Asymptotic behavior of radial solutions for a semilinear elliptic problem on an annulus through Morse index

Size: px
Start display at page:

Download "Asymptotic behavior of radial solutions for a semilinear elliptic problem on an annulus through Morse index"

Transcription

1 J. Dfferetl Equtos Asymptotc behvor of rdl solutos for semler ellptc problem o ulus through Morse dex P. Esposto,G.Mc,, Sjb Str b,p.n.srkth c Dprtmeto d Mtemtc, Uverstà degl Stud om Tre, Lrgo S. Leordo Murldo, om, Itly b Deprtmet of Mthemtcs, Id Isttute of Scece, Bglore-560 0, Id c TIF Cetre, PB 34, IISc Cmpus, Bglore-560 0, Id eceved October 006 Avlble ole My 007 Abstrct We study the symptotc behvor of rdl solutos for sgulrly perturbed semler ellptc Drchlet problem o ulus. We show tht Morse dex formtos o such solutos provde complete descrpto of the blow-up behvor. As by-product, we exhbt some suffcet codtos to gurtee tht rdl groud stte solutos blow-up d cocetrte t the er/outer boudry of the ulus. 007 Elsever Ic. All rghts reserved. MSC: 35J0; 35J5; 35J60 Keywords: Blow-up lyss; Morse dex; Mout Pss theorem. Itroducto I ths pper, we study the symptotc behvor s λ + of rdl solutos to the problem: { u + λv xu = u p Ω, u>0 Ω, u = 0 o Ω, Frst d secod uthors re supported by MUST, project Vrtol methods d oler dfferetl equtos. * Correspodg uthor. E-ml ddresses: esposto@mt.urom3.t P. Esposto, mc@mt.urom3.t G. Mc, sjb@mth.sc.eret. S. Str, srkth@mth.tfrbg.res. P.N. Srkth /$ see frot mtter 007 Elsever Ic. All rghts reserved. do:0.06/j.jde

2 P. Esposto et l. / J. Dfferetl Equtos where p>, Ω := {x N : < x < } s ulus d V : Ω s rdl smooth potetl bouded wy from zero: f V>0. Ω The strtg pot of our lyss s the followg, esy to prove, fct: sce H0,rd Ω, the spce of H0 Ω-rdl fuctos, s compctly embedded to Lp+ Ω for y p>, rdl solutos u λ of blow-up L Ω,.e.mx Ω u λ + s λ + smlr blow-up occurs geerl dom Ω s well, f N = d <p<+ or N 3 d <p N+ N. It s the qute terestg, lso vew of exstece, to detfy the lmtg equto, to uderstd the ture of the blow-up set d to descrbe the symptotc profle of u λ : throughout the pper, λ + d the mx Ω u + u correspodg soluto of. Actully, we oly kow of pper by Dcer [4] where some symptotc lyss of s crred over. It s lmted to the cse V d p subcrtcl; by mes of ODE techques, Dcer shows tht, for λ lrge, the oly postve rdl soluto s the rdl groud stte, d t tkes ts uque mxmum o sphere whose rdus goes to. I some ppers [,] by Ambrosett, Mlchod d N the kowledge of the lmtg equto s used to obt exstece. Amog other thgs, for potetls V stsfyg they foud [] solutos u λ blowg up s λ + o spheres of sutble rdus. Frst, they troduce uxlry potetl see lso [3] Mr := r V θ r, θ = p + p 3 here d wht follows we freely wrte x s x d Vxs V x. The, usg costructve methods bsed o oler Lypuov Schmdt reducto, they buld solutos u λ whch blowup t the er boudry f M >0 s well s solutos whch blow-up t spheres whose rdus s strct locl mxmum or mmum of M. More geerl, the Ambrosett, Mlchod d N work mkes cler the crucl role of the crtcl set : M = { [, ]: Ṁ 0, Ṁ 0 }. 4 At lest geerclly, y pot M should be good cddte for beg blow-up rdus,.e. for the exstece of λ,u solutos such tht λ +, mx u r + r δ s +, δ>0. Oe of our m results s tht blow-up rdus hs to belog to M. Actully, the symptotc lyss we develop ths pper reles o Morse dex ssumpto. Gve solutos λ,u wth λ + we wll ssume u hve uformly bouded Morse dex,.e. k N such tht, f W s ler subspce of H0,rd Ω d, for some N, Ω v + λ Vxv pu p v < 0, v W \{0}, the dm W k. As cosequece of Theorem 3., of Corollry 3. d Theorem 4. we hve the followg: 5

3 P. Esposto et l. / J. Dfferetl Equtos Theorem.. Let λ +,u be solutos to stsfyg 5. The, up to subsequece, there re k k d pots,, =,...,k, wth the followg propertes: re the uque pots of mxmum of u, u +, coverge to pots M, ot ecessrly dstct; furthermore, u 0 uformly wy from {,..., k }. We recll tht rdl groud stte soluto lwys stsfes 5: t hs exctly Morse dex oe H0,rd Ω see [5]. Thus, s by-product of Theorem., we obt, geerlzg [4], explct sequece of solutos blowg up o sphere compre wth []: Theorem.. Let u λ be rdl groud stte soluto of.forλ lrge, u λ hs uque pot of mxmum λ d u λ λ +. Furthermore, f λj, the Ṁr > 0 r, ] = whle Ṁr < 0 r [, =, Ṁ<0 < Ṁ Ṁ = 0. Thus, y cse, M. Flly, u 0 uformly wy from. The pper s orgzed s follows. I Secto we troduce blow-up pproch to detfy the lmt profle problem. I Secto 3 we obt the crucl globl estmte 9 whch wll llow us Secto 4 to loclze the blow-up set. I Appedx A, we brefly dscuss the lmtg problem d preset Pohozev-type detty.. Locl profle I ths secto we gve complete detfcto of the lmt profle problem d ts spectrl propertes. Let U be the uque soluto see Appedx A of the problem Ü + p + U = U p, 6 0 <Ur U0 =. Proposto.. Let λ,u be solutos of wth u stsfyg 5. Let, be such tht u +. Let = u p p d U r = u r + for r I, where I =,. Assume tht The, for subsequece, we hve tht + : u = mx { r } u. 7, +, 8 λ V 9 p + d U U Cloc s +, where U s the soluto of 6. Moreover

4 4 P. Esposto et l. / J. Dfferetl Equtos = U > 0, ψ C0 [, + ] : ψ x + λ V pu p ψ x dx < 0 lrge. 0 Ω Proof. Frst, we rewrte polr coordtes: ü N u = u p λ Vru,, r u > 0,, u = u = 0. Sce s pot of locl mxmum, we hve 0 ü = u p λ V u, d hece, deoted ωv := [mx Ω V ][m Ω V ], t results λ V u p = λ V 0, λ Vr ωv. Pssg evetully to subsequece, we c ssume λ V μ, L 0, L s +, for some μ [0, ], L 0,L [0, + ]. Flly, otce tht U stsfes the equto: Ü N U = U p λ r + V r + U, r I, U 0 =, U 0 = 0, U r > 0, r I, U = 0, r I. 3 I the sequel, we wll deote by A the Lebesgue mesure of set A. st Step: For y closed bouded tervl I wth 0 I, there exsts C = C I >0: U C, I I C N. 4 Set J = I I. Sce I s bouded, 7 mples U r U 0 = for I d r J. Hece, by, 3: U r = U r U 0 r 0 Ü tr dt N [ + ωv ] mx U s + r s J mx r J U r + N [ + ωv ] I, d the: mx r J U r N [ + ωv] I for I. I tur, ths mples

5 P. Esposto et l. / J. Dfferetl Equtos U r U s r s 0 Ü s + tr s dt N [ + ωv ] mx U t + r s t J N [ + ωv ] r s r, s J, I,.e. 4 holds wth C = mx{n [ + ωv][ I +]+, U C, I I : < I }. d Step: L 0 = L =+ d U U Cloc s +. Assume tht L 0 < +. The, by 4, U s uformly bouded C, [,], for y >0. Sce L 0 < + mples L =+, we c ssume, up to subsequece d dgol process, tht U U Cloc [ L 0, + d the L 0 > 0 where: Ü + μu = U p L 0, +, 0 Ur U0 = L 0, +, U L 0 = 0 vew of 7, 3. Sce U s eve see Appedx A, UL 0 = 0 d the UL 0 = 0 becuse U 0. Hece U 0, cotrdcto. Thus L 0 =+. Smlrly, L =+. 3rd Step: μ = p+ d 0 holds. As show Appedx A, U postve mples ts eergy s opostve: 0 HU, U:= U μu + p + U p+ U 0 μ U 0 + p + U p+ 0 = p + μ. Hece μ p+.now,μ> p+ mples see Appedx A U s postve, possbly costt, perodc soluto d there s coutble fmly of fuctos φ j C0 wth mutully dsjot supports such tht, for some δ>0, t results φ j + μφ j pup φj dr δ<0. Let φ j, r = φ j r, so tht supp φ j, = + supp φ j re dsjot for dfferet j s d coted { j x + j },forsome j > 0. Moreover, f := lm + log some subsequece, by Steps we get: φj, + λ Vr pu p φ j, Ω = r N φ j, + λ Vr pu p φ j,

6 6 P. Esposto et l. / J. Dfferetl Equtos = Supp φ j r + N [ φ j + N λ V r + pu p ] φ j φ j + μ pup φj δ<0 j. Ths cotrdcts 5 d hece μ = p+. As for 0, just otce tht, by 6 we hve U + U p + pup = p U p+ < 0 see A. Appedx A d hece, by desty, there exst = U d ψ C0 [,] such tht ψ + ψ p + pup < 0. As bove, we see tht ψ r = ψ r stsfes the requremets 0. Ths eds the proof of Proposto.. 3. Globl behvor Oce the lmt profle problem 6 hs bee detfed d the locl behvor roud blowup sequece hs bee descrbed, our ext tsk s to provde globl estmtes: we wll show tht the sequece u decys expoetlly wy from blow-up pots d we wll prove tht the umber of blow-up sequeces cot exceed k, the upper boud for the Morse dex of the u s. We hve the followg globl result: Theorem 3.. Let λ,u be solutos of stsfyg 5. Up to subsequece, there exst,...,k, k k k gve 5, wth = u p 0 such tht λ V s + =,...,k, 5 p + C =,...,k, 6 + j 0 s +, j =,...,k, j, 7 j u = mx u, 8 { r } u r C p k = for some γ,c >0 d + s +. e γ r r,, N, 9

7 P. Esposto et l. / J. Dfferetl Equtos Proof. The proof s dvded to two steps. st Step: There exst k k sequeces,...,k stsfyg 5 8 such tht: [ lm lm sup + + p ] mx u r {d r } = 0, 0 where d r = m{ r : =,...,k} s the dstce fucto from {,...,k }. Frst of ll, let be pot of globl mxmum of u : u = mx r, u r. Sce 8 clerly holds for, Proposto. pples, d 9 provdes exctly 5. If 0 lredy holds for, the we tke k = d the clm s proved. If ot pssg to subsequece δ>0, + : p mx u r δ>0. { r } Now, pplcto of Proposto. gves, evetully for subsequece, p u r + = U r Ur uformly o bouded sets U soluto of 6. By the decy of U see A., there s δ > 0 such tht Ur δ for r δ. Hece, usg, we see tht j gve j j : j j d p j mx u j r δ. { δ r j j j } j Ths, jotly wth gves j p Hece, for y j: mx u j r = p { r j δ j } j mx u j r δ>δ { r j j } j p j mx u j r j. 3 { δ r j j j } j j { r j j } j : uj j = mx u j r δ p j. 4 { r j δ } j By 4 we get j := u j j p j δ p, d sce j j we see tht 6 s fulflled, s well s 7 becuse j j j j. Ths equlty d 3 mply 8: I fct u j j = mx { r [ j j δ ]δ p } j u j r.

8 8 P. Esposto et l. / J. Dfferetl Equtos r j [j δ ]δ p j r j j j [ j δ ]δ p j j j [ j δ ] j = δ j. Up to the subsequece j, thus 6 8 hold true for {, }, d, f {, } lso stsfy 0, we re fshed. Otherwse, we terte the bove rgumet: gve s sequeces,...,s, let us deote d r = m{ r : =,...,s}. If 5 8 re stsfed, but 0 s ot, we hve δ>0, + : p mx u r δ {d r } d, by ssumptos 6 8 d Proposto.: [ ] θ C, : θ, p u r + = p p U r p θ Uθ r 5 uformly o bouded sets. By A., θ Uθ r < δ for r δ. Now thgs go s bove, replcg r wth d r. Flly, the rgumet eds fter t most k terto, becuse Proposto. pples to y sequece, =,...,k, provdg, for lrge, rdl fuctos ψ C 0 Ω such tht 0 holds wth supp ψ { x + },forsome>0. By 7 we get tht ψ,...,ψk hve dsjot compct supports for y lrge d the k k. d Step: Let,...,k be s the frst step. The there re γ,c >0 such tht: u r C p k = e γ r r,, N. By 0, for >0 lrge d, t results recll tht ωv := [mx Ω V ][m Ω V ] p mx u r {d r } p + ωv d hece u p r p+ωv {d r }. O the other hd, by 5 we get p, λ Vr [ ωv ] λ V p + ωv. Hece, the followg holds true: there re >0 d such tht, f, the [ λ Vr u p r ] p + ωv > 0 fd r. 6

9 P. Esposto et l. / J. Dfferetl Equtos Now, cosder the ler opertor: L φ = φ + λ Vr u p r φ, φ C Ω. Notce tht L u = 0. Sce u > 0Ω, L stsfes the mmum prcple y dom Ω see [6]. Let γ>0 d φ r = e γ r. By 6, for lrge t results L φ = φ [ γ + N r γ r r + λ Vr u p r ] > 0 f d r, γ 8p+ωV d, γ. I ddto, by 5 we hve e γ φ r p u r r= ± = p u ± θ p U±θ > 0. The Φ := e γ p k = φ stsfes L Φ u >0 { d r > } d Φ u > 0 o { d r = } { } r =, otce tht, by 6 7 {d r > } re dsjot tervls for, d the, by mmum prcple u Φ {d r > },f s lrge d. Tht s Sce u r e γ p k = e γ r f d r d. 7 u r mx u = p e γ p Ω k = e γ r f d r d, 7 holds for y r, d. Thus, for some C e γ 9 holds true for y d the proof s ow complete. As by-product, the umber of pots of locl mxmum s cotrolled by 5: Corollry 3.. Let λ, u be solutos of stsfyg 5. Up to subsequece, u hs, for lrge, exctly k pots of locl mxmum,...,k, k k, where,...,k re gve by Theorem 3.. Proof. By 6 u p λ Vru < 0 r {d r }, for lrge d fxed d. Hece, by ll the pots of locl mxmum of u sty, for lrge, the rego d r. We re led to show tht,...,k re, for lrge, the oly pots of locl mxmum of u d r.

10 0 P. Esposto et l. / J. Dfferetl Equtos By cotrdcto, let s be pots of locl mxmum of u, wth 0 < s,for some k. Sce 0 s the oly crtcl pot of the lmt fucto U,bytheCloc covergece of U to U we get s := s 0s +. By 3 d 5 we get: Ü s = U p s λ V s U s p + > 0. The, s s strct locl mxmum d hece there s locl mmum t some t strctly betwee s d. However, s for s, t should be t := t 0s + d Ü t <0 for lrge, cotrdcto. 4. Locto of the blow-up set I cocetrto pheome, the role of the modfed potetl Mr gve 3 hs bee poted out ppers of Ambrosett, Mlchod d N [,], whe delg wth the sme equto ether N or bll/ulus N wth homogeeous Drchlet boudry codto. To show by symptotc pproch the role of Mr, we wll combe the results the prevous secto wth Pohozev-type detty see Appedx A. Let us strt wth some symptotc estmtes for u, solutos of. By Corollry 3. u hs, up to subsequece, exctly k pots of locl mxmum,...,k, wth, sy, [, ], =,...,k.letj ={j =,...,k: j }. We hve the followg: Lemm 4.. Let gr be some smooth fucto o [, ]. Let q>.fx {,...,k} d deote I δ := [ δ, + δ], where δ>0 s so smll tht I δ {,..., k }={ }. The I δ gru q = g j J j p q p U q + o 8 where o 0 s +. I prtculr, there holds: u p+ = k = p+3 p U p+ + o. 9 Proof. Let d r := m{ r : =,...,k}. Gve>0, 8, 6 d 7 mply tht, for, {d r } re mutully dsjot tervls d { d r }, d I δ { d r } { = r j }. j J By 9 we kow tht u q C q p k j= e j r qγ. Thus

11 I δ gru q = P. Esposto et l. / J. Dfferetl Equtos I δ {d r } gru q + I δ {d r } gru = q q gru + O p j J { r j } = j q p+ p j J k q g r j + j j q U e j= Iδ {d r } qγ r j + O q p { r j } k j= j { r j } e qγ r j. Up to subsequece, by 6 we c ssume tht /j θ j [ C, ] for y j =,...,k. Sce U j U Cloc for y j =,...,k, we fd, log some subsequece q p+ lm p + Iδ u q = g q p+ p θj j J { r θ j } U q + O k j= { r θ j } e qγ r θ j. Sedg to fty, we get, log the sme subsequece, q p+ lm p + Iδ u q = g q p+ p θj j J U q. Sce we foud the sme vlue log y coverget subsequece, d recllg the defto of θ j, the proof of 8 s complete. Flly, sce by 9 u 0s + uformly fr wy from {,..., k }, 8, wth q = p + d g, mples 9. The symptotc expsos Lemm 4., combed wth the Pohozev detty A.3, leds to the detfcto of, =,...,k: Theorem 4.. For y =,...,k M, where M s gve 4. Proof. Gve =,...,k, frst cosder the cse,.letiδ be s Lemm 4.. By 5, 9 λ u 0 uformly wy from the s d ellptc regulrty estmtes mply the sme for u. Thus we see, pluggg = δ, b = + δ A.3, tht: N 3 +δ u p+ + λ p + δ +δ δ r V N V u + N 3 +δ δ N r u 0

12 P. Esposto et l. / J. Dfferetl Equtos s +. By 5 d 8 we get s + here o 0s + +δ δ u p+ = j J j p+3 p U p+ + o, +δ δ u r = λ O j J j p+3 p, λ +δ δ r V N V u = V p + V N U + o. Hece, lso mkg use of the relto U p+ = p+3 4 U see A., we get j J j p+3 p 0 = N 3 p + [ 4 = N p + 3 p + [ = N + p + 3 p = p p + 3p + U p+ N p + U + V p + V p + p p + + V ] V p p + 3p + U V θ N Ṁ. U U V ] p + V U Cosder ow the cse =. Let Iδ be s bove. As before, λ u + u 0s + t + δ. Tkg =, b = + δ A.3, we see tht: N 3 +δ u p+ + λ p + +δ N 3 +δ u p+ + λ p + + N 3 +δ r V N V +δ N r u u 0 u + N 3 r V N V u +δ N r u

13 P. Esposto et l. / J. Dfferetl Equtos s +. Argug s bove, we get tht 0 p N + p + 3 p + 3p + p V V U. Hece, Ṁ 0, d = M holds. Cse = c be delt smlrly, gettg ow = M. Hece, the theorem s completely estblshed. Appedx A A.. Phse ple lyss of the lmtg equto Let U be C -soluto of the equto Ü + μu = U p U, d Ur, Ur the correspodg prmetrzed orbt the phse ple. Let Hu,v:= v + Gu, Gu := μ u + p + u p+ be the eergy fucto; t s coserved qutty: h HUr, Ur s the eergy of the orbt U, U. Sce level sets {Hu,v= h} re compct, U s globlly defed. For smplcty, we wll cosder the cse μ>0 cse μ = 0 c be delt smlr d smpler wy. Drect specto o the level sets of H gves: {Hu,v= h>0} s closed orbt eclosg the ustble equlbrum 0, 0; {u, v: u>0, Hu,v= 0} s homoclc orbt, symptotc to 0, 0; {u, v: u>0, Hu,v<0} s closed orbt eclosg the stble equlbrum μ p, 0. As cosequece, U postve mples: HU, U 0. From ow o we wll ssume U0 =, U0 = 0 otce tht U s eve, becuse t stsfes the sme Cuchy problem s Ũr:= U r. I ths cse, HUr, Ur p+ μ 0ff μ p+,sou postve mples μ p+. Cse μ> p+ : U hs fte Morse dex. From bove: U s postve perodc soluto. I cse U μ p = U0 =, the lerzed equto t U s v + p v = 0. Let, b be such tht the frst egevlue of the Drchlet problem s smller th p. Let ϕ be the correspodg postve egefucto. After settg ϕ 0 outsde, b, we see tht ϕ p ϕ < 0. Let U μ p.letu r = m Ur. By the bove dscusso, 0 <U r < μp d hece G U r < 0. If T s perod of U, I k := [ r + kt, r + k + T ], ϕ k := [U U r]χ Ik, the ϕ k + μϕ k pup ϕk = [ U p μu pu p μ U U r ] ϕ k dr. I k I k

14 4 P. Esposto et l. / J. Dfferetl Equtos But U p r μur pu p r μur U r= G Ur G Ur[Ur U r] G U r becuse G s covex o 0, +. Thus we hve ϕ k + μϕ k pup ϕk G U r T 0 [ U U r ] < 0. By desty, we c replce the ϕ k wth C0 -fuctos wth mutully dsjot supports. Cse μ = p+ : expoetl decy. Zero eergy mples U, U s homoclc to the zero equlbrum. Also, U s eve d U r > 0 > Ur r >0. We clm tht C >0: Ur Ce p+ r, r p + U = + p + U p+. A. Ths follows from the coservto of eergy: U p+ U U p+. Sce U <0o0, + d Ur 0sr +, we get tht: Ur Ur = l Ur = U p + p r p + r s r +. Hece, there exst C>0 d >0 lrge so tht Ur Ce p+ for r. I smlr wy, we c get expoetl decy t. The coservto of eergy gves expoetl decy for U s well, d by tegrto o yelds: U = p+ U U p+. Multplyg 6 by U d tegrtg o, we obt tht U = U + U p+. A. p + Tkg the dfferece of these lst two reltos, A. follows. A.. A Pohozev-type detty Lemm A.. Let u be rdl soluto of. Let <b. The u = b u b + r up+ p + λ rvu + N 3 uu + N 3 N u b r + N 3 b u p+ + λ p + b r V N V u + N 3 b N r u. A.3

15 P. Esposto et l. / J. Dfferetl Equtos Proof. Multply, wrtte polr coordtes, by r u d tegrte o [,b]: b u p λv u r u = A tegrto by prts gves b Hece, we obt: b u p λv u r u = r u p+ ü N u r u = r b r u N 3 b u. p + λ Vu b p + b u p+ + λ u = b u p+ u b + r p + λ b Vu + N 3 b u p + b u p+ + λ Multplyg by u d tegrtg o [,b], we get: b d so u p+ λv u = b b b ü N u u = uu r b V + r Vu. V + r Vu. A.4 b b + u = uu + N u b b N + r r u + u N u b b r b N r u u p+ λv u. A.5 Isertg A.5 A.4, we flly get A.3. efereces [] A. Ambrosett, A. Mlchod, W.-M. N, Sgulrly perturbed ellptc equtos wth symmetry: Exstece of solutos cocetrtg o spheres. I, Comm. Mth. Phys [] A. Ambrosett, A. Mlchod, W.-M. N, Sgulrly perturbed ellptc equtos wth symmetry: Exstece of solutos cocetrtg o spheres. II, Id Uv. Mth. J [3] M. Bdle, T. D Aprle, Cocetrto roud sphere for sgulrly perturbed Schrödger equto, Nol. Al. Ser. A [4] E.N. Dcer, Some sgulrly perturbed problems o ul d couterexmple to problem of Gds, N d Nreberg, Bull. Lodo Mth. Soc [5] N. Ghoussoub, Dulty d Perturbto Methods Crtcl Pot Theory, Cmbrdge Trcts Mth., vol. 07, Cmbrdge Uv. Press, Cmbrdge, 993. [6] D. Glbrg, N.S. Trudger, Ellptc Prtl Dfferetl Equtos of Secod Order, secod ed., Sprger-Verlg, 983.

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE G Tstsshvl DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE (Vol) 008 September DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE GSh Tstsshvl e-ml: gurm@mdvoru 69004 Vldvosto Rdo str 7 sttute for Appled

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Bubbling Phenomena of Certain Palais-Smale Sequences of m-harmonic Type Systems. Libin Mou and Changyou Wang

Bubbling Phenomena of Certain Palais-Smale Sequences of m-harmonic Type Systems. Libin Mou and Changyou Wang Bubblg Pheoe of Cert Pls-Sle Sequeces of -Hroc Type Systes Lb Mou d Chgyou Wg Abstrct I ths pper, we study the bubblg pheoe of wek soluto sequeces of clss of degeerte qusler ellptc systes of -hroc type

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

Acoustooptic Cell Array (AOCA) System for DWDM Application in Optical Communication

Acoustooptic Cell Array (AOCA) System for DWDM Application in Optical Communication 596 Acoustooptc Cell Arry (AOCA) System for DWDM Applcto Optcl Commucto ml S. Rwt*, Mocef. Tyh, Sumth R. Ktkur d Vdy Nll Deprtmet of Electrcl Egeerg Uversty of Nevd, Reo, NV 89557, U.S.A. Tel: -775-78-57;

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers Regresso By Jugl Klt Bsed o Chpter 7 of Chpr d Cle, Numercl Methods for Egeers Regresso Descrbes techques to ft curves (curve fttg) to dscrete dt to obt termedte estmtes. There re two geerl pproches two

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

Metric Spaces: Basic Properties and Examples

Metric Spaces: Basic Properties and Examples 1 Metrc Spces: Bsc Propertes d Exmples 1.1 NTODUCTON Metrc spce s dspesble termedte course of evoluto of the geerl topologcl spces. Metrc spces re geerlstos of Euclde spce wth ts vector spce structure

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

Oriented Measures* Raphael Cerf. and. Carlo Mariconda. Submitted by Dorothy Maharam Stone. Received June 15, 1994

Oriented Measures* Raphael Cerf. and. Carlo Mariconda. Submitted by Dorothy Maharam Stone. Received June 15, 1994 Ž JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 197, 9259 1996 ARTICLE NO 0062 Oreted Mesures* Rphel Cerf CNRS, Uerste Prs Sud, Mthemtque, Btmet ˆ 25, 9105 Orsy Cedex, Frce d Crlo Mrcod Dprtmeto d Mtemtc

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics Itroducto to mthemtcl ttstcs Fl oluto. A grou of bbes ll of whom weghed romtely the sme t brth re rdomly dvded to two grous. The bbes smle were fed formul A; those smle were fed formul B. The weght gs

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Systems of second order ordinary differential equations

Systems of second order ordinary differential equations Ffth order dgolly mplct Ruge-Kutt Nystrom geerl method solvg secod Order IVPs Fudzh Isml Astrct A dgolly mplct Ruge-Kutt-Nystróm Geerl (SDIRKNG) method of ffth order wth explct frst stge for the tegrto

More information

Abstrct Pell equto s mportt reserch object elemetry umber theory of defte equto ts form s smple, but t s rch ture My umber theory problems ce trsforme

Abstrct Pell equto s mportt reserch object elemetry umber theory of defte equto ts form s smple, but t s rch ture My umber theory problems ce trsforme The solvblty of egtve Pell equto Jq Wg, Lde C Metor: Xgxue J Bejg Ntol Dy School No66 Yuqu Rod Hd Dst Bejg Ch PC December 8, 013 1 / 4 Pge - 38 Abstrct Pell equto s mportt reserch object elemetry umber

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

arxiv:math/ v1 [math.gm] 8 Dec 2005

arxiv:math/ v1 [math.gm] 8 Dec 2005 arxv:math/05272v [math.gm] 8 Dec 2005 A GENERALIZATION OF AN INEQUALITY FROM IMO 2005 NIKOLAI NIKOLOV The preset paper was spred by the thrd problem from the IMO 2005. A specal award was gve to Yure Boreko

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Itō Calculus (An Abridged Overview)

Itō Calculus (An Abridged Overview) Itō Clculus (A Abrdged Overvew) Arturo Ferdez Uversty of Clfor, Berkeley Sttstcs 157: Topcs I Stochstc Processes Semr Aprl 14, 211 1 Itroducto I my prevous set of otes, I troduced the cocept of Stochstc

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

UNIT I. Definition and existence of Riemann-Stieltjes

UNIT I. Definition and existence of Riemann-Stieltjes 1 UNIT I Defto d exstece of Rem-Steltjes Itroducto: The reder wll recll from elemetry clculus tht to fd the re of the rego uder the grph of postve fucto f defed o [, ], we sudvde the tervl [, ] to fte

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

MAX-MIN AND MIN-MAX VALUES OF VARIOUS MEASURES OF FUZZY DIVERGENCE

MAX-MIN AND MIN-MAX VALUES OF VARIOUS MEASURES OF FUZZY DIVERGENCE merca Jr of Mathematcs ad Sceces Vol, No,(Jauary 0) Copyrght Md Reader Publcatos wwwjouralshubcom MX-MIN ND MIN-MX VLUES OF VRIOUS MESURES OF FUZZY DIVERGENCE RKTul Departmet of Mathematcs SSM College

More information

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that Mth Actvty 6 (Due y ed of clss August ). Let f e ostve, cotuous, decresg fucto for x, d suose tht f. If the seres coverges to s, d we cll the th rtl sum of the seres the the remder doule equlty r 0 s,

More information

On the convergence of derivatives of Bernstein approximation

On the convergence of derivatives of Bernstein approximation O the covergece of dervatves of Berste approxmato Mchael S. Floater Abstract: By dfferetatg a remader formula of Stacu, we derve both a error boud ad a asymptotc formula for the dervatves of Berste approxmato.

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Aal. Appl. 365 200) 358 362 Cotets lsts avalable at SceceDrect Joural of Mathematcal Aalyss ad Applcatos www.elsever.com/locate/maa Asymptotc behavor of termedate pots the dfferetal mea value

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

A unified matrix representation for degree reduction of Bézier curves

A unified matrix representation for degree reduction of Bézier curves Computer Aded Geometrc Desg 21 2004 151 164 wwwelsevercom/locate/cagd A ufed matrx represetato for degree reducto of Bézer curves Hask Suwoo a,,1, Namyog Lee b a Departmet of Mathematcs, Kokuk Uversty,

More information

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq.

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq. Rederg quto Ler equto Sptl homogeeous oth ry trcg d rdosty c be cosdered specl cse of ths geerl eq. Relty ctul photogrph Rdosty Mus Rdosty Rederg quls the dfferece or error mge http://www.grphcs.corell.edu/ole/box/compre.html

More information

Extreme Value Theory: An Introduction

Extreme Value Theory: An Introduction (correcto d Extreme Value Theory: A Itroducto by Laures de Haa ad Aa Ferrera Wth ths webpage the authors ted to form the readers of errors or mstakes foud the book after publcato. We also gve extesos for

More information

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in SECTION. THE DEFINITE INTEGRAL. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces. 9

More information

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2 SECTION 5. THE DEFINITE INTEGRAL 5. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. 7 Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces.

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1)

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1) Joural of Pure ad Appled Algebra 216 (2012) 1268 1272 Cotets lsts avalable at ScVerse SceceDrect Joural of Pure ad Appled Algebra joural homepage: www.elsever.com/locate/jpaa v 1 -perodc 2-expoets of SU(2

More information

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists.

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists. ANALYSIS HW 3 CLAY SHONKWILER () Fid ll smooth fuctios f : R R with the property f(x + y) = f(x) + f(y) for ll rel x, y. Demostrtio: Let f be such fuctio. Sice f is smooth, f exists. The The f f(x + h)

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potetl d the Grd Prtto Fucto ome Mth Fcts (see ppedx E for detls) If F() s lytc fucto of stte vrles d such tht df d pd the t follows: F F p lso sce F p F we c coclude: p I other words cross dervtves

More information