconductor

More information

3.1 Absorption and Transparency

3.1 Absorption and Transparency 3.1 Absorption and Transparency 3.1.1 Optical Devices (definitions) 3.1.2 Photon and Semiconductor Interactions 3.1.3 Photon Intensity 3.1.4 Absorption 3.1 Absorption and Transparency Objective 1: Recall

More information

The Shockley-Queisser Limit and its Discontents

The Shockley-Queisser Limit and its Discontents The Shockley-Queisser Limit and its Discontents Steven Byrnes Postdoc, Applied Physics, Harvard University Feb. 19, 2015 steven.byrnes@gmail.com Code to create all plots at: http://sjbyrnes.com/sq.html

More information

The Opto-Electronic Physics Which Just Broke the Efficiency Record in Solar Cells. Green Photonics Symposium at Technion Haifa, Israel, April 23, 2014

The Opto-Electronic Physics Which Just Broke the Efficiency Record in Solar Cells. Green Photonics Symposium at Technion Haifa, Israel, April 23, 2014 The Opto-Electronic Physics Which Just Broke the Efficiency Record in Solar Cells Green Photonics Symposium at Technion Haifa, Israel, April 23, 2014 Eli Yablonovitch UC Berkeley Electrical Engineering

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #6 is assigned, due May 1 st Final exam May 8, 10:30-12:30pm

More information

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL February 9 and 14, 2012 The University of Toledo, Department

More information

IEEE JOURNAL OF PHOTOVOLTAICS 1. Vidya Ganapati, Chi-Sing Ho, and Eli Yablonovitch

IEEE JOURNAL OF PHOTOVOLTAICS 1. Vidya Ganapati, Chi-Sing Ho, and Eli Yablonovitch IEEE JOURNAL OF PHOTOVOLTAICS 1 Air Gaps as Intermediate Selective Reflectors to Reach Theoretical Efficiency Limits of Multibandgap Solar Cells Vidya Ganapati, Chi-Sing Ho, and Eli Yablonovitch Abstract

More information

The Shockley-Queisser Limit. Jake Friedlein 7 Dec. 2012

The Shockley-Queisser Limit. Jake Friedlein 7 Dec. 2012 The Shockley-Queisser Limit Jake Friedlein 7 Dec. 2012 1 Outline A. Loss factors 1. Bandgap energy 2. Geometric factor 3. Recombination of electrons and holes B. Overall efficiency C. Optimum bandgap 2

More information

Photon Extraction: the key physics for approaching solar cell efficiency limits

Photon Extraction: the key physics for approaching solar cell efficiency limits Photon Extraction: the key physics for approaching solar cell efficiency limits Owen Miller*: Post-doc, MIT Math Eli Yablonovitch: UC Berkeley, LBNL Slides/Codes/Relevant Papers: math.mit.edu/~odmiller/publications

More information

NSF EPSCoR Kansas Center for Solar Energy Research Annual Program Review June 12-14, 2011

NSF EPSCoR Kansas Center for Solar Energy Research Annual Program Review June 12-14, 2011 NSF EPSCoR Kansas Center for Solar Energy Research Annual Program Review June 12-14, 2011 Plasmonic and Photonic Photovoltaics based on graphene and other carbon nanostructures Fengli Wang, Guowei Xu,

More information

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Chemistry Instrumental Analysis Lecture 8. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 8 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

Chapter 9: Photovoltaic Devices

Chapter 9: Photovoltaic Devices Chapter 9: Photovoltaic Devices Solar energy spectrum Photovoltaic device principles pn junction photovoltaic I-V characteristics Series and shunt resistance Temperature effects Solar cell materials, devices,

More information

n N D n p = n i p N A

n N D n p = n i p N A Summary of electron and hole concentration in semiconductors Intrinsic semiconductor: E G n kt i = pi = N e 2 0 Donor-doped semiconductor: n N D where N D is the concentration of donor impurity Acceptor-doped

More information

Solar Cells Technology: An Engine for National Development

Solar Cells Technology: An Engine for National Development IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 7, Issue 5 (Sep. - Oct. 2013), PP 13-18 Solar Cells Technology: An Engine for National Development

More information

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors 5. Radiation Microsensors Radiation µ-sensors convert incident radiant signals into standard electrical out put signals. Radiant Signals Classification

More information

Thermal Behavior of Photovoltaic Devices

Thermal Behavior of Photovoltaic Devices Thermal Behavior of Photovoltaic Devices Olivier Dupré Rodolphe Vaillon Martin A. Green Thermal Behavior of Photovoltaic Devices Physics and Engineering 123 Olivier Dupré Centre for Energy and Thermal

More information

Photovoltaics. Lecture 7 Organic Thin Film Solar Cells Photonics - Spring 2017 dr inż. Aleksander Urbaniak

Photovoltaics. Lecture 7 Organic Thin Film Solar Cells Photonics - Spring 2017 dr inż. Aleksander Urbaniak Photovoltaics Lecture 7 Organic Thin Film Solar Cells Photonics - Spring 2017 dr inż. Aleksander Urbaniak Barcelona, Spain Perpignan train station, France source: pinterest Why organic solar cells? 1.

More information

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells Opto-electronic Characterization of Perovskite Thin Films & Solar Cells Arman Mahboubi Soufiani Supervisors: Prof. Martin Green Prof. Gavin Conibeer Dr. Anita Ho-Baillie Dr. Murad Tayebjee 22 nd June 2017

More information

Fundamentals of Light Trapping

Fundamentals of Light Trapping Fundamentals of Light Trapping James R. Nagel, PhD November 16, 2017 Salt Lake City, Utah About Me PhD, Electrical Engineering, University of Utah (2011) Research Associate for Dept. of Metallurgical Engineering

More information

Two-dimensional lattice

Two-dimensional lattice Two-dimensional lattice a 1 *, k x k x =0,k y =0 X M a 2, y Γ X a 2 *, k y a 1, x Reciprocal lattice Γ k x = 0.5 a 1 *, k y =0 k x = 0, k y = 0.5 a 2 * k x =0.5a 1 *, k y =0.5a 2 * X X M k x = 0.25 a 1

More information

Research Article Solar Cells Efficiency Increase Using Thin Metal Island Films

Research Article Solar Cells Efficiency Increase Using Thin Metal Island Films Solar Energy Volume 2013, Article ID 478219, 5 pages http://dx.doi.org/10.1155/2013/478219 Research Article Solar Cells Efficiency Increase Using Thin Metal Island Films Alexander Axelevitch and Gady Golan

More information

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL March 20, 2014 The University of Toledo, Department of

More information

Monolithic Cells for Solar Fuels

Monolithic Cells for Solar Fuels Electronic Supplementary Material (ESI) for Chemical Society Reviews. This journal is The Royal Society of Chemistry 2014 Monolithic Cells for Solar Fuels Jan Rongé, Tom Bosserez, David Martel, Carlo Nervi,

More information

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

ELECTRONIC DEVICES AND CIRCUITS SUMMARY ELECTRONIC DEVICES AND CIRCUITS SUMMARY Classification of Materials: Insulator: An insulator is a material that offers a very low level (or negligible) of conductivity when voltage is applied. Eg: Paper,

More information

Organic Electronic Devices

Organic Electronic Devices Organic Electronic Devices Week 4: Organic Photovoltaic Devices Lecture 4.2: Characterizing Device Parameters in OPVs Bryan W. Boudouris Chemical Engineering Purdue University 1 Lecture Overview and Learning

More information

Solar Cell Materials and Device Characterization

Solar Cell Materials and Device Characterization Solar Cell Materials and Device Characterization April 3, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

Solar Cells Based on. Quantum Dots: Multiple Exciton Generation and Intermediate Bands Antonio Luque, Antonio Marti, and Arthur J.

Solar Cells Based on. Quantum Dots: Multiple Exciton Generation and Intermediate Bands Antonio Luque, Antonio Marti, and Arthur J. Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands Antonio Luque, Antonio Marti, and Arthur J. Nozik Student ID: 2004171039 Name: Yo-Han Choi Abstract Semiconductor quantum

More information

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low

More information

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Planar Organic Photovoltaic Device. Saiful I. Khondaker Planar Organic Photovoltaic Device Saiful I. Khondaker Nanoscience Technology Center and Department of Physics University of Central Florida http://www.physics.ucf.edu/~khondaker W Metal 1 L ch Metal 2

More information

LEC E T C U T R U E R E 17 -Photodetectors

LEC E T C U T R U E R E 17 -Photodetectors LECTURE 17 -Photodetectors Topics to be covered Photodetectors PIN photodiode Avalanche Photodiode Photodetectors Principle of the p-n junction Photodiode A generic photodiode. Photodetectors Principle

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

Carrier Recombination

Carrier Recombination Notes for ECE-606: Spring 013 Carrier Recombination Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu /19/13 1 carrier recombination-generation

More information

PV Tutorial Allen Hermann, Ph. D. Professor of Physics Emeritus, and Professor of Music Adjunct, University of Colorado, Boulder, Colorado, USA and

PV Tutorial Allen Hermann, Ph. D. Professor of Physics Emeritus, and Professor of Music Adjunct, University of Colorado, Boulder, Colorado, USA and PV Tutorial Allen Hermann, Ph. D. Professor of Physics Emeritus, and Professor of Music Adjunct, University of Colorado, Boulder, Colorado, USA and Vice-president, NanoTech Inc. Lexington, Kentucky, USA

More information

smal band gap Saturday, April 9, 2011

smal band gap Saturday, April 9, 2011 small band gap upper (conduction) band empty small gap valence band filled 2s 2p 2s 2p hybrid (s+p)band 2p no gap 2s (depend on the crystallographic orientation) extrinsic semiconductor semi-metal electron

More information

Mesoporous titanium dioxide electrolyte bulk heterojunction

Mesoporous titanium dioxide electrolyte bulk heterojunction Mesoporous titanium dioxide electrolyte bulk heterojunction The term "bulk heterojunction" is used to describe a heterojunction composed of two different materials acting as electron- and a hole- transporters,

More information

Limiting acceptance angle to maximize efficiency in solar cells

Limiting acceptance angle to maximize efficiency in solar cells Limiting acceptance angle to maximize efficiency in solar cells Emily D. Kosten a and Harry A. Atwater a,b a Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena,

More information

Energy level diagram for the p n junction in thermal equilibrium Electric field

Energy level diagram for the p n junction in thermal equilibrium Electric field pn JUNCTION Energy level diagram for the p n junction in thermal equilibrium Electric field E C E F E V p type Electron Drift Neutral p region Hole Diffusion +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++

More information

Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopyw

Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopyw PCCP Dynamic Article Links View Online Cite this: DOI: 10.1039/c0cp02249g www.rsc.org/pccp PERSPECTIVE Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopyw Francisco

More information

5. Semiconductors and P-N junction

5. Semiconductors and P-N junction 5. Semiconductors and P-N junction Thomas Zimmer, University of Bordeaux, France Summary Learning Outcomes... 2 Physical background of semiconductors... 2 The silicon crystal... 2 The energy bands... 3

More information

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction Among the renewable energy sources that are called to satisfy the continuously increased

More information

Introduction to Photovoltaics

Introduction to Photovoltaics INTRODUCTION Objectives Understand the photovoltaic effect. Understand the properties of light. Describe frequency and wavelength. Understand the factors that determine available light energy. Use software

More information

LASER. Light Amplification by Stimulated Emission of Radiation

LASER. Light Amplification by Stimulated Emission of Radiation LASER Light Amplification by Stimulated Emission of Radiation Laser Fundamentals The light emitted from a laser is monochromatic, that is, it is of one color/wavelength. In contrast, ordinary white light

More information

Analyze the effect of window layer (AlAs) for increasing the efficiency of GaAs based solar cell

Analyze the effect of window layer (AlAs) for increasing the efficiency of GaAs based solar cell American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-7, pp-304-315 www.ajer.org Research Paper Open Access Analyze the effect of window layer (AlAs) for

More information

Note from the editor: this manuscript was reviewed previously at another journal.

Note from the editor: this manuscript was reviewed previously at another journal. Note from the editor: this manuscript was reviewed previously at another journal. Reviewer #2 (Remarks to the Author) The work proposes a novel method for sunlight-to-electricity conversion with potential

More information

Multiple Exciton Generation in Quantum Dots. James Rogers Materials 265 Professor Ram Seshadri

Multiple Exciton Generation in Quantum Dots. James Rogers Materials 265 Professor Ram Seshadri Multiple Exciton Generation in Quantum Dots James Rogers Materials 265 Professor Ram Seshadri Exciton Generation Single Exciton Generation in Bulk Semiconductors Multiple Exciton Generation in Bulk Semiconductors

More information

Gas Sensors and Solar Water Splitting. Yang Xu

Gas Sensors and Solar Water Splitting. Yang Xu Gas Sensors and Solar Water Splitting Yang Xu 11/16/14 Seite 1 Gas Sensor 11/16/14 Seite 2 What are sensors? American National Standards Institute (ANSI) Definition: a device which provides a usable output

More information

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL March 24, 2015 The University of Toledo, Department of

More information

Chapter 1 Overview of Semiconductor Materials and Physics

Chapter 1 Overview of Semiconductor Materials and Physics Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B

More information

Explanation of Light/Dark Superposition Failure in CIGS Solar Cells

Explanation of Light/Dark Superposition Failure in CIGS Solar Cells Mat. Res. Soc. Symp. Proc. Vol. 763 23 Materials Research Society B5.2.1 Explanation of / Superposition Failure in CIGS Solar Cells Markus Gloeckler, Caroline R. Jenkins, and James R. Sites Physics Department,

More information

Homework 6 Solar PV Energy MAE 119 W2017 Professor G.R. Tynan

Homework 6 Solar PV Energy MAE 119 W2017 Professor G.R. Tynan Homework 6 Solar PV Energy MAE 119 W2017 Professor G.R. Tynan 1. What is the most likely wavelength and frequency of light emitted from the sun which has a black body temperature of about 6600 deg K? What

More information

NANO TECHNOLOGY IN POLYMER SOLAR CELLS. Mayur Padharia, Hardik Panchal, Keval Shah, *Neha Patni, Shibu.G.Pillai

NANO TECHNOLOGY IN POLYMER SOLAR CELLS. Mayur Padharia, Hardik Panchal, Keval Shah, *Neha Patni, Shibu.G.Pillai NANO TECHNOLOGY IN POLYMER SOLAR CELLS Mayur Padharia, Hardik Panchal, Keval Shah, *Neha Patni, Shibu.G.Pillai Department of Chemical Engineering, Institute of Technology, Nirma University, S. G. Highway,

More information

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures 4) Springer Contents Preface 1. Classification of Solids and Crystal Structure 1 1.1 Introduction 1 1.2 The Bravais Lattice

More information

3. PHOTOVOLTAIC CONVERSION

3. PHOTOVOLTAIC CONVERSION 3. PHOTOVOLTAIC CONVERSION Content 3.1 Solar radiation 3.2 Photoelectric conversion of solar radiation 3.3 The photoelectric effect in the homo-junction p-n. 3.4 Solar cell parameters 3.5 Energy losses

More information

Lab 2. Characterization of Solar Cells

Lab 2. Characterization of Solar Cells Lab 2. Characterization of Solar Cells Physics Enhancement Programme Department of Physics, Hong Kong Baptist University 1. OBJECTIVES To familiarize with the principles of commercial solar cells To characterize

More information

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi Charge Excitation Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi 1 2.626/2.627 Roadmap You Are Here 2 2.626/2.627: Fundamentals Every photovoltaic device

More information

Photovoltaic Devices. Content

Photovoltaic Devices. Content Photovoltaic Devices EPFL IMT - PVLab Highlights in Microtechnology, 2014 Content Applications overviews Brief history Basics of photovoltaics (PV) Physical principle and performance limits Multi-junction

More information

Impact of the Geometry Profil of the Bandgap of the CIGS Absorber Layer on the Electrical Performance of the Thin-film Photocell

Impact of the Geometry Profil of the Bandgap of the CIGS Absorber Layer on the Electrical Performance of the Thin-film Photocell American Journal of Energy Research, 2018, Vol. 6, No. 1, 23-29 Available online at http://pubs.sciepub.com/ajer/6/1/4 Science and Education Publishing DOI:10.12691/ajer-6-1-4 Impact of the Geometry Profil

More information