1/2. E c Part a The solution is identical for grade 40 and grade 60 reinforcement. P s f c n A s lbf. The steel carries 13.3 percent of the load

Size: px
Start display at page:

Download "1/2. E c Part a The solution is identical for grade 40 and grade 60 reinforcement. P s f c n A s lbf. The steel carries 13.3 percent of the load"

Transcription

1 1/ A in. column is made of the same concrete and reinforced with the same six No. 9 (No. 29) bars as the column in Examples 3.1 and 3.2, except t hat a steel with yield strength f y = 40 ksi is used. The stress-strain diagram of this reinforcing steel is shown in Fig for fy = 40 ksi. For this column determine ( a ) the axial load that will stress the concrete to 1200 psi; ( b ) the load at which the steel starts yielding; ( c ) the maximum load; and ( d ) the share of the total load carried by the reinforcement at these three stages of loading. Compare results with those calculated in the examples for f y = 60 ksi, keeping in mind, in regard to relative economy, that the price per pound for reinforcing steels with 40 and 60 ksi yield points is about the same. A s 6.0in 2 16" A g 16in20in 320in 2 A c A g A s 314in 2 f' c 4000psi f y 40000psi f y psi 20" E c psi E s psi E s n 8.1 E c art a The solution is identical for grade 40 and grade 60 reinforcement f c 1200psi f c A c na s lbf s f c na s lbf s art b The steel carries 13.3 percent of the load f y f y1 ε y ε E y s E s For slow loading f c 3000psi f c1 3300psi s A c f c A s f y s A s f y lbf lbf 1 s1 A c f c1 A s f y1 s A s f y lbf lbf

2 2/2 roblem 3.1 art c f c 3400psi u s A c f c A s f y s u A s f y lbf lbf u1 s1 A c f c A s f y1 s u A s f y lbf lbf Comments 1. There is no difference at fc = 1200 psi and elastic assumptions are used 2. As the strain increases, the steel with fy = 60,000 psi contributes more to the total load and the column has a higher total capacity 3. Grade 40 and Grade 40 have the same cost, therefore Grade 60 provides a 9% increase in capacity for no increase in cost.

3 1/2 3.2 The area of steel, expressed as a percentage of gross concrete area, for the column of roblem 3.1 is lower than would often be used in practice. Recalculate the comparisons of roblem 3.1, using f y of 40 ksi and 60 ksi as before, but for a in. column reinforced with eight No. 11 (No. 36) bars. Compare your results with those of roblem " A s in 2 A s 8A s in 2 20" 4 No. 11 (No. 36) A s =12.48in 2 A g 16in20in 320in 2 A c A g A s in 2 4 No. 11 (No. 36) f' c 4000psi f y 40000psi f y psi E c psi E s psi E s n 8.1 E c art a The solution is identical for grade 40 and grade 60 reinforcement f c 1200psi f c A c na s lbf s f c na s lbf s art b The steel carries 25 percent of the load f y f y1 ε y ε E y s E s For slow loading f c 3000psi f c1 3300psi s A c f c A s f y s A s f y lbf lbf 1 s1 A c f c1 A s f y1 s A s f y lbf lbf

4 2/2 roblem 3.2 art c f c 3400psi u s A c f c A s f y s u both cases A s f y lbf lbf u1 s1 A c f c A s f y1 s u A s f y lbf lbf Comments 1. There is no difference at fc = 1200 psi and elastic assumptions are used 2. There is a 16% capacity increase at nominal using Grade 60 reinforcement 3. The higher steel ratio produces a higher overall capacity compared to problem 3.1

5 3.3. A square concrete column with dimensions in. is reinforced with a total of eight No. 10 (No. 32) bars arranged uniformly around the column perimeter. Material strengths are f y = 60 ksi and f c = 4000 psi, with stressstrain curves as given by curves a and c of Fig Calculate the percentages of total load carried by the concrete and by the steel as load is gradually increased from 0 to failure, which is assumed to occur when the concrete strain reaches a limit value of Determine the loads at strain increments of up to the failure strain, and graph your results, plotting load percentages vs. strain. The modular ratio may be assumed at n = 8 for these materials. Using Concrete data from Figure 3.3 A s = in 2 A c = 474 in 3 fy = f' c = psi 4000 psi Strain f c (psi) c (kips) f s (psi) s (kips) total (kips) c / total s / total % 0.00% % 16.2% % 19.2% % 23.1% % 27.3% % 27.4% % 27.4% 90.00% 80.00% 70.00% 60.00% 50.00% 40.00% 30.00% 20.00% 10.00% 0.00% c/total s/total

6 1/ A in. column is made of the same concrete as used in Examples 3.1 and 3.2. It is reinforced with six No. 11 (No. 36) bars with f y = 60 ksi. For this column section, determine ( a ) the axial load that the section will carry at a concrete stress of 1400 psi; ( b ) the load on the section when the steel begins to yield; ( c ) the maximum load if the section is loaded slowly; and ( d ) the maximum load if the section is loaded rapidly. The area of one No. 11 (No. 36) bar is 1.56 in 2. Determine the percent of the load carried by the steel and the concrete for each combination. Reinforcement Areas Given roperties f' c 4000psi f y 60000psi f c 1400psi n 8 E s psi Column roperties b 20in t 24in A g bt 480 in 2 A st 6A s in 2 art (a) Compute the axial capacity of the section loaded below the elastic limit. Solution: The axial capacity is based on the gross area of the column plus the effective area of the steel. Since we count the holes where the steel is removed, the additional effective area of the steel is (n-1)a st. A c A g A st A g 480in 2 A st 9.36in 2 A c 471in 2 f c A g ( n 1) A st 764kip c f c A g A st c 659kip Concrete and steel contribution c s f c na st s 105kip s f y art (b): Compute the capacity of the column when the steel begins to yield ε y E s ε y or 2/10 of one percent Examining Figure 3.3, we are beyond the elastic portion of the concrete stress strain curve, but we are at the elastic limit of the steel. f s ε y E s f s 60000psi From Figure 3.3 f c 3100psi Since the problem is nonlinear, we must break out the concrete and steel areas. We can no longer use the elastic equation. for slow loading

7 2/2 f c A c f s A st 2021kip c c f c A c c 1459kip s s f s A st s 562kip art (c): Compute the maximum load capacity of the section if loaded slowly Examining Figure 3.3, we are beyond the elastic portion of the concrete stress strain curve and we are in the plastic range of the steel. f s f y f s 60000psi From Figure 3.3 f c 3400psi Since the problem is nonlinear, we must break out the concrete and steel areas. We can no longer use the elastic equation from 1.1. for slow loading f c A c f s A st 2162kip c s f c A c f s A st c s 1600kip c s 562kip art (d): If we reexamine the problem with a fast loading, then the concrete stress would be f c 4000psi c s f c A c f c A c f s A st f s A st 2444kip c c 1883kip s 562kip s As the concrete becomes non-linear, the steel picks up more load, but after the steel yields, the load goes to the conrete. 2. The slow loading is approximately 88% of the fast load scenario - This is slightly higher than the 0.85 given in eq. 3.6.

8 1/3 3.5 A 24 in. diameter column is made of the same concrete as used in Examples 3.1 and 3.2. The area of reinforcement equals 2.1 percent of the gross cross section (that is, A s = A g ) and f y = 60 ksi. For this column section, determine ( a ) the axial load the section will carry at a concrete stress of 1200 psi; ( b ) the load on the section when the steel begins to yield; ( c ) the maximum load if the section is loaded slowly; ( d ) the maximum load if the section is loaded rapidly; and ( e ) the maximum load if the reinforcement in the column is raised to 6.5 percent of the gross cross section and the column is loaded slowly. Comment on your answer, especially the percent of the load carried by the steel and the concrete for each combination. Reinforcement roperties Given roperties f' c 4000psi f y 60000psi f c 1200psi n 8 E s psi Column roperties d 24in A g π d2 ρ A st ρa g is the reinforcement ratio or the fraction of the section that is steel The total area of steel A st is A st 9.5in 2 art (a) Compute the axial capacity of the section loaded below the elastic limit. Solution: The axial capacity is based on the gross area of the column plus the effective area of the steel. Since we count the holes where the steel is removed, the additional effective area of the steel is (n-1)a st. A c A g A st A g 452in 2 A st 9.50in 2 A c 443in 2 f c A g ( n 1) A st 623kip c f c A g A st c 531kip Concrete and steel contribution c s f c na st s 91kip s f y art (b): Compute the capacity of the column when the steel begins to yield ε y E s ε y or 2/10 of one percent Examining Figure 1.16, we are beyond the elastic portion of the concrete stress strain curve, and we are at the elastic limit of the steel. ε y E s f s 60000psi From Figure 1.16 f c 3100psi f s for slow loading

9 2/3 Since the problem is nonlinear, we must break out the concrete and steel areas. We can no longer use the elastic equation from 1.1. f c A c f s A st 1943kip c c f c A c c 1373kip s s f s A st s 570kip art (c): Compute the maximum load capacity of the section if loaded slowly Examining Figure 1.16, we are beyond the elastic portion of the concrete stress strain curve and we are in the plastic range of the steel. f s f y f s 60000psi From Figure 3.3 f c 3400psi Since the problem is nonlinear, we must break out the concrete and steel areas. We can no longer use the elastic equation from 1.1. for slow loading f c A c f s A st 2076kip c f c A c c c 1506kip s f s A st s s 570kip art (d): If we reexamine the problem with a fast loading as would occur in a building, then the concrete stress would be f c 4000psi f c A c f s A st 2342kip c f c A c c 1772kip c s f s A st s 570kip s Note: the total increase is in the concrte contribution art (e): Determine the capacity for a slow loaded column with the steel changed to 6.5% A st 0.065A g A st 29.4in 2 f s f y f s 60000psi From Figure 1.16 f c 3400psi for slow loading f c A c f s A st 3270kip c f c A c c 1506kip c s s f s A st s 1764kip

10 3/3 Comments 1. As the concrete becomes non-linear, the steel picks up more load, but after the steel yields, the load goes to the conrete. 2. The slow loading is approximately 88% of the fast load scenario - This is slightly higher than the 85 percent given earlier.

Interaction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements

Interaction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Interaction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Interaction Diagram - Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Investigate the capacity for the irregular

More information

MECHANICS OF MATERIALS Sample Problem 4.2

MECHANICS OF MATERIALS Sample Problem 4.2 Sample Problem 4. SOLUTON: Based on the cross section geometry, calculate the location of the section centroid and moment of inertia. ya ( + Y Ad ) A A cast-iron machine part is acted upon by a kn-m couple.

More information

Appendix G Analytical Studies of Columns

Appendix G Analytical Studies of Columns Appendix G Analytical Studies of Columns G.1 Introduction Analytical parametric studies were performed to evaluate a number of issues related to the use of ASTM A103 steel as longitudinal and transverse

More information

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com Prof.

More information

The science of elasticity

The science of elasticity The science of elasticity In 1676 Hooke realized that 1.Every kind of solid changes shape when a mechanical force acts on it. 2.It is this change of shape which enables the solid to supply the reaction

More information

Presented by: Civil Engineering Academy

Presented by: Civil Engineering Academy Presented by: Civil Engineering Academy Structural Design and Material Properties of Steel Presented by: Civil Engineering Academy Advantages 1. High strength per unit length resulting in smaller dead

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

3.4 Reinforced Concrete Beams - Size Selection

3.4 Reinforced Concrete Beams - Size Selection CHAPER 3: Reinforced Concrete Slabs and Beams 3.4 Reinforced Concrete Beams - Size Selection Description his application calculates the spacing for shear reinforcement of a concrete beam supporting a uniformly

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

Design 1 Calculations

Design 1 Calculations Design 1 Calculations The following calculations are based on the method employed by Java Module A and are consistent with ACI318-99. The values in Fig. 1 below were taken from the Design 1 Example found

More information

APPENDIX G I-BEAM SUMMARIES 0.6-IN. STRAND G-1

APPENDIX G I-BEAM SUMMARIES 0.6-IN. STRAND G-1 APPENDIX G I-BEAM SUMMARIES.6-IN. STRAND G-1 Concrete Compressive Strength Embedment Length(L e ) Span Failure Mode Maximum Load Maximum Shear Maximum Moment Maximum Deflection attained Rebound after complete

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk Topics Addressed Shear Stresses in Rectangular Beams Diagonal Tension

More information

Appendix J. Example of Proposed Changes

Appendix J. Example of Proposed Changes Appendix J Example of Proposed Changes J.1 Introduction The proposed changes are illustrated with reference to a 200-ft, single span, Washington DOT WF bridge girder with debonded strands and no skew.

More information

Solid Mechanics Homework Answers

Solid Mechanics Homework Answers Name: Date: Solid Mechanics Homework nswers Please show all of your work, including which equations you are using, and circle your final answer. Be sure to include the units in your answers. 1. The yield

More information

ORIGIN 0. PTC_CE_BSD_7.2_us_mp.mcdx. Mathcad Enabled Content Copyright 2011 Knovel Corp.

ORIGIN 0. PTC_CE_BSD_7.2_us_mp.mcdx. Mathcad Enabled Content Copyright 2011 Knovel Corp. PC_CE_BSD_7._us_mp.mcdx Copyright 011 Knovel Corp. Building Structural Design homas P. Magner, P.E. 011 Parametric echnology Corp. Chapter 7: Reinforced Concrete Column and Wall Footings 7. Pile Footings

More information

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case

More information

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS 3 rd Edition Michael S. Mamlouk Arizona State University John P. Zaniewski West Virginia University Solution Manual FOREWORD This solution manual includes

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information

3.5 Reinforced Concrete Section Properties

3.5 Reinforced Concrete Section Properties CHAPER 3: Reinforced Concrete Slabs and Beams 3.5 Reinforced Concrete Section Properties Description his application calculates gross section moment of inertia neglecting reinforcement, moment of inertia

More information

Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

More information

Serviceability Deflection calculation

Serviceability Deflection calculation Chp-6:Lecture Goals Serviceability Deflection calculation Deflection example Structural Design Profession is concerned with: Limit States Philosophy: Strength Limit State (safety-fracture, fatigue, overturning

More information

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected.

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected. COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEMBER 2001 CONCRETE FRAME DESIGN ACI-318-99 Technical Note This Technical Note describes how the program checks column capacity or designs reinforced

More information

Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1.

Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1. NAME CM 3505 Fall 06 Test 2 Part 1 is to be completed without notes, beam tables or a calculator. Part 2 is to be completed after turning in Part 1. DO NOT turn Part 2 over until you have completed and

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

Generation of Biaxial Interaction Surfaces

Generation of Biaxial Interaction Surfaces COPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA AUGUST 2002 CONCRETE FRAE DESIGN BS 8110-97 Technical Note This Technical Note describes how the program checks column capacity or designs reinforced

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Bending and Shear in Beams

Bending and Shear in Beams Bending and Shear in Beams Lecture 3 5 th October 017 Contents Lecture 3 What reinforcement is needed to resist M Ed? Bending/ Flexure Section analysis, singly and doubly reinforced Tension reinforcement,

More information

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus Case study 2 In field of Physics, it explains how an object deforms under an applied force Real rigid bodies are elastic we can

More information

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

More information

Lab Exercise #5: Tension and Bending with Strain Gages

Lab Exercise #5: Tension and Bending with Strain Gages Lab Exercise #5: Tension and Bending with Strain Gages Pre-lab assignment: Yes No Goals: 1. To evaluate tension and bending stress models and Hooke s Law. a. σ = Mc/I and σ = P/A 2. To determine material

More information

UC Berkeley CE 123 Fall 2017 Instructor: Alan Kren

UC Berkeley CE 123 Fall 2017 Instructor: Alan Kren CE 123 - Reinforced Concrete Midterm Examination No. 2 Instructions: Read these instructions. Do not turn the exam over until instructed to do so. Work all problems. Pace yourself so that you have time

More information

1.105 Solid Mechanics Laboratory Fall 2003 Experiment 3 The Tension Test

1.105 Solid Mechanics Laboratory Fall 2003 Experiment 3 The Tension Test 1.105 Solid Mechanics Laboratory Fall 2003 Experiment 3 The Tension Test Our objective is to measure the Elastic Modulus of steel. The experiment comes in two parts. In the first, you will subject a steel

More information

Solid Mechanics Chapter 1: Tension, Compression and Shear

Solid Mechanics Chapter 1: Tension, Compression and Shear Solid Mechanics Chapter 1: Tension, Compression and Shear Dr. Imran Latif Department of Civil and Environmental Engineering College of Engineering University of Nizwa (UoN) 1 Why do we study Mechanics

More information

Sway Column Example. PCA Notes on ACI 318

Sway Column Example. PCA Notes on ACI 318 Sway Column Example PCA Notes on ACI 318 ASDIP Concrete is available for purchase online at www.asdipsoft.com Example 11.2 Slenderness Effects for Columns in a Sway Frame Design columns C1 and C2 in the

More information

TINIUS OLSEN Testing Machine Co., Inc.

TINIUS OLSEN Testing Machine Co., Inc. Interpretation of Stress-Strain Curves and Mechanical Properties of Materials Tinius Olsen has prepared this general introduction to the interpretation of stress-strain curves for the benefit of those

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

UNIVERSITY OF AKRON Department of Civil Engineering

UNIVERSITY OF AKRON Department of Civil Engineering UNIVERSITY OF AKRON Department of Civil Engineering 4300:401-301 July 9, 2013 Steel Design Sample Quiz 2 1. The W10 x 54 column shown has both ends pinned and consists of A992 steel (F y = 50 ksi, F u

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third CHTR Stress MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University and Strain xial oading Contents Stress & Strain: xial oading Normal

More information

Reports RESEARCH REPORT RP00-3 RESEARCH REPORT RP01-1 OCTOBER REVISION 2006 REVISION

Reports RESEARCH REPORT RP00-3 RESEARCH REPORT RP01-1 OCTOBER REVISION 2006 REVISION research report A AISI Design Sponsored Approach Resear for ch Complex Reports AISI Sponsored Stiffeners Research Reports RESEARCH REPORT RP00-3 RP01-1 RESEARCH REPORT RP01-1 OCTOBER 2001 2000 REVISION

More information

2010 NASCC / Structures Congress Orlando, Florida May 13, 2010

2010 NASCC / Structures Congress Orlando, Florida May 13, 2010 2010 NASCC / Structures Congress Orlando, Florida May 13, 2010 Load Transfer in Composite Construction (Chapter I of the 2010 AISC Specification) William P. Jacobs, V Stanley D. Lindsey & Associates Atlanta,

More information

Anchor Bolt Design (Per ACI and "Design of Reinforcement in Concrete Pedestals" CSA Today, Vol III, No. 12)

Anchor Bolt Design (Per ACI and Design of Reinforcement in Concrete Pedestals CSA Today, Vol III, No. 12) Anchor Bolt Design (Per ACI 318-08 and "Design of Reinforcement in Concrete Pedestals" CSA Today, Vol III, No. 12) Design Assumptions: Base Units and Design 1. Tension is equally distributed among all

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 S017abn Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. Building description The building is a three-story office building

More information

Introduction to Structural Member Properties

Introduction to Structural Member Properties Introduction to Structural Member Properties Structural Member Properties Moment of Inertia (I): a mathematical property of a cross-section (measured in inches 4 or in 4 ) that gives important information

More information

4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS 4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

INTRODUCTION TO STRAIN

INTRODUCTION TO STRAIN SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,

More information

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS Cor-Ten Steel Sculpture By Richard Serra Museum of Modern Art Fort Worth, TX (AISC - Steel Structures of the Everyday) FALL 2013 lecture

More information

Lecture-08 Gravity Load Analysis of RC Structures

Lecture-08 Gravity Load Analysis of RC Structures Lecture-08 Gravity Load Analysis of RC Structures By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Contents Analysis Approaches Point of Inflection Method Equivalent

More information

Flexure: Behavior and Nominal Strength of Beam Sections

Flexure: Behavior and Nominal Strength of Beam Sections 4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

Chapter 2. Design for Shear. 2.1 Introduction. Neutral axis. Neutral axis. Fig. 4.1 Reinforced concrete beam in bending. By Richard W.

Chapter 2. Design for Shear. 2.1 Introduction. Neutral axis. Neutral axis. Fig. 4.1 Reinforced concrete beam in bending. By Richard W. Chapter 2 Design for Shear By Richard W. Furlong 2.1 Introduction Shear is the term assigned to forces that act perpendicular to the longitudinal axis of structural elements. Shear forces on beams are

More information

Experiment Five (5) Principal of Stress and Strain

Experiment Five (5) Principal of Stress and Strain Experiment Five (5) Principal of Stress and Strain Introduction Objective: To determine principal stresses and strains in a beam made of aluminum and loaded as a cantilever, and compare them with theoretical

More information

Plastic design of continuous beams

Plastic design of continuous beams Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 4: Plastic design of continuous

More information

999 TOWN & COUNTRY ROAD ORANGE, CALIFORNIA TITLE PUSHOVER ANALYSIS EXAMPLE BY R. MATTHEWS DATE 5/21/01

999 TOWN & COUNTRY ROAD ORANGE, CALIFORNIA TITLE PUSHOVER ANALYSIS EXAMPLE BY R. MATTHEWS DATE 5/21/01 DESCRIPTION Nonlinear static (pushover) analysis will be performed on a railroad bridge bent using several methods to determine its ultimate lateral deflection capability. 1. SAP2000 Nonlinear with axial-moment

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk 1 Topics Addressed Shear Stresses in Rectangular

More information

ABS Consulting Project No

ABS Consulting Project No SUPPORTING STRUCTURE DESIGN FOR BLAST RESISTANT WINDOWS CHILD DEVELOPMENT CENTER MOODY AFB, GA ABS Consulting Project No. 898 PREPARED FOR: ATLANTIC ENGINEERING SERVICE 6 ARLINGTON EXPRESSWAY BLDG. B,

More information

Designing Reinforced Concrete Rectangular Columns for Biaxial Bending

Designing Reinforced Concrete Rectangular Columns for Biaxial Bending ENGINEERING DATA REORT NUMBER 57 Designing Reinforced Concrete Rectangular Columns for Biaxial Bending A SERVICE OF THE CONCRETE REINFORCING STEEL INSTITUTE 933 N. lum Grove Rd., Schaumburg, Illinois 60173-4758

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials Notation: a = acceleration = area (net = with holes, bearing = in contact, etc...) SD = allowable stress design d = diameter of a hole = calculus symbol for differentiation e = change

More information

Review of the Master SN Neuber Rule in the ASME Division 2 Rewrite Project

Review of the Master SN Neuber Rule in the ASME Division 2 Rewrite Project Review of the Master SN Neuber Rule in the ASME Division 2 Rewrite Project ASME BPVC Code Week Atlanta, GA February 2007 Chris Hinnant Paulin Research Group Houston, TX Table of Contents 1.0 Introduction

More information

Ch. 10 Design of Short Columns Subject to Axial Load and Bending

Ch. 10 Design of Short Columns Subject to Axial Load and Bending Ch. 10 Design o Short Columns Subjet to Axial Load and Bending Axial Loading and Bending Development o Interation Diagram Column Design Using P-M Interation Diagram Shear in Columns Biaxial Bending Examples

More information

Chapter 1 General Introduction Instructor: Dr. Mürüde Çelikağ Office : CE Building Room CE230 and GE241

Chapter 1 General Introduction Instructor: Dr. Mürüde Çelikağ Office : CE Building Room CE230 and GE241 CIVL222 STRENGTH OF MATERIALS Chapter 1 General Introduction Instructor: Dr. Mürüde Çelikağ Office : CE Building Room CE230 and GE241 E-mail : murude.celikag@emu.edu.tr 1. INTRODUCTION There are three

More information

Towards The. Design of Super Columns. Prof. AbdulQader Najmi

Towards The. Design of Super Columns. Prof. AbdulQader Najmi Towards The Design of Super Columns Prof. AbdulQader Najmi Description: Tubular Column Square or Round Filled with Concrete Provided with U-Links welded to its Walls as shown in Figure 1 Compression Specimen

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third CHTR Stress MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University and Strain xial oading Contents Stress & Strain: xial oading Normal

More information

Lecture-05 Serviceability Requirements & Development of Reinforcement

Lecture-05 Serviceability Requirements & Development of Reinforcement Lecture-05 Serviceability Requirements & Development of Reinforcement By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Section 1: Deflections

More information

5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

5. What is the moment of inertia about the x - x axis of the rectangular beam shown? 1 of 5 Continuing Education Course #274 What Every Engineer Should Know About Structures Part D - Bending Strength Of Materials NOTE: The following question was revised on 15 August 2018 1. The moment

More information

Example 1 - Single Headed Anchor in Tension Away from Edges BORRADOR. Calculations and Discussion

Example 1 - Single Headed Anchor in Tension Away from Edges BORRADOR. Calculations and Discussion Example 1 - Single Headed Anchor in Tension Away from Edges Check the capacity of a single anchor, 1 in. diameter, F1554 Grade 36 headed bolt with heavy-hex head installed in the top of a foundation without

More information

Moment Redistribution

Moment Redistribution TIME SAVING DESIGN AID Page 1 of 23 A 3-span continuous beam has center-to-center span lengths of 30 ft-0 in. The beam is 20 in. by 28 in. and all columns are 20 in. by 20 in. In this example, the beam

More information

Railroad Concrete Tie Failure Analysis

Railroad Concrete Tie Failure Analysis Railroad Concrete Tie Failure Analysis Hailing Yu, David Jeong, Brian Marquis, and Michael Coltman 2014 International Crosstie & Fastening System Symposium June 3-5, 2014 The National Transportation Systems

More information

RODS: THERMAL STRESS AND STRESS CONCENTRATION

RODS: THERMAL STRESS AND STRESS CONCENTRATION RODS: HERML SRESS ND SRESS CONCENRION Example 5 rod of length L, cross-sectional area, and modulus of elasticity E, has been placed inside a tube of the same length L, but of cross-sectional area and modulus

More information

Impact. m k. Natural Period of Vibration τ. Static load Gray area Impact load t > 3 τ. Absorbing energy. Carrying loads

Impact. m k. Natural Period of Vibration τ. Static load Gray area Impact load t > 3 τ. Absorbing energy. Carrying loads Impact also called shock, sudden or impulsive loading driving a nail with a hammer, automobile collisions. dashpot a) Rapidly moving vehicles crossing a bridge To distinguish: b) Suddenly applied c) Direct

More information

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

More information

COLUMNS: BUCKLING (DIFFERENT ENDS)

COLUMNS: BUCKLING (DIFFERENT ENDS) COLUMNS: BUCKLING (DIFFERENT ENDS) Buckling of Long Straight Columns Example 4 Slide No. 1 A simple pin-connected truss is loaded and supported as shown in Fig. 1. All members of the truss are WT10 43

More information

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)? IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

More information

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VIII Dr. Jason E. Charalambides Failure in Flexure!

More information

Uniaxial Loading: Design for Strength, Stiffness, and Stress Concentrations

Uniaxial Loading: Design for Strength, Stiffness, and Stress Concentrations Uniaxial Loading: Design for Strength, Stiffness, and Stress Concentrations Lisa Hatcher This overview of design concerning uniaxial loading is meant to supplement theoretical information presented in

More information

What Every Engineer Should Know About Structures

What Every Engineer Should Know About Structures What Every Engineer Should Know About Structures Part C - Axial Strength of Materials by Professor Patrick L. Glon, P.E. This is a continuation of a series of courses in the area of study of physics called

More information

Solution of Nonlinear Equations: Graphical and Incremental Sea

Solution of Nonlinear Equations: Graphical and Incremental Sea Outlines Solution of Nonlinear Equations: Graphical and Incremental Search Methods September 2, 2004 Outlines Part I: Review of Previous Lecture Part II: Sample Problems Solved with Numerical Methods Part

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

Steel Cross Sections. Structural Steel Design

Steel Cross Sections. Structural Steel Design Steel Cross Sections Structural Steel Design PROPERTIES OF SECTIONS Perhaps the most important properties of a beam are the depth and shape of its cross section. There are many to choose from, and there

More information

Strength of Materials (15CV 32)

Strength of Materials (15CV 32) Strength of Materials (15CV 32) Module 1 : Simple Stresses and Strains Dr. H. Ananthan, Professor, VVIET,MYSURU 8/21/2017 Introduction, Definition and concept and of stress and strain. Hooke s law, Stress-Strain

More information

Strength of Material. Shear Strain. Dr. Attaullah Shah

Strength of Material. Shear Strain. Dr. Attaullah Shah Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume

More information

AN UNLOADING AND RELOADING STRESS-STRAIN MODEL FOR CONCRETE CONFINED BY TIE REINFORCEMENTS

AN UNLOADING AND RELOADING STRESS-STRAIN MODEL FOR CONCRETE CONFINED BY TIE REINFORCEMENTS AN UNLOADING AND RELOADING STRESS-STRAIN MODEL FOR CONCRETE CONFINED BY TIE REINFORCEMENTS Junichi SAKAI 1 And Kazuhiko KAWASHIMA SUMMARY This paper presents a series of uniaxial compressive loading tests

More information

CHAPTER 6: ULTIMATE LIMIT STATE

CHAPTER 6: ULTIMATE LIMIT STATE CHAPTER 6: ULTIMATE LIMIT STATE 6.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 6.1. The collapse mechanism in statically indeterminate structures shall not be considered.

More information

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there? High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the

More information

Direct Design Method and Design Diagram. For Reinforced Concrete Columns and Shear walls

Direct Design Method and Design Diagram. For Reinforced Concrete Columns and Shear walls Direct Design Method and Design Diagram For Reinforced Concrete Columns and Shear walls BY MAJID HOUSHIAR B.S., Isfahan University of Technology, 1988 M.S., University of Illinois at Chicago, Chicago,

More information

FHWA Bridge Design Guidance No. 1 Revision Date: July 21, Load Rating Evaluation of Gusset Plates in Truss Bridges

FHWA Bridge Design Guidance No. 1 Revision Date: July 21, Load Rating Evaluation of Gusset Plates in Truss Bridges FHWA Bridge Design Guidance No. 1 Revision Date: July 21, 2008 Load Rating Evaluation of Gusset Plates in Truss Bridges By Firas I. Sheikh Ibrahim, PhD, PE Part B Gusset Plate Resistance in Accordance

More information

Shear Failure Model for Flexure-Shear Critical Reinforced Concrete Columns

Shear Failure Model for Flexure-Shear Critical Reinforced Concrete Columns Shear Failure Model for Flexure-Shear Critical Reinforced Concrete Columns W.M. Ghannoum 1 and J.P. Moehle 2 1 Assistant Professor, Dept. of Civil, Architectural, and Environmental Engineering, University

More information

Evaluation of Flexural Stiffness for RC Beams During Fire Events

Evaluation of Flexural Stiffness for RC Beams During Fire Events 3 rd International Structural Specialty Conference 3 ième conférence internationale spécialisée sur le génie des structures Edmonton, Alberta June 6-9, 202 / 6 au 9 juin 202 Evaluation of Flexural Stiffness

More information

Hardened Concrete. Lecture No. 16

Hardened Concrete. Lecture No. 16 Hardened Concrete Lecture No. 16 Fatigue strength of concrete Modulus of elasticity, Creep Shrinkage of concrete Stress-Strain Plot of Concrete At stress below 30% of ultimate strength, the transition

More information

Therefore, for all members designed according to ACI 318 Code, f s =f y at failure, and the nominal strength is given by:

Therefore, for all members designed according to ACI 318 Code, f s =f y at failure, and the nominal strength is given by: 5.11. Under-reinforced Beams (Read Sect. 3.4b oour text) We want the reinforced concrete beams to fail in tension because is not a sudden failure. Therefore, following Figure 5.3, you have to make sure

More information

CHAPTER II EXPERIMENTAL INVESTIGATION

CHAPTER II EXPERIMENTAL INVESTIGATION CHAPTER II EXPERIMENTAL INVESTIGATION 2.1 SCOPE OF TESTING The objective of this research is to determine the force distribution between the column web and stiffener when the column flanges are subjected

More information

Characteristic Cylinder Strength. Characteristic axial tensile strength of concrete. coefficient related to bond condition

Characteristic Cylinder Strength. Characteristic axial tensile strength of concrete. coefficient related to bond condition Customer: Job No.: Date: 0..8 Reinforcement Design for TSS 4G fck : 35 MPa 5076.3 psi Characteristic Cylinder Strength fcd : Design Compressive Strength fctk0_05 fctd.0 f ck 3384.4 psi.5 :. MPa Characteristic

More information

twenty one concrete construction: materials & beams ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014

twenty one concrete construction: materials & beams ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture twenty one concrete construction: http:// nisee.berkeley.edu/godden materials & beams Concrete Beams

More information

Chapter. Materials. 1.1 Notations Used in This Chapter

Chapter. Materials. 1.1 Notations Used in This Chapter Chapter 1 Materials 1.1 Notations Used in This Chapter A Area of concrete cross-section C s Constant depending on the type of curing C t Creep coefficient (C t = ε sp /ε i ) C u Ultimate creep coefficient

More information