Oriented Measures* Raphael Cerf. and. Carlo Mariconda. Submitted by Dorothy Maharam Stone. Received June 15, 1994

Size: px
Start display at page:

Download "Oriented Measures* Raphael Cerf. and. Carlo Mariconda. Submitted by Dorothy Maharam Stone. Received June 15, 1994"

Transcription

1 Ž JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 197, ARTICLE NO 0062 Oreted Mesures* Rphel Cerf CNRS, Uerste Prs Sud, Mthemtque, Btmet ˆ 25, 9105 Orsy Cedex, Frce d Crlo Mrcod Dprtmeto d Mtemtc pur e pplct, Uerst ` d Pdo, Belzo 7, Pdu, Itly Sumtted y Dorothy Mhrm Stoe Receved Jue 15, 199 A vector mesure Ž,, defed o, 1 s oreted f for ech -tuple of dsjot mesurle sets Ž A 1,, A such tht A 1 A the determt 1Ž A1 1Ž A Ž A Ž A 1 s postve We study the rge R of oreted mesure: R Ž E : E hs dscotuty pots, R Ž E : E hs less th 1 dscotuty pots 1996 Acdemc Press, Ic 1 INTRODUCTION A theorem of Lypuov sttes tht the rge R of o-tomc vector mesure o, R Ž A : A mesurle suset of, * We re deeply grteful to Professor Arrgo Cell for suggestg the tl prolem, for hs useful dvce, d for hs wrm ecourgemet; we lso wsh to th Professors Je-Perre Au d ele Frows, who gve the uthors the opportuty to meet together We wrmly th the referee for sg us to e precse out ucler pot cocerg Thoerem 22 We th the DMI of the ENS for the techcl support durg the preprto of ths pper The secod uthor Ž CM ws prtlly supported y grt of the Cosglo Nzole delle Rcerche Ž Grt X96 $1800 Copyrght 1996 y Acdemc Press, Ic All rghts of reproducto y form reserved

2 926 CERF AND MARICONDA cocdes wth the covex set d :01 ½ 5 owever for gve, 01, the usul proofs sed o covextyextreme pots rgumets ; 5 do ot gve y formto out the exstece of ce set E such tht Ž E d Cosder, for stce, the two-dmesol vector mesure Ž A Ž A, A2AB where B s orel suset of, d deotes the Leesgue mesure For ech set E, the equlty Ž E Ž B mples B E Whe the mesure dmts desty f, l 3 showed tht f for ech vector p the set t, : pfž t 0 Ž where s the usul sclr product s fte Ž respectvely coutle uo of tervls, the there exsts set E whch s fte Žresp coutle uo of tervls I our pper 2, we troduced the stroger oretto codto : we sy tht rel fuctos f,, f verfy codto o tervl, 1 f for ech 1,, the determt f1ž x1 f1ž x2 f1ž x f2ž x1 f2ž x2 f2ž x f Ž x f Ž x f Ž x 1 2 s ot equl to zero wheever the x s, re dstct d ts sg s costt o the -tuples Ž x,, x 1 such tht x1 x2 x We showed tht f mesure dmts desty fucto whose compoets re cotuous d stsfy the oretto codto the the set E my e ult such wy tht ts chrcterstc fucto hs t most dscotuty pots Moreover, f 0 1 there exst two such sets E1 d E2 whose chrcterstc fuctos E d E hve exctly 1 2 dscotuty pots Žoe set s eghourhood of wheres the other s ot Our proofs reled upo the fct tht the mp 2 Ž 1 Ž Ž 1 3,, f x dx f x dx

3 ORIENTED MEASURES 927 s dfferetle d hs vertle Jco wheever 1 We lso showed tht wheever fucto x stsfes xž 0 Ž 2 Ž Ž1 Ž Ž Ž1 x 00 d x 0 1 the the fuctos x,, x, x verfy o eghourhood of 0 We ppled these results to the study of rechle sets of costred g-g solutos d to o-covex prolems of the clculus of vrtos I ths pper, we del wth mesures whch re ot ecessrly solutely cotuous wth respect to the Leesgue mesure Oreted Mesure If A,, A re mesurle sets of, 1, y A A we me tht for ll -tuple Ž x,, x 1 1 of A1 A we hve x x A mesure Ž,, 1 1 s sd to e oreted f for ech -tuple of mesurle sets A 1,, A such tht A1 A the determt 1Ž A1 1Ž A Ž A Ž A 1 s postve I ths more geerl frmewor, we gve ew proof of the results stted 2 We crry out deep study of the rge R of the mesure: for ech pot q of ts teror R there exst exctly two dstct dul sets E 1, E2 whose chrcterstc fuctos hve dscotuty pots such tht Ž E1 q Ž E 2 ; the set R cocdes wth so tht the ove set s ope; the set R s strctly covex; ½ d :01 5 pot Ž E elogs to the oudry R of R f d oly f the chrcterstc fucto of E hs less th 1 dscotuty pots; flly, we gve recursve decomposto of the oudry R

4 928 CERF AND MARICONDA 2 ORIENTED MEASURES Throughout the pper, we wll wor wth tervl, equpped wth the Leesgue -feld L Mesurle wll me mesurle wth respect to ths -feld A eglgle set s mesurle set of Leesgue mesure zero A vector mesure o, s coutly ddtve set fucto defed o the Leesgue -feld wth vlues for some teger Notto If A,, A re mesurle sets of, 1,y A1 A we me tht A 1,, A hve o-zero Leesgue mesure d for ll -tuple Ž x,, x 1 of A1 A we hve x1 x Let Ž,, e vector mesure If elogs to L 1 Ž, 1,we ote Ž d, Ž d Ž,, Ž Ž 1 DEFINITION 21 A vector mesure Ž,, o, 1 s sd to e oreted o, f t s o-tomc d f for ech 1,, d for ech -tuple of mesurle sets A 1,, A such tht A1 A the determt 1Ž A1 1Ž A Ž A Ž A s postve 1 Remr If s oreted, the 1 s postve mesure whch ssgs postve vlues to sets of postve Leesgue mesure I prtculr, f I s o-trvl tervl, the Ž I s o-zero Remr If s oreted d I 1,,I re dsjot o-trvl Ž Ž tervls, the the vectors I,, I form ss of 1 A very mportt fct cocerg oreted mesures s tht ther chrcterstc property crres o from sets to postve fuctos Ž Notto If s fucto ts support s the set supp x : x 0 TEOREM 22 Let Ž,, 1 e oreted mesure If 1,, re -tegrle o-egte fuctos such tht supp 1 supp, the the determt 1Ž 1 1Ž Ž Ž s poste 1

5 ORIENTED MEASURES 929 Let us frst stte preprtory lemm LEMMA 23 Let Ž,, 1 e ector mesure d 1,, e mesurle -tegrle fuctos The determt s equl to d d d d 1 ž / 1 1 Ý Ž1 Ž 1 Ž s Ž s d Ž Ž s,,s Proof of Lemm 23 The detty s ovously true wheever 1,, re chrcterstc fuctos The mootoe clss theorem yelds the result Proof of Theorem 22 We pply the lemm The dom of tegrto of the -fold tegrl s reduced to supp 1 supp We frst prove tht the mesure ˆ Ý Ž Ž1 Ž s postve o the product spce Ž supp, L Ž supp, L 1 equpped wth the product -feld Žwhere L deotes the oe-dmesol Leesgue -feld Notce tht the product -feld L does ot cocde geerl wth the -dmesol Leesgue -feld Že, the completo of the -dmesol Borel -feld Cosder frst the cse of suset of supp 1 supp whch s product set A A Ž where the A s re mesurle 1 Necessrly, ech A s suset of supp If oe of the A s s eglgle, the we hve A A d Ž A A detž A,,Ž A 1 ˆ 1 1 s postve y defto Suppose ow some of the A s re eglgle For ech dex,1, Ž there exsts decresg sequece B m mof o-eglgle mesurle susets of supp hvg empty tersecto Ž ths s cosequece of 1 the fct tht supp s ot eglgle Now for ech m we hve A1 Bm Ž 1 A B whece A B A B m ˆ 1 m m s postve By the cotuty of the mesure, we hve Ž A A lm A B 1 A B ˆ 1 ˆŽ 1 m m m so tht ˆ Ž A A 1 s o-egtve It follows tht ˆ s o-egtve o the oole lger of the fte Ž dsjot uo of product sets: ts uque

6 930 CERF AND MARICONDA exteso to the -feld L geerted y these products s lso oegtve The fucto Ž s,,s Ž s Ž s s postve everywhere o ths set d s mesurle wth respect to the -feld L : thus the tegrl Ž s Ž s dž s,,s 1 1 ˆ 1 s postve Remr If s solutely cotuous wth respect to the Leesgue mesure, the Lypuov theorem yelds ltertve proof of Theorem 22 I fct, 1,, Esupp Ž Ž E Necessrly Ž E s o-zero for ech Ž see remr fter defto 21 d the solute cotuty hypothess o mples tht the E s re ot eglgle It follows tht E E d det Ž,,Ž 1 1 detž E,,Ž E 0 1 We shll deote y the suset Ž x,, x :x x 1 1 DEFINITION 2 The mesure s sd to e loclly oreted f for ech -tuple x of there exsts eghourhood V V1 V of x such tht for -tuple of mesurle sets A1 A stsfyg A1 A V1 V, the determt 1Ž A1 1Ž A Ž A Ž A 1 s postve As curosty, we prove the followg: PROPOSITION 25 A loclly oreted mesure o, s oreted o, Proof Let e loclly oreted mesure The compct set c e Ž covered y fte fmly of ope sets V where V I1 I d ŽI re sutervls of, such wy tht for ech -tuple 1 of mesurle sets A1 A stsfyg A1 A V for some, the determt formed wth the frst compoets of the vectors Ž A,, Ž A 1 s postve Let Ž J l le the fte fmly of the toms of the lger geerted y the sets ŽI,, 1Ž thus the J l s re exctly the sets of the form I for some x, Let us remr tht for ech, : x I

7 ORIENTED MEASURES 931 Ž l 1,,l, the product Jl Jl s coted some product 1 I 0 I 1 0 I fct, J J I I l1 l 1 so tht there exts such tht J J I 0 I 0 0 l1 l 1 s ot empty It follows tht J I 0,, J I 0 l1 1 l d y the very costruc- to of the sets J s we ot J I 0,, J I l l l We deote y ˆ the mesure Ý Ž Let Ž A,, A ˆ Ž1 Ž 1 e -tu ple of mesurle sets such tht A1 A The product A1 A s the dsjot uo of the sets Ž A A Ž J J 1 l1 l Ž Ž whe l 1,,l vres Let ow l 1,,l elog to Ether Ž A A Ž J J s empty Ž 1 l l d thus hs zero ˆ me- 1 sure or t s ot empty d ecessrly, Jl J l Proceedg s 1 the proof of Theorem 22, we show tht ˆ s postve mesure o the set Ž J J whece ŽŽ A A Ž J J l l ˆ 1 l l s o- 1 1 egtve Sce the set A1 A s ot eglgle, t lest oe of these sets s ot eglgle Let Ž A A Ž J J 1 l l e such 1 set It s suset of oe of the V s d, moreover, Ž A J 1 l 1 Ž A J whece ŽŽ A J Ž A J l ˆ 1 l l s postve Thus 1 Ž A A s postve ˆ 1 3 ORIENTED MEASURES WIT DENSITIES Oretto Codto We sy tht rel fuctos f 1,, f verfy codto o tervl, f for ech 1,,, the determt f1ž x1 f1ž x f2ž x1 f2ž x f Ž x f Ž x 1 s postve wheever the x s, re such tht x1 x2 x Remr I our prevous pper 2, we dd ot mpose the sg of the ove determt to e postve Whe delg wth cotuous fuctos, coectedess rgumet shows mmedtely tht the sg s costt o the set I our preset frmewor Ž t the mesure level, we fd t coveet to wor wth ths slghtly more restrctve codto

8 932 CERF AND MARICONDA EXAMPLES For 1, codto sttes tht the fucto f1 s postve; for 2, the fuctos f 1, f2 stsfy f d oly f f1 s postve Ž 1 d f f s strctly cresg The fuctos f t t Ž stsfy codto o Žthe correspodg determts re Vdermode determts 1 PROPOSITION 31 Let f,, f e fuctos L Ž, 1 stsfyg the oretto codto o, Let e the mesure o, whose desty wth respect to the Leesgue mesure s f The the mesure Ž,, s oreted 1 Proof Let A A e mesurle sets of, 1 Sce the determt s multler cotuous form, we c wrte f1 f1 f1ž s1 f1ž s 1 A f2ž s1 f2ž s ds 1ds A1 A f f f s f s A Ž Ž 1 A1 A By codto, the tegrd s postve o A A 1 1 If f,, f re of clss C o, 1, we wll deote ther Wros y WŽ f,, f 1 The followg opertol crtero for the fulflmet of the oretto codto hs ee used 2 1 PROPOSITION 32 Let f,, f C Ž, e such tht 1 t, WŽ f Ž t 0,,WŽ f,, f Ž t The f,, f stsfy the oretto codto o, 1 NOTATIONS AND PRELIMINARY LEMMAS Let us troduce some ottos If u 1,,u re vectors of, ther determt s sometmes deoted y detu,,u 1 Let A e mtrx wth rel coeffcets; y det A or A, we deote ts determt For ech, j 1,,,y Aj we me the Ž 1 Ž 1 mtrx oted y removg the th row d the jth colum from A Surprsgly, the followg smple lgerc trc wll ply essetl role the exstece prt of the proof of theorem 51

9 ORIENTED MEASURES 933 LEMMA 1 Let A Ž j 1, j e mtrx wth rel coeff- cets Let x,, x e such tht 1 1,1 1 1, 1 1 1, x x x 0 2,1x1 2, 1x1 2, x0 x x x 0 1,1 1 1, 1 1 1, If det A 0, the A 1x1 x x A Proof Crmer s rule ppled to the ove system yelds Ž 1 A 1,,1 x x A so tht Ž x x x x Ý 1 A A A A sce Ý Ž 1 A s the developmet of the determt A 1 log the frst row The ext lemms volve strogly the oto of oreted mesure LEMMA 2 Let F d G e two dstct susets of, whch re the uo of l d m dsjot closed terls l m F I, G J 1 d let Ž,, e oreted mesure Assume Ž F Ž G 1 The l m; moreoer f F G the l m 1 Proof j1 Let us frst remr tht the symmetrc dfferece Ž I I Ž J J Ž I J Ž I J j ž / ž / 1 l 1 m j j, j, j s the uo of t most l m o-trvl tervls d tht wheever t lest two tervls hve commo oudry pot the ths umer s

10 93 CERF AND MARICONDA smller th l m 1 Sce the tervls I 1,,Il re dsjot, s well s J 1,, J m, we hve Ž I1 Il Ž J1 Jm Ž I1 J1 Ž I1J1 Ž I1J1 Ž I2 Il Ž J2 J m Now, the set Ž I I Ž J J 2 l 2 m s uo of t most l m 2 dsjot tervls Ether I1 J1 or I1 J1 d I1 J1 s tervl I oth cses, Ž I J Ž I J s the uo of t most two tervls Ž t most oe f I d J hve oudry pot commo 1 1 A strghtforwrd ducto gves the result Sce the sets F d G re dstct, FG s ot empty Let A1 A e the coected compoets of FG For 1,, p p, we hve A Ž A F Ž A G, Ž AF Ž AG A Ž FG Ž FG Ž FG ; the set A eg coected, ether A F G or A G F Put 1 f AFG ½ 1 f A GF so tht the equlty Ž F Ž G c e rewrtte s 11Ž A1 p1ž Ap 0 A A 0 Ž Ž p p Suppose p; the frst p equtos mply tht the determt 1Ž A1 1Ž A p A A Ž Ž p 1 p p vshes, whch cotrdcts the fct tht s oreted The followg ottos wll e used throughout the remder of the pper Nottos 3 We shll deote y the set Ž 1,, :1 To ech -tuple Ž,, 1 elogg to we ssocte the two sets E,, E,, odd eve where y coveto, 0 1

11 ORIENTED MEASURES 935 LEMMA Ž Uqueess Let e -dmesol oreted mesure o, Assume the -tuples Ž,, d Ž,, 1 1 of Ž Ž Ž Ž Ž stsfy E E respectely E E The E E Ž resp E E Proof Assume E, E re dstct d ŽE ŽE Now, two possle cses my occur ccordg to the prty of If 2r, the sets E d E re the uo of t most r tervls Lemm 2 mples r r, whch s surd If 2r 1, the sets E d E re the uo of t most r 1 tervls owever, s commo oudry pot Lemm 2 mples Ž r1 Ž r1 1, whch s surd The dul cse ŽE ŽE c e treted smlrly The followg essetl lemm wll e used repetedly LEMMA 5 Let Ž,, 1 e oreted mesure o the terl, d I I I e 1 suterls of, 0 1 The, ge poste, there exst 1 poste rel umers,, such tht 0 l l Ý Ž l Ž l l0 l 0,, 0 d 1 I 0 Proof Cosder the ler system Ž 0 1 Ž 1 Ž 1 Ž 1 Ž Ž I I 1 I 1 I, where s prmeter The determt of the system s Ž Ž 1 det Ž I,,Ž I The mesure eg oreted, s ot zero Moreover, for ech 0,,1, 2 1 1Ž 0 Ž 1Ž 2 Ž 1Ž I 1 I 1 I 2 1 2Ž 0 Ž 2Ž 2 Ž 2Ž I 1 I 1 I 2 1 Ž I Ž 1 Ž I Ž 1 Ž I Ž 1 1Ž I Ž 1 1Ž I1 1 Ž 1 2Ž I Ž 1 2Ž I1 Ž 1 Ž I 1 Ž 1 Ž I 1,

12 936 CERF AND MARICONDA e, Ž 1 2 Ž 1 det Ž I 0,,Ž I 2,Ž I,,Ž I By Crmer s formul, equls The mesure eg or- eted d hve the sme sg so tht s postve wheever s postve Choosg such tht 0mž,,, / 0 1 we ot Ž 1 -tuple whch solves the prolem 5 MAIN RESULT The sttemet of the m result volves Nottos 3 TEOREM 51 Let e oreted mesure o, d let e mesurle fucto defed o, wth lues 0, 1 There exst two -tuples Ž,, d Ž,, 1 1 such tht Ž E dž E If ddto 0 1, the d stsfyg Ž re uque d erfy 1, 1 Remr The mesure eg o-tomc we do ot cre out oudry pots of tervls d we mght wrte, Ž for the mesure of the tervl Ž, Proof We cosder frst the cse 0 1 d we prove the result y ducto o 1 The mesure eg oreted o,, the mps Ž, d Ž, re cotuous d strctly mootoc o, It follows tht there exst uque rel umers d such tht 1 1 Ž, dž, 1 1 Ž Assume the result s true t r 1 We del oly wth the -tuple : exstece of the -tuple correspodg to t r follows from the fct tht t cocdes wth the -tuple correspodg to 1

13 ORIENTED MEASURES 937 Defe for ech 1,, d for ech -tuple Ž d Ž Ž E The ductve ssumpto yelds the exstece of two Ž 1 -tuples Ž,, d Ž,, such tht , d for ech 1,, 1 Put Ž Ý Ž,,,, Ž, odd Ž Ý Ž,,,, Ž eve S Ž 1,, :1 1, 1,,1 Ž Ž Ž Sce Ž,,, d Ž,,, elog to S, the set S s ot empty We show ow tht ether or Ž Ž Ž,,,,,, Ž Ž,,, Ž,,, Ž The equltes yeld for ech 1,, 1 Ý 01 eve 1 Put for, j 1,, Ž Ý 1 1 d d 0 01 odd Ž Ž j1 j j j j j 1, j x 1, d, A, j1

14 938 CERF AND MARICONDA where f j s eve, j ½ 1 f j s odd Wth these ottos the ove equltes ecome 1,,1 Ý j x j 0 j1 Sce the mesure s oreted the the determt A does ot vsh y Theorem 22 We re thus the posto to pply Lemm 1: A 1,,, Ž x Ž 1 Ž 1 1 Ý j j j1 A Smlrly, f we defe for, j 1,, j j j Ž j j Ž j 1, j j1 x 1, d, A, where we hve f j s odd, j ½ 1 f j s eve, A Ž, 1,,1 Ž Ž 1 A The mesure eg oreted, the determts A d A hve the sme sg, s do A d A It follows tht Ž,,, 1 1 Ž d Ž,,, Ž 1 1 hve opposte sgs At ths stge, we prove tht the set S s the grph of cotuous fucto; ths wll mply tht S s coected Let elog to, We re loog for Ž tuple Ž,, stsfyg for ech 1,, 1 2 Ž, Ž, Ý eve Ž Ž Ý Ž,, eve

15 ORIENTED MEASURES 939 or equvletly Ý ,,1,, 2 eve Ž Ž Suppose frst The ove equtos ecome 1 1 Ý Ž Ý 1 21 eve, Ž Ý Ž 1,,1,, 2 eve eve We put Ž,,, d ˆ Ž,,, If s odd, the E 2, 3 1,, Eˆ 2, 3 1, ; f s eve, the E 2, 3,, Eˆ 2, 3 2, 1 I oth cses, the precedg formule c e rewrtte s Ž Ž ˆ 1,,1 E E ; Lemm mples tht E E ˆ Sce ddto 2 1, the ecessrly 2 2,,1 1, Suppose ow Sce , the Lemm 5 yelds the exstece of rel umers 1,, 0, 12 such tht for ech 1,, 1 The fucto 1 1 Ž 1 1 Ý Ž 1 Ž 1 11, 1, 0 Ý Ž 1 1 1, 1 1, 1 11 odd Ý 1, 1 Ž 1 21 eve

16 90 CERF AND MARICONDA stsfes 0 1o, d for ech 1,, eve d,, Ž Ý Ž We re thus led to fd Ž 1 -tuple Ž,, such tht Ž 2 1 Ž d for ech 1,, 1 2 Ý 2 eve Ž, d, 1 1 Ž or equvletly, f we put,,, 2 1,,1 E d 1 Ž Exstece d uqueess of follow from the ductve ssumpto t r 1 I ddto, sce 0 1 o, 1, we hve We c thus defe mp :, 1 such tht for ll -tuple Ž,, 1 Ž 1,, SŽ 2,, Ž 1 Thus S s the grph of By the cotuty of the mesure, the mps,11, re cotuous so tht the set S s closed; moreover, the fucto tes ts vlues the compct set, 1 It follows tht s cotuous eceforth S s coected As cosequece, the mp, eg cotu- ous o S, reches ll the vlues etwee Ž,,, 1 1 d Ž,,, 1 1 I prtculr, there exsts -tuple S such tht Ž Ž Ths -tuple solves the prolem Sce Ž, 1,,1 Ž d Ž 1,, 1, Ž the 11 so tht 1 2 Uqueess of follows from Lemm Cosder ow the cse 0 1 Let Ž m m e sequece of mesurle fuctos such tht 0 m 1 d m coverges to 1 Ž m L, For ech fucto m there exsts uque -tuple such tht Ž E m m d By compctess, we my ssume tht m coverges to some -tuple of Ž Pssg to the lmt, we ot E Ž

17 ORIENTED MEASURES 91 6 TE RANGE OF AN ORIENTED MEASURE Let e oreted mesure o, We deote y R the rge of, e, R Ž A : A mesurle suset of, LEMMA 61 Let e mesurle fucto o,,01 Suppose there exst o-trl terl I of, d poste rel umer such tht 1 o I The the set 1 ½ d:, L I, I Ž 5 s eghourhood of d Proof Let I1 I e o-trvl sutervls of I The me- Ž Ž sure eg oreted, the vectors I 1,, I form ss of The mp Ý : Ž,, Ž I 1 1 s ler somorphsm d s thus ope Let ½ 5 V Ž,, : mx 1 1 Sce Ž V s eghourhood of the org d s coted the set the cocluso follows ½ 5 1 d:lž I,, I Ž Remr The hypothess 1 mples tht elogs to the teror of R Remr The cocluso of Lemm 61 does ot hold for rtrry vector mesure: cosder, for stce, the -dmesol Leesgue mesure Let : R e the fucto defed y Ž E Ž Ž The teror of s the set 1,, :1 COROLLARY 62 The set Ž s coted R

18 92 CERF AND MARICONDA LEMMA 63 The set Ž cocdes wth the set ½ 5 F d :01 Proof The exstece prt of Theorem 51 mples tht F s coted Ž Coversely, let Ž,, elog to 1 ; pplyg Lemm 5 to, d 12, we ot Ž 1 -tuple Ž,, such tht Put 0 Ý Ž Ž 1 0 0,, 0 d 1, 0 Ý Ž 1 0 eve By costructo, we hve 0 1 d Ž so tht elogs to F Ý,1,1 0 odd Ž d E Ž We hve the followg: TEOREM 6 The rge of cocdes wth R; the mp duces homeomorphsm from oto R d mps oto R Proof The surjectvty of follows drectly from Theorem 51 Ijectvty of the restrcto of of s cosequece of the uqueess prt of Theorem 51 together wth Lemm 63 We clm tht Ž s ope Let elog to Lemm 5 llows s usul to fd pecewse costt fucto such tht 0 1 d Ž Ž Clerly there exst postve d sutervl I of, o whch 1 Put I, 1 V : L Ž I, I Lemm 61 mples tht the set ž / ½ 5 I, I, V d : V Ž I, s eghourhood of Sce ech elemet of V stsfes Ž I, 01, the V s etrely coted F Moreover, F cocdes wth Ž d thus Ž s eghourhood of Ž

19 ORIENTED MEASURES 93 Now ech ope covex set s the teror of ts closure; y Lemm 63, the set Ž s covex d ts closure s R, whece Ž R Flly, we show tht the mp s proper Že, tht the verse mge of compct suset s compct Let K e compct suset of F d Ž m 1 e sequece Ž K such tht Ž m coverges to Ž m for some, 01 Sce the sequece Ž m m s coted,y compctess, we my ssume tht m coverges to By the cotuty of, we hve E d Ž Ž The uqueess prt of Theorem 51 mples tht elogs to The mp s proper d thus closed It follows tht ts verse 1 s cotuous The equlty Ž R s cosequece of the cluso Ž R d the fct tht s oe to oe We refer to 7 for the deftos of clsscl otos ssocted wth covex sets We hve the followg: TEOREM 65 The rge R of oreted mesure s strctly coex Proof Let Ž E, Ž F e two dstct pots of R By Theorem 51, we my ssume tht the sets E d F re fte uos of closed tervls Let 0, 1 d put Ž 1 E F Assume, for stce, E F The there exsts o-trvl tervl I such tht x I Ž x Ž x Ž 1 Ž x E Put mž,1 Lemm 61 ppled to, I, shows tht Ž elogs to R COROLLARY 66 Let E e mesurle suset of, The Ž E elogs to the oudry of R f d oly f there exsts set F whch s fte uo of terls such tht F hs less th 1 dscotuty pots d EFs-eglgle Ž such set hs lso zero Leesgue mesure Proof We frst remr tht the fmly of the sets whch re fte uo of tervls d whose chrcterstc fucto hs less th 1 dscotuty pots cocdes wth the fmly E : E : Ž Theorem 6 shows tht F elogs to R wheever F E or F E for some Coversely let E e such tht Ž E elogs to R Theorem 6 yelds the exstece of -tuple elogg to such tht Ž E Ž E ; cosequece of Theorem 65 s tht Ž E s extreme pot of R The Olech Theorem 5, Th 1 mples tht E E s -eglgle F

20 9 CERF AND MARICONDA Our pproch dscloses the recursve structure of the oudry of the rge of oreted mesure For elogg to 0,, let Ž Ž R E :, R E : Ž Notce tht, R 0, R, PROPOSITION 67 The fucto Ž E R Žresp Ž E R s homeomorphsm from oto ts rge whch cocdes wth R Ž resp R Proof Ijectvty follows drectly from Corollry 66 The rest of the proof uses the techques of the proof of Theorem 6 Remr For ech 1,, 1, the set R R1 s prttoed to two coected compoets R, R owever, for, R R R These results yeld the followg: PROPOSITION 68 The oudry of the rge R of oreted -dmesol mesure dmts the decomposto Ž R R R 0, R R Let T e the symmetry wth respect to Ž, 2 Žso tht for ech mesurle suset A of,, TŽ Ž A Ž, A The for ech elogg to 0,,, we he Ž Ž T R R, T R R REFERENCES 1 R Cerf d C Mrcod, O g-g costred solutos of cotrol system, SIAM J Cotrol Optm 33, No 2 Ž 1995, R Cerf d C Mrcod, Oreted mesures wth cotuous destes d the g-g prcple, J Fuct Al 126, No 2 Ž 199, l, O geerlzto of theorem of Lypuov, J Mth Al Appl 10 Ž 1965, P lmos, The rge of vector mesure, Bull Amer Mth Soc 5 Ž 198, C Olech, The Lypuov theorem: ts extesos d pplctos, Methods of Nocovex Alyss, Lecture Notes Mthemtcs, Vol 16, pp 8103, Sprger- Verlg, BerlNew Yor, W Rud, Rel d Complex Alyss, McGrwll, New Yor, F A Vlete, Covex sets, McGrwll, New Yor, 196

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

UNIT I. Definition and existence of Riemann-Stieltjes

UNIT I. Definition and existence of Riemann-Stieltjes 1 UNIT I Defto d exstece of Rem-Steltjes Itroducto: The reder wll recll from elemetry clculus tht to fd the re of the rego uder the grph of postve fucto f defed o [, ], we sudvde the tervl [, ] to fte

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk The Sgm Summto Notto #8 of Gottschlk's Gestlts A Seres Illustrtg Iovtve Forms of the Orgzto & Exposto of Mthemtcs by Wlter Gottschlk Ifte Vsts Press PVD RI 00 GG8- (8) 00 Wlter Gottschlk 500 Agell St #44

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Systems of second order ordinary differential equations

Systems of second order ordinary differential equations Ffth order dgolly mplct Ruge-Kutt Nystrom geerl method solvg secod Order IVPs Fudzh Isml Astrct A dgolly mplct Ruge-Kutt-Nystróm Geerl (SDIRKNG) method of ffth order wth explct frst stge for the tegrto

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potetl d the Grd Prtto Fucto ome Mth Fcts (see ppedx E for detls) If F() s lytc fucto of stte vrles d such tht df d pd the t follows: F F p lso sce F p F we c coclude: p I other words cross dervtves

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

Itō Calculus (An Abridged Overview)

Itō Calculus (An Abridged Overview) Itō Clculus (A Abrdged Overvew) Arturo Ferdez Uversty of Clfor, Berkeley Sttstcs 157: Topcs I Stochstc Processes Semr Aprl 14, 211 1 Itroducto I my prevous set of otes, I troduced the cocept of Stochstc

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE G Tstsshvl DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE (Vol) 008 September DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE GSh Tstsshvl e-ml: gurm@mdvoru 69004 Vldvosto Rdo str 7 sttute for Appled

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS MM-501

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS MM-501 INTEGRATION THEORY AND FUNCTIONAL ANALYSIS M.A./M.Sc. Mathematcs (Fal) MM-50 Drectorate of Dstace Educato Maharsh Dayaad Uversty ROHTAK 4 00 Copyrght 004, Maharsh Dayaad Uversty, ROHTAK All Rghts Reserved.

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002)

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002) Nevlle Robbs Mathematcs Departmet, Sa Fracsco State Uversty, Sa Fracsco, CA 943 (Submtted August -Fal Revso December ) INTRODUCTION The Lucas tragle s a fte tragular array of atural umbers that s a varat

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Metric Spaces: Basic Properties and Examples

Metric Spaces: Basic Properties and Examples 1 Metrc Spces: Bsc Propertes d Exmples 1.1 NTODUCTON Metrc spce s dspesble termedte course of evoluto of the geerl topologcl spces. Metrc spces re geerlstos of Euclde spce wth ts vector spce structure

More information

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that Mth Actvty 6 (Due y ed of clss August ). Let f e ostve, cotuous, decresg fucto for x, d suose tht f. If the seres coverges to s, d we cll the th rtl sum of the seres the the remder doule equlty r 0 s,

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS RELATED TO GENERALIZED POWER AND ALTERNATING SUMS

SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS RELATED TO GENERALIZED POWER AND ALTERNATING SUMS Bullet of Mthemtcl Alyss d Applctos ISSN: 181-191, URL: http://www.mth.org Volume 4 Issue 4 01, Pges 76-90. SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Difference Sets of Null Density Subsets of

Difference Sets of Null Density Subsets of dvces Pue Mthetcs 95-99 http://ddoog/436/p37 Pulshed Ole M (http://wwwscrpog/oul/p) Dffeece Sets of Null Dest Susets of Dwoud hd Dsted M Hosse Deptet of Mthetcs Uvest of Gul Rsht I El: hd@gulc h@googlelco

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS Numercl Alyss Lecture 4 Numercl Itegrto Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 456 6 Octoer 6, 5 Dete Itegrl A dete tegrl s tervl or tegrto. For ed tegrto tervl, te result

More information

Raphaël CERF CNRS, Université Paris Sud Mathématique, Bâtiment Orsay Cedex France.

Raphaël CERF CNRS, Université Paris Sud Mathématique, Bâtiment Orsay Cedex France. ORIENTED MEASURES Rphël CERF CNRS, Université Pris Sud Mthémtique, Bâtiment 425 91405 Orsy Cedex Frnce. Crlo MARICONDA Università di Pdov Diprtimento di Mtemtic pur e pplict vi Belzoni 7, 35131 Pdov, Itly.

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

The Lie Algebra of Smooth Sections of a T-bundle

The Lie Algebra of Smooth Sections of a T-bundle IST Iteratoal Joural of Egeerg Scece, Vol 7, No3-4, 6, Page 8-85 The Le Algera of Smooth Sectos of a T-udle Nadafhah ad H R Salm oghaddam Astract: I ths artcle, we geeralze the cocept of the Le algera

More information

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in SECTION. THE DEFINITE INTEGRAL. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces. 9

More information

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2 SECTION 5. THE DEFINITE INTEGRAL 5. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. 7 Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces.

More information

Chapter 1. Infinite Sequences and Series. 1.1 Sequences. A sequence is a set of numbers written in a definite order

Chapter 1. Infinite Sequences and Series. 1.1 Sequences. A sequence is a set of numbers written in a definite order hpter Ite Sequeces d Seres. Sequeces A sequece s set o umers wrtte dete order,,,... The umer s clled the rst term, s clled the secod term, d geerl s th clled the term. Deto.. The sequece {,,...} s usull

More information

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET Abstract. The Permaet versus Determat problem s the followg: Gve a matrx X of determates over a feld of characterstc dfferet from

More information

MAX-MIN AND MIN-MAX VALUES OF VARIOUS MEASURES OF FUZZY DIVERGENCE

MAX-MIN AND MIN-MAX VALUES OF VARIOUS MEASURES OF FUZZY DIVERGENCE merca Jr of Mathematcs ad Sceces Vol, No,(Jauary 0) Copyrght Md Reader Publcatos wwwjouralshubcom MX-MIN ND MIN-MX VLUES OF VRIOUS MESURES OF FUZZY DIVERGENCE RKTul Departmet of Mathematcs SSM College

More information

Asymptotic behavior of radial solutions for a semilinear elliptic problem on an annulus through Morse index

Asymptotic behavior of radial solutions for a semilinear elliptic problem on an annulus through Morse index J. Dfferetl Equtos 39 007 5 www.elsever.com/locte/jde Asymptotc behvor of rdl solutos for semler ellptc problem o ulus through Morse dex P. Esposto,G.Mc,, Sjb Str b,p.n.srkth c Dprtmeto d Mtemtc, Uverstà

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix. Revew + v, + y = v, + v, + y, + y, Cato! v, + y, + v, + y geeral Let A be a atr Let f,g : Ω R ( ) ( ) R y R Ω R h( ) f ( ) g ( ) ( ) ( ) ( ( )) ( ) dh = f dg + g df A, y y A Ay = = r= c= =, : Ω R he Proof

More information