Abstrct Pell equto s mportt reserch object elemetry umber theory of defte equto ts form s smple, but t s rch ture My umber theory problems ce trsforme

Size: px
Start display at page:

Download "Abstrct Pell equto s mportt reserch object elemetry umber theory of defte equto ts form s smple, but t s rch ture My umber theory problems ce trsforme"

Transcription

1 The solvblty of egtve Pell equto Jq Wg, Lde C Metor: Xgxue J Bejg Ntol Dy School No66 Yuqu Rod Hd Dst Bejg Ch PC December 8, / 4 Pge - 38

2 Abstrct Pell equto s mportt reserch object elemetry umber theory of defte equto ts form s smple, but t s rch ture My umber theory problems ce trsformed to the problem of Pell equto s solvblty However, the prevous methods determg the Pell equto s solvblty re sophstcted for clculto, whch leds to the lck of effcecy Ths pper gves ew d more wdely used methods to determe the solvblty of Pell equto, cludg severl ecessry codtos, suffcet codtos d ecessry d suffcet codtos Keywords Pell equto, Solvblty, Cotued frcto expso, Perodc / 4 Pge - 39

3 1 Itroducto 11 Bckgroud d Motvto I studyg the theory of cotued frcto expsos, we otced the expso of D -type of rrtol umbers were perodc, wth ts prty of perod closely relted to the solvblty of egtve Pell equto Its perod s odd f d oly f egtve Pell equto y 1s solvble It s well kow tht the postve Pell equto, (11) x Dy 1, hs ftely my solutos ( xy, ) wheres the egtve Pell equto, (1) y 1, does ot lwys hve soluto Heceforth, D wll deote postve squre-free teger, d soluto refer to postve tegrl soluto The Pell equto s oe of the oldest Dophte equto tht hs terested mthemtcs ll over the world for more th 1000 yers The most essetl problem of these two Pell equtos s determg ther solvblty d how to fd out the soluto to the Pell equtos s quckly d cocsely s possble Archmedes fmous cttle problem ws ctully problem bout the solvblty of the postve Pell equto The soluto to postve Pell equto s sd to be gve by the Id mthemtc Brghmgupt 6th cetury The, the 17th cetury, Lgrge dvced hs predecessor s theorem d gve the soluto to postve Pell equto by cotued frcto expso theory Hs result ws tht the postve Pell equto s solvble for y gve D, d, the solvblty of the egtve Pell equto s determed by the prty of the perod of D s cotued frcto expso The equto s solvble f d oly f the perod s odd umber The cotued frcto expso s wy to costruct solutos Not oly for huge D my t becomes extremely tme cosumg, eve for some smll Ds, the soluto to the Pell equto s huge For exmple, for D=61, we hve ( xy, ) (9718,3805) for egtve Pell equto The solutos of whch would hve huge tme expese Accordg to [10] d [11], ts rug tme s pprochgo D Besdes Lgrge, s [7] shows, my other mthemtcs hve mde mor cotrbutos to the problem reltg the solvblty of the Pell equto The most populr method tht hs mde gret progress tody s reltg the solvblty of egtve Pell equto to the solvblty of other Dophte equtos I 1986, Keeth Hrdy d KeethSWllms proved tht d oly f D s the sum of d 3 / 4 y 1s solvble f b, where b,,d s odd umber such tht the Dophte equto bv VW bw 1of V,W s solvble The method bove s put to use o [15], whch mes tht for y gve D we c determe whether y 1s solvble or ot Of course, the clculto must be wth the lmtto of computtol power AGrytczuk, F Luc d M W ójtowcz [1] proved tht the egtve Pell equto y 1s solvble f d oly f there exst prmtve Pythgore trple ( A, B, C ) (e A, B, C re postve tegers stsfyg tegers bsuch, tht D b d A bb 1 A B C d gcd ( AB, ) 1 ) d postve Pge - 40

4 Of gretest vlue here s the reducto of the coeffcet of the egtve Pell equto, whch my reduce the tme complexty determg the solvblty Aother pproch to ths problem volves plcg codtos o the modulr resdues of D whch gurtee tht (1) s solvble or usolvble Ths pproch ws tted by Legedre 1785 Drchlet[13] observed tht f D pq wth pq1(mod4) d p q p = 1(where mes tht p s the power 4 resdue modulo q ), the (1) s q p 4 q 4 4 solvble For D p1 p p3 pn, To[8] obted qudrtc resdue crter mog the p, whch whe they held would gurtee (1) s solvble Explct modulr resdue codtos for prtculr clsses of D re stll beg foud, eg Kpl[6], Pumplü[14] However, for some huge D s, the prevous results re lck of effcecy Ths motvtes us to promote the prevous results d gve qucker lgorthm to determe the solvblty of (1) All the methods dscussed ths essy re ot oly cpble of determg the solvblty of egtve Pell equto y 1, but c lso be used to solve my problems relevt to the geerl Pell equto For stce, they ce used to determe the prty of the perod of the cotued frcto expso of the rrtol umber D etc 1 The cotet I secto, we gve the prelmres, cludg severl mportt Lemms Pell equto d the propertes of qudrtc resdue We lso gve some ottos tht re used the proof I secto 31, we gve ecessry codto for y 1to be solvble I secto 3, we gve some suffcet codtos for the solvblty of y 1 We gve lgorthm to determe the solvblty of y 1for some prtculr D s The, we defe fucto, whch ce used to preset suffcet codto to the solvblty of y 1bse o the lgorthm We lso gve seres of corollres I secto 33, we frst rrve t ecessry d suffcet codto for determg the solvblty of y 1d we gve severl D s by the codto for whch y 1s solvble It forms theorem 6 By theorem 6, we gve out severl exmples to show tht there re my types of solvble egtve Pell equto wth qudrtc form D Secodly, theorem 7 gves suffcet d ecessry codto for determg the solvblty of y 1whe D Y I secto 4, we look bck o our reserch, do some umercl expermets d gve severl types of solvble egtve Pell equtos I the ed, we gve severl comprsos wth the prevous results I secto 5, we gve the cocluso I secto 6, we gve our pls for future work Prelmry Lemm1Assume tht p s odd prme umber, -1 s the qudrtc resdue of p f d oly f p 1 (mod4) Tke odd prme p, we defe the fucto wth the teger vrble d 4 / 4 Pge - 41

5 1, whe d s the qudrtc resdue modulo p, d 1, whe d s't the qudrtc resdue modulo p, p 0, whe d p d We cll the Legedre symbol of d modulo p p Therefore, Lemm1 ce rewrtte s 1 p 1(mod 4) 1 p LemmAssume tht D s postve squre-free teger, x Dy 1s solvble Its geerl soluto ( x, y) ce gve by ts lest postve soluto ( x0, y0) through (1) x y D x y D The followg recurso formul ce prove by (1) 1 ( 0 0 ), x x x x x1 x Lemm3Assume tht D s postve squre-free teger, f y 1s solvble, the ts geerl soluto ( x, y) ce gve by ts lest postve soluto ( x0, y0) through y y 1 ( 0 0), m Lemm4Assume tht p s odd prme umber, If 1, r m (mod p) hs oly two p solutos r 1, r (0 r1 r p), wth r 1 r p Lemm5Assume tht m,, z ( m, ) 1, m z, the there exst uv,, such tht m u,, v, where( uv, ) 1 The proof of the bove lemms s vlble [] 3 M Work 31 Necessry codtos Theorem 1If y 1s solvble, the D s ot dvsble by 4 d D does t hve prme fctor cogruet to 3modulo 4 Proof If prme p such tht p 3 (mod4) d p D, tkg y y 1 (mod p) Ths mes tht 1 s the qudrtc resdue of p, cotrdctg lemm 1 If 4 D, tkg y 1modulo 4 gves 1modulo p gves 5 / 4 Pge - 4

6 y 1 (mod 4) However, y 0,1 (mod 4), ledg to cotrdcto To coclude, t s ecessry codto for D f y 1s solvble We gve the followg defto of three sets for smplcty Defto 1 Y : p p 1 (mod4), p s prme umber}, we cll t set of excellet prme umbers s Y : x x p, p Ys,,, ( 1), we cll t set of excellet odd 1 1 umbers U : x x p, p Ys,,, we cll t set of excellet eve umbers 1 By defto 1, theorem 1 ce rewrtte s If y 1s solvble, the DY or D U Remrk The ecessry codto o D gve [1] s equvlet to theorem 1, by Fermt s theorem o sum of two squres 3 Suffcet codtos Theorem If DY or D U, the the geerl soluto( x, y ) to x Dy 1stsfes x, y Proof Becuse ( x, y ) s soluto to x Dy 1, we obt (31) x Dy 1 If D Y, tkg(31) modulo 4 gves x Dy x y 1 (mod4) Sce for y teger m, m 0,1(mod 4), we obt x, y If DU tkg (31) modulo 4 gves x Dy x y 1 (mod 4) Sce for y teger m, m 0,1(mod 4), we obt x, y Theorem 3 y 1 s solvble f () D ; () D p, p Y, ; s p () D p q, p, q Ys,, 1 ; q (v) D p, p 5 (mod8),, where p s prme Proof ()For the Pell equto x y 1, t s esy to verfy tht ( xy, ) (1,1) s soluto to 6 / 4 Pge - 43

7 the equto () Applyg Theorem, we obt the lest postve soluto ( x0, y0) to x Dy 1stsfyg x, y (3) Assumg y0, k k, we rewrte x Dy0 1 x 1 x 1 s 0 0 x0 1 x0 1 x0 1 x0 1 Let m,, from x 0, we obt, N x 1 x 1 Becuse 0 = 0 +1, we obt x0 1 x0 1 (, ) =1 Nmely, ( m, ) 1 The (3)s equvlet to m p k Sce( m, ) 1, p s prme umber, by lemm 5, we c get two possble cses for m, Dk m u, m p u, (1) () p v, v, I both cses, ( uv, ) 1 I cse (1), p u Icse (), p v x0 1 x0 1 I cse (1), s m 1, we obt u p v 1 Nmely, ( uv, ) s soluto to x p y 1 Recllg x 0 Dy0 1, we obt x 0 Dy0 1 1, therefore x 0 1Becuse x 0, we obt x 0 3 Therefore, x0 1 x0 x0 u m x0 x0 Hece, ( uv, ) s soluto to x p y 1d u x0 However, ( x0, y0)s the lest postve soluto to x p y 1, ledg to cotrdcto m p u, Therefore, cse () holds, whch mes tht, the v, p u v m 1 It shows we fd soluto ( uv, ) to p x y u v 1, here, x0 1, p x0 1, 7 / 4 Pge - 44

8 ()Applyg Theorem, we obt the lest postve soluto ( x0, y0) to x Dy 1stsfyg x, y (33) Assume tht y0, k k, we rewrte 0 0 x0 Dy0 1 x 1 x / 4 s x0 1 x0 1 x0 1 x0 1 Let m,, from x 0, we obt, x 1 x 1 Becuse 0 = 0 +1, we obt x0 1 x0 1 (, ) =1 Nmely, ( m, ) 1 The (33)s equvlet to m p q k Becuse ( m, ) 1, pqre, prme umbers, by lemm 5,we c get 4 possble cses for m, b m p q u, m p u, m q u, m u, (1) () (3) b (4) v, q v, p v, p q v, ( uv, ) 1 holds ll cses p v, q v holds cse (1); p v, q u holds cse (); p u, q v holds cse (3); p u, q u holds cse(4) (34) Sce, we obt 1 1 p u ( p u) b I cse (), from p u q v m 1, we obt 1 b p u pq v p p p Tkg (34) modulo q gves 1 However, 1, ledg to cotrdcto q q b Icse (3), q u p v m 1, we obt (35) Sce, we obt b 1 pq u p v p 1 1 p v ( p v) p Tkg (35) modulo q gves 1 q However, p 1 p 1 ( 1) 1, q q q ledg to cotrdcto I cse (4), u p q v 1 Nmely, we obt soluto ( uv, ) to x Dk p q y 1, Pge - 45

9 x0 1 d u m x0, whch mes tht ( uv, ) s smller soluto th ( x0, y 0) However, ( x0, y0) s the lest postve soluto to x Dy 1, cotrdcto m p q u, I cocluso, cse(1) holds, whch mes tht Therefore, v, p q u v 1 So we hve foud soluto ( uv, ) to p q x y 1 m x 1 x 1 p q p q 0 0 ( u, v) (, ) (, ) (v)applyg Theorem, we obt the lest postve soluto ( x0, y0) to x Dy 1stsfyg x, y (36) Assume tht y0, k k, we rewrte 0 0 x0 Dy0 1 x 1 x / 4 s x0 1 x0 1 x0 1 x0 1 Let m,, from x 0, we obt, x 1 x 1 Becuse 0 = 0 +1, we obt x0 1 x0 1 (, ) =1 Nmely ( m, ) 1 The (36) s equvlet to m p k Becuse( m), =1, by lemm 5, we obt four possble cses m p u, m p u, m u, m u, (1) () (3) (4) v, v, p v, p v, I ll cses, ( uv, ) 1 I cse(1) p v, v I cse(), p v, u I cse(3), p u, v I cse (4), p u, u The sme procedure the proof of theorem 13 ce dpted to elmte cse (),(3),(4)To coclude, cse (1) holds, mely m p u, v, Therefore, p u v 1 So we hve soluto ( uv, ) to p x y 1, d Dk m x 1 x ( uv, ) (, ) (, ) p 4p We hope to geerlze Theorem 3 to cse whch D hs more prme fctors By cosderg the smlrtes the tretmet of dfferet cses theorem 3, we look for fucto to determe Pge - 46

10 the solvblty of y 1, where D Y For exmple, let D , we frst brek D to A, B, such tht ( A, B) 1, AB D, A D, B D There re the followg three cses totlly Cse (1): A 5, B13 17, We kow tht Implyg for cse we hve m 5 u, v, 5u v 1 Multplyg the bove equto by 5, we obt 5 u v 5 Tkg the prevous equto modulo 13 gves, However, ledg to cotrdcto Cse (): We kow tht Cse (3): We kow tht A17, B ; A13, B ; , 13 I cse () d (3), we c dpt the sme procedure cse (1) Therefore, x y 1 s solvble, we check D o [15], t shows x y 1s solvble g : \ 0,1, Defto Theorem 4 For y x \ 0,1 x 1, x, 10 / 4 x p, 1 p f there exsts such tht, gx ( ) 1 f x s squre,, g ( x ) x s squre Pge - 47

11 Proof If x s squre, the Therefore, g( x) x s squre g( x) x 1 x x m k bj j, 1 j1 If x s ot squre, ssumg tht x p q where, bj, m, k,, b j The m m k m k j b j ( ) j j 1 1 j1 1 j1 g x x p ( p q ) p q Sce for y, s eve teger, g( x) x s squre For D Y, we c try to determe the solvblty of y Defto 3 f : N\ 0,1 0,1, f( D) s the output of WCJ lgorthm 1by the followg lgorthm WCJ lgorthm : Iput D Y ; f( D) 0 ; : for ech ( A, B) 1, AB D, A D, B D { 3: possble = true; 4: for ech prme fctor p of B { 5: g( A) f 1 { p 6: possble = flse; 7: brek; 8: } 9: } 10: If possble == true 11: Retur; 1: } 13: retur f( D) 1; Expressg the result by the fucto, we obt theorem 5 Theorem 5 If DY d f( D ) =1, the y 1s solvble Proof For D Y, ssume tht ts prme fctorzto s D p Therefore, there re kds of wys to brek D to AB,, such tht( A, B) 1, AB D, A D, B D For every ( AB, ), exme defte equto Ax By 1 Multplyg the bove equto by ga ( ), we obt ( g( A) A) x By g( A) By Theorem 4, we obt g( A) A s squre Therefore, for y prme fctor p of D, we obt 1 11 / 4 Pge - 48

12 ( g( A) A) x g( A) (mod p) Nmely, g( A) =1 p g( A) For every prme fctor p of B, we clculte the vlue of If oe of the p to 1, the Ax By 1s usolvble g( A) p s equls Sce f( D ) = 1 mes tht ll the kds of wys to brek D to AB,, ( AB, ) 1, A D, B D, Ax By 1s usolvble If ( A, B) (1, D), dpt the sme procedure the proof of theorem 3, we wll fd cotrdcto Therefore, the fl cse holds, t derves tht y Remrk1 Ths method my ot elmte some cses for gve D Y Eg D , we get three possble cses 1s solvble Cse (1) A13, B 5 17, Cse () A17, B 5 13 ; ; Cse (3) A 5, B13 17 ; I cse (1), oe of the vlue of the Legedre symbols s 1 Therefore, f( D) 0 However, we c check D o [15] d ctully solvble x y 1 s Remrk The prty of the power of ech prme fctor p of D s the oly mportt fctor the lgorthm Therefore, we c reduce the power of eormous D to 1or Ths mes tht we c costruct huge possble D from smll D wth f( D) 1 By the m de of the lgorthm, we c gve the followg corollres: Corollry 1 Gve m k j j, where, bj, 1 j1 D p q m, k,, b j, d f( D) 1, the for y c, dj, m, k, c, d j, m k c d j j, we 1 j1 E p q hve f( E) 1 Nmely, Ex y 1 s solvble p Corollry Assume tht p, q Ys, 1 A { x x q (mod4 p), x s prme} q p,, 1 p A, pp p p x y 1 1 s solvble 1 / 4 Pge - 49

13 Corollry 3Assume tht p1, p,, p re prmes whch cogruet to 13 modulo 0, s odd umber, the 5 p1p px y 1 s solvble Corollry 4Assume tht p1, p,, p re prmes whch cogruet to 17 modulo 0, s odd umber, the 5 p1p px y 1 s solvble Corollry 5Assume tht p1, p,, p re prmes whch cogruet to 5 modulo 5, s odd umber, the 5 p1p px y 1 s solvble Corollry 6Assume tht p1, p,, p re prmes whch cogruet to 1 modulo 5, s odd umber, the 5 p1p px y 1 s solvble Corollry 7Assume tht p1, p,, p re prmes whch cogruet to 33 modulo 5, s odd umber, the 5 p1p px y 1 s solvble Corollry 8Assume tht p1, p,, p re prmes whch cogruet to 37 modulo 5, s odd umber, the 5 p1p px y 1 s solvble Corollry 9Assume tht p1, p,, p re prmes whch cogruet to 41 modulo 5, s odd umber, the 5 p1p px y 1 s solvble Corollry 10Assume tht p1, p,, p re prmes whch cogruet to 45 modulo5, s odd umber, the 5 p1p px y 1 s solvble Corollry 11Assume tht p, q, r1, r,, rm, s1, s,, sk re ll excellet prme p umbers, 1 q p q, 1, 1 1,,, m, j1,,, k, d b re both r s j odd umbers, the p q rr r s s s x y s solvble 1 m 1 k 1 Corollry 1 Assume tht p, p, p, p, p, p, p, p, p,, 1 1,1 1, 1, m,1,, m 1 p, p, p re ll excellet prme umbers,,1,, m 13 / 4 Pge - 50

14 p p p p 1,, j {1,,3,, }, j, = 1 p, 1,,,, j p,1 p, p, m 1,,, re odd umbers, the s solvble m m m p p1, p, p, x y Suffcet d ecessry codtos We observe tht for gve soluto ( xy, ) to egtve Pell equto, we c fd D for whch y 1 s solvble Therefore, by gog through ll solutos ( xy, ) to y 1, we c obt every D tht for whch y 1s solvble Assume tht x s teger d for y prme fctor p of x, p Y The solutos to the s cogruece equto r 1 (mod x ) re r r r r x,( 0 r r r x ) x,1, x,,, x, x (mod ) x,1 x, x, x By lemm 4, we c obt x M x, Deote r x, 1 by M x,, 1,,, x, the x Theorem6 y 1s solvble f d oly f ( x, such tht for y prme fctor p of x, we hve p 1 (mod 4), d D = x k r x, k M x, s sutble for {1,,, x } d turl umber k ) or (there s k, such tht k N d Dk 1) Proof Becuse the y 1s solvble, ssume tht ( x0, y0) s soluto to y It ce rewrtte s D 0 x0 0 y0 1 1 Sce D, x 0 0 x cogruet to 1 modulo 4 If x0 1, ssume tht the solutos to the cogruece equto re y 1, y 1, by lemm1, ll prme fctors of r r, r,, r (mod x ),0 r r r x x0,1 x0, x0, x 0 x,1 x, x, 0 x By lemm 4 d the Chese remder theorem, we c obt x The there exst 1,,, x, d k, such tht 14 / 4 r kx y Deote x0, 0 0 r x 0, x0 1 Pge - 51

15 by M x 0, The y ( r kx ) 1 D x k r k M 0 1 x0, 0 0 x0, x0, x0 x0 If x0 1, the D y 0 1 There s k, such tht Dk 1 x x0, Coversely, whe D x0 k r x 0, k M x 0,, deote y kx r to y 1 The Hece, Whe D k y = ( kx r ) 0 0 x0, ( x k r k M ) x ( kx r ) 0 x0, x0, 0 0 x0, r 1 M x r x r x0, x0, 0 x0, 0 x0, x0 1 y 1s solvble x 1, 1, let d substtute t to y 1, y k, y D k k 1 k 1 Therefore, y 1s solvble 15 / 4 0 x0, d substtute t, By theorem 6, we c costruct fte sequeces of umbers such tht ll terms, represets D for whch For exmple, y 1 solvble x 1 r, r M1, M 5 7,18, ,99 9, ,51 5, ,800,701 Tble 1 the qudrtc form D by theorem 6 G(5 ;7; k) 5k 14k, G(5 ;18; k) 5k 36k 13, G(13 ;70; k) 169k 140k 9, G(13 ;99; k) 169k 198k 58, G(17 ;38; k) 89k 76k 5, G(17 ;51; k) 361k 50k 18, G(9 ;41; k) 841k 8k, G(9 ;800; k) 841k 1600k 701 I the bove formule, whe k N, we c fd ftely my D such tht y 1 s solvble Pge - 5

16 Nmely, (5k 14k ) x y 1, (5k 36k 13) x y 1, (169 k 140k 9) x y 1, (169 k 198k 58) x y 1, (89k 76k 5) x y 1, (361k 50k 18) x y 1, (841k 8k ) x y 1 re solvble for y turl umber k, (841k 1600k 701) x y 1, Whe x s postve odd teger cotg prme fctor p whch belogs to or x 1, by gog through the dom of k, we obt the uo of fte sequeces For every term the sequeces, the Pell equto y Y s 1 s solvble d ll solvble D re coted these sequeces Tht s why ths theorem s ecessry d suffcet codto for determg the solvblty of form y 1 It lso gves wy to costruct D qudrtc Theorem7 Assume tht D Y, the lest postve soluto to x Dy 1 s ( x0, y 0), the y 1s solvble pys d p D, p x0 1 Proof (proof by cotrdcto) If p Ys d p D, such tht p x0 1 Sce y 1s solvble, suppose ( x, y) s soluto to t, ote tht (( y ) 1) 4 y ( y ) 4 y D x y y 4 4 ( y ) 1 The(( y ) 1, x y ) s soluto to x Dy 1 By lemm 3, for the solutos of y 1, we hve x x 1x0 x x1 x0 1 obt Becuse Deote pys d p D, such tht p x0 1, ccordg to our recurso formul, we c 1 x 1 (mod p), y by x m, the xm 1 (mod p), whch mes tht p x 1 m 16 / 4 Pge - 53

17 xm 1 Becuse y 0 (mod p ), we obt y 0 (mod p) However, y 1 1 (mod p), ledg to cotrdcto Coversely, If pys d p D, p x0 1The, by theorem, x0, y0, so x0 1 x0 1 y0 D We obt x0 1 p x0 1 x0 1 Becuse (, ) 1, by lemm 5, there re two tegers uv, such tht( uv, ) 1, d x0 1 Du, x0 1 v, Therefore, Du It mes tht ( uv, ) s soluto to By theorem 1, f x 1 x 1 v y 1 y 1 s solvble, the DY or D U whe D U, the solvblty of y 1 s stll ukow Theorem7 gves suffcet d ecessry codto for y 1 to be solvble whe D Y However, ths theorem s ot sutble for determg the solvblty, f solvble, ssume tht the lest postve soluto to postve soluto to x Dy 1s ( x0, y 0) They stsfy the equltes x x, y y y 1s y 1 s ( x 0, y 0) d the lest (We wll gve further llustrto the proof of theorem 8) If we use ths theorem for determg the solvblty, we hve to fd the lest postve soluto to x Dy 1 However, s the lest postve soluto to x Dy 1s greter th the lest postve soluto to y 1, tme complexty of solvg x Dy 1s greter th solvg y 1drectly Despte ths, the theorem ctully serves s rdge betwee the two problems here, 17 / 4 Pge - 54

18 mely the solvblty of y 1d the determto of soluto of x Dy 1 It s lso prctcl method f the lest postve soluto ( x0, y0) to x Dy 1s obvous sce oe merely eeds to verfy whether p x0 1to determe whether or ot the egtve Pell equto s solvble Theorem 8Assume tht D Y, d y 1 s solvble, by lemm 3 ts geerl soluto ( x, y ) ce gve by ts lest postve soluto ( x 0, y 0) through y y 1 ( 0 0), Let N D be the set of these solutos ( x, y ) Smlrly, by lemm, let P D be the set of geerl evely dexed solutos ( x, y) to x Dy 1 We c obt oe-to-oe mppg g : PD NDNmely, x y x 1, D y 1, Proof Assume tht D Y, the lest postve soluto to (314) x 0 Dy / 4 x Dy 1 s ( x0, y 0), the Assume tht p s prme fctor of D Tkg (314) modulo p, we obt (315) x0 1 (mod p) (315) s equvlet to x0 1 (mod p) If x0 1 (mod p), pply the recurrece relto of the soluto to lemm, we obt (316) x 1 (mod p), If y 1 s solvble, ssume tht ( x, y) s soluto Note tht (( y ) 1) 4 y ( y ) 4 y D x y y 4 4 ( y ) 1 The(( y ) 1, x y ) s soluto to x Dy 1 1 Deote y by x m, the by (316), xm 1 (mod p) Therefore, ( y ) 1 1(mod p) Hece, y 0 (mod p) x Dy 1by Pge - 55

19 Tkg y 1 modulo p, we obt 1 y 0 x 0 0 (mod p) Cotrdcto Therefore, for y prme fctor p of D, we hve, x0 1 (mod p) By lemm, we obt x 1 (mod p), x 1 (mod p), 1 Dy 1, we hve x, by theorem, we hve x, y Therefore x 1 x 1 y D Sce x 1(mod p), x, ( p,) 1, we obt x 1 p holds for y prme fctor p of D Therefore, by lemm 5, Implyg u, v Nmely, ( u, v) s soluto to, such tht x 1 Du, x 1 v, Du y 1 v 1 Here, x 1 u, D y 1 v, We obt mppg g from P D to N D, mely, x 1 x 1 g : ( x, y) (, ) D Note tht, j, by lemm, we obt x x, y y j j Therefore x x j x x j, D D Ths shows tht g s jecto, ssume tht ( x, y) s soluto to y 1Note tht 19 / 4 Pge - 56

20 Therefore s soluto to x Dy 1 Sce (y 1) D( xy) ( y ) 4 y D x y y 4 4 ( y ) 1 (( y ) 1, x y ) ( y ) 11 y 1 u 1 y x, y, D D D holds for every ( x, y ) belogg to N D, there s verse mge belogg to P D Therefore, g s surjecto To coclude, g s oe-to-oe mppg 4 Relted work d expermets [3][4][5] proved tht the followg egtve Pell equtos re solvble: (41) x 5(5 ) y 1( 1(mod 4)), where 5 s prme umber; (4) x 5py 1, where p s Fermt prme d p 3,5 ; (43) x p( p ) y 1, where 1(mod 4) s prme, p 3(mod8) s prme Actully, the solvblty of these three egtve Pell equtos re strghtforwrd from theorem 3, becuse the gve D the three ppers follows from theorem 3 The proofs re show below For 5(5 ) 1( 1(mod 4)), where 5 s prme umber, x y sce 1(mod 4), we obt5 1(mod4) Sce 5 s prme umber, 5 belogs toy s Becuse 5 belogs toy s, substtute p to 5, q to 5, we obt p q Applyg theorem 3(), the bove egtve Pell equto (41) s solvble For x 5py 1, where p s Fermt prme d p 3,5 Deote 0 / 4 1 by p Becuse p 3,5, Therefore, p 1 1(mod 4), mely, p belogs toy s Also, Hece, 1 1 p ( 1) 1 (mod 5) p 1 1 q 5 5 Applyg theorem3(), the bove egtve Pell equto(4)s solvble Pge - 57

21 For x p( p ) y 1, where 1(mod 4) s prme, p 3(mod8) s prme Deote p by q, becuse 1(mod 4), p 3(mod8), we obt q p ( 3)( 1) 1(mod 4) Implyg q belogs toy s Therefore, q p p p p p Sce p 3(mod8), we obt q 1 p p Applyg theorem 3(v), the bove egtve Pell equto (43) s solvble [9] dscussed the solvblty of x (4 ) y 1 Actully, the theorems the pper re strghtforwrd from Theorem 1, Theorem 3 etc For x (4 ) y 1 pper [9], the theorem 1 of the pper showed tht whe s odd umber d 1s prme, the bove egtve Pell equto s usolvble Here, D(1) d 1 3(mod4) Applyg theorem1, the bove egtve Pell equto s usolvble I [1], the theorem reveled tht D s solvble f d oly f t s the sum of two squres However, pplyg Fermt s theorem o sums of two squres, we obt tht the bove codto s equvlet to, DY or D U Whe usg the cotued frcto expso to clculte the prty of the perod, we cot reduce the power of the prme fctors of D to smller oe, becuse t my chge the prty of ts cotued frcto expso, whch wll ffect the solvblty However, our method c reduce the power of ech prme fctor to 1 or Ths mes tht the result ce geerlzed The prme umbers whch cogruet to 1 modulo4 d smller th 100 re lsted below 5,13,17,9,37,41,53,61,73,89,97 The vlues of Legedre symbols for ll possble prg of these umbers re lsted below p p q q Tble the vlues of Legedre symbols Here re ll the D s by () of theorem 3 whch hve two dstct prme fctors d both prme fctor cogruet to 1 modulo 4(d smller th 100) There s t lest oe odd postve teger d b 1 / 4 Pge - 58

22 Tble 3 ll the Ds by () of theorem 3 whch hve two dstct prme fctors d both prme fctor cogruet to 1 modulo 4(d smller th 100) Here re ll the Ds by (v) of theorem3 whch hve two dstct prme fctors where oe of the fctor s d other prme umber cogruet to 1 modulo 4 (d smller th 50) Here, s postve teger Tble 4 ll the Ds by (v) of theorem3 whch hve two dstct prme fctors where oe of the fctor s d other prme umber cogruet to 1 modulo 4 (d smller th 50) Here re some Ds by theorem 4 wth more th two dstct prme fctors where the prme fctors of these Ds cogruet to 1 modulo 4 Here, s odd postve teger c c c c c c c c c c c c c d c d c d c d e c d e c d e c d e f c d e f c d e f g c d e f g c d e f c d e f g f Tble 5 Ds by theorem 4 wth more th two dstct prme fctors where the prme fctors of these Ds cogruet to 1 modulo 4 All the umbers the bove 4 tbles re D s for whch y 1s solvble / 4 Pge - 59

23 5 Cocluso I secto 31, by observg the resdue of D, we gve ecessry codto for y 1to be solvble Therefore, secto 3 we m to fd the prme fctorzto of D Probg deeper, we cotued our reserch d proved theorem 3 d theorem 5 I the procedure, we used lemm 5 to sort out the fte cses, d the we used the propertes of qudrtc resdue to elmte ll the cses except two cses Moreover, we used the mmlty of the solutos ( x0, y0) to the postve Pell equto to elmte oe of two cses remg Flly, we costruct the soluto to the egtve Pell equto the lst remg cse I secto 33, we frstly show tht for gve soluto ( xy, ) to egtve Pell equto, we c fd D for whch y 1s solvble Therefore, by gog through ll solutos ( xy, ) to y 1, we c obt every D tht for whch y 1s solvble Frst, wth the property of qudrtc resdue, we obt x s odd umber wthout the prme fctors cogruet to 3 modulo 4; secodly, whe x 1, we obt Dk 1; thrdly, we c use the qudrtc cogruece equto to fd the lest postve teger y for every gve x such tht ( xy, ) stsfy y 1; flly, we determe ll possble D for whch y solvble Whe D Y, we hve the lest postve soluto ( x0, y0) to x Dy 1, mely (51) x 0 Dy0 1 Assumg p s prme fctor of D, tkg (51) modulo p, gves 1s x0 1 (mod p) Nmely, p x0 1 or p x0 1 By lemm, we obt resdue property for every soluto to x Dy 1 Ths leds to cotrdcto whe p x0 1 Therefore, we obt Theorem 7 I theorem 8, we buld oe-to-oe mppg from subset of the set of solutos of postve Pell equto to the set of solutos of egtve Pell equto 6 Future work Whe D U, the solvblty of y 1s ot completely work out However, we ve got results Such s, theorem3 dcte tht, whe D U, f D p, py,, the D p, py, s solvble s O the bss of these results, we hope to fd cocse theorem to determe the solvblty of y 1, whch s suffcet d ecessry codto for y 1to be solvble Becuse the solvblty of y 1ce used to determe the prty of the cotued frcto expso cycle of D type, we pl to fd out method to determe the prty of the perod of the cotued frcto expso for the postve teger D s tmes squre root Also, we pl to wrte progrm of WCJ lgorthm to determe the solvblty of egtve Pell equto utomtclly s 3 / 4 Pge - 60

24 Ackowledgemet We thks toour tutor MrJ for the fully support d help He s bee ccomped wth us durg ths strugglg tme ll log Thks to Professor Yg Jg d Mr Irvgfor ther dvce to us completgthepper Thks to Mr Qu for hs dvce Thks to our fred Lu Zyu for hs code Most mporttly, thks to C Lde s prets d Wg Jq s prets for ther support They could std for ther chldre ll dy log Referece [1] A Grytczuk, F Luc, M W ójtowcz, The egtve Pell equto d Pythgore trples, Proc Jp Acd, Volume 76 (000) [] CP, CP, elemetry umber theory(bejg, Pekg Uversty Publc)003 ( Chese) [3] X Du, bout Pell equto x 5(5 ) y 1( 1 (mod4)) Jourl of hu uversty for toltes(nturl Scece edto)ju [4] X Du, bout Pell equto x p( p ) y 1( p 3 (mod8)),jourl of southwest uversty for toltes(nturl Scece edto), [5] X Du, Determto o solutos uversty, / 4 x (4 ) y 1,Jourl of Sheyg [6] D Pumplu, Über de Klssezhl ud de Grudehet des reelqudrtsche Zhlkorper, J Ree Agew Mth 30 (1968), [7] Edwrd Everett Whtford, the Pell equto, 191, 71 [8] F To, Sur quelques theorems de Drchlet, J Ree Agew Mth 105 (1889), [9] X Gu, bout Pell equto x 5py 1,Jourl of southwest uversty for toltes(nturl Scece edto) [10] H W Lestr Jr Solvg the Pell Equto, NOTICES OF THE AMS VOLUME 49, NUMBER [11] JC Lgrs, O the computtol complexty of determg the solvblty or usolvblty of the equto y 1, Trs Amer Mth Soc 60 (1980), [1] K Hrdy, KSWllms, o the solvblty of the Dophte equto dv evw dw 1, PACIFIC JOURNAL OF MATHEMATICS Vol 14, No 1, [13] P G L Drchlet, Ege eue S ätze über ubestmmte Glechuge Gesmmelte Werke, Chelse, New York, [14] P Kpl, Sur le -groupe des clsses d'déux des corps qudrtques, J Ree Agew Mth 83/84 (1976), [15] Testg the solublty of the egtve Pell equto, Pge - 61

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE Prt 1. Let be odd rime d let Z such tht gcd(, 1. Show tht if is qudrtic residue mod, the is qudrtic residue mod for y ositive iteger.

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics Itroducto to mthemtcl ttstcs Fl oluto. A grou of bbes ll of whom weghed romtely the sme t brth re rdomly dvded to two grous. The bbes smle were fed formul A; those smle were fed formul B. The weght gs

More information

About k-perfect numbers

About k-perfect numbers DOI: 0.47/auom-04-0005 A. Şt. Uv. Ovdus Costaţa Vol.,04, 45 50 About k-perfect umbers Mhály Becze Abstract ABSTRACT. I ths paper we preset some results about k-perfect umbers, ad geeralze two equaltes

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

4 Linear Homogeneous Recurrence Relation 4-1 Fibonacci Rabbits. 组合数学 Combinatorics

4 Linear Homogeneous Recurrence Relation 4-1 Fibonacci Rabbits. 组合数学 Combinatorics 4 Ler Homogeeous Recurrece Relto 4- bocc Rbbts 组合数学 ombtorcs The delt of the th moth d - th moth s gve brth by the rbbts - moth. o = - + - Moth Moth Moth Moth 4 I the frst moth there s pr of ewly-bor rbbts;

More information

Metric Spaces: Basic Properties and Examples

Metric Spaces: Basic Properties and Examples 1 Metrc Spces: Bsc Propertes d Exmples 1.1 NTODUCTON Metrc spce s dspesble termedte course of evoluto of the geerl topologcl spces. Metrc spces re geerlstos of Euclde spce wth ts vector spce structure

More information

Systems of second order ordinary differential equations

Systems of second order ordinary differential equations Ffth order dgolly mplct Ruge-Kutt Nystrom geerl method solvg secod Order IVPs Fudzh Isml Astrct A dgolly mplct Ruge-Kutt-Nystróm Geerl (SDIRKNG) method of ffth order wth explct frst stge for the tegrto

More information

(II.G) PRIME POWER MODULI AND POWER RESIDUES

(II.G) PRIME POWER MODULI AND POWER RESIDUES II.G PRIME POWER MODULI AND POWER RESIDUES I II.C, we used the Chiese Remider Theorem to reduce cogrueces modulo m r i i to cogrueces modulo r i i. For exmles d roblems, we stuck with r i 1 becuse we hd

More information

PATTERNS IN CONTINUED FRACTION EXPANSIONS

PATTERNS IN CONTINUED FRACTION EXPANSIONS PATTERNS IN CONTINUED FRACTION EXPANSIONS A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY SAMUEL WAYNE JUDNICK IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

Numbers (Part I) -- Solutions

Numbers (Part I) -- Solutions Ley College -- For AMATYC SML Mth Competitio Cochig Sessios v.., [/7/00] sme s /6/009 versio, with presettio improvemets Numbers Prt I) -- Solutios. The equtio b c 008 hs solutio i which, b, c re distict

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

MATH 371 Homework assignment 1 August 29, 2013

MATH 371 Homework assignment 1 August 29, 2013 MATH 371 Homework assgmet 1 August 29, 2013 1. Prove that f a subset S Z has a smallest elemet the t s uque ( other words, f x s a smallest elemet of S ad y s also a smallest elemet of S the x y). We kow

More information

Differential Method of Thin Layer for Retaining Wall Active Earth Pressure and Its Distribution under Seismic Condition Li-Min XU, Yong SUN

Differential Method of Thin Layer for Retaining Wall Active Earth Pressure and Its Distribution under Seismic Condition Li-Min XU, Yong SUN Itertol Coferece o Mechcs d Cvl Egeerg (ICMCE 014) Dfferetl Method of Th Lyer for Retg Wll Actve Erth Pressure d Its Dstrbuto uder Sesmc Codto L-M XU, Yog SUN Key Lbortory of Krst Evromet d Geologcl Hzrd

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Solutions Manual for Polymer Science and Technology Third Edition

Solutions Manual for Polymer Science and Technology Third Edition Solutos ul for Polymer Scece d Techology Thrd Edto Joel R. Fred Uer Sddle Rver, NJ Bosto Idols S Frcsco New York Toroto otrel Lodo uch Prs drd Cetow Sydey Tokyo Sgore exco Cty Ths text s ssocted wth Fred/Polymer

More information

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE G Tstsshvl DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE (Vol) 008 September DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE GSh Tstsshvl e-ml: gurm@mdvoru 69004 Vldvosto Rdo str 7 sttute for Appled

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix Assgmet 7/MATH 47/Wter, 00 Due: Frday, March 9 Powers o a square matrx Gve a square matrx A, ts powers A or large, or eve arbtrary, teger expoets ca be calculated by dagoalzg A -- that s possble (!) Namely,

More information

The Primitive Idempotents in

The Primitive Idempotents in Iteratoal Joural of Algebra, Vol, 00, o 5, 3 - The Prmtve Idempotets FC - I Kulvr gh Departmet of Mathematcs, H College r Jwa Nagar (rsa)-5075, Ida kulvrsheora@yahoocom K Arora Departmet of Mathematcs,

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

A Damped Guass-Newton Method for the Generalized Linear Complementarity Problem

A Damped Guass-Newton Method for the Generalized Linear Complementarity Problem Itertol Jourl of Comuter d Iformto Techology (ISSN: 79 764 olume Issue 4 July 3 A Dmed Guss-Newto Method for the Geerlzed Ler Comlemetrty Problem Huju L Houchu Zhou Dertmet of Mthemtcs Ly Uversty L Shdog

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq.

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq. Rederg quto Ler equto Sptl homogeeous oth ry trcg d rdosty c be cosdered specl cse of ths geerl eq. Relty ctul photogrph Rdosty Mus Rdosty Rederg quls the dfferece or error mge http://www.grphcs.corell.edu/ole/box/compre.html

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test Fal verso The teral structure of atural umbers oe method for the defto of large prme umbers ad a factorzato test Emmaul Maousos APM Isttute for the Advacemet of Physcs ad Mathematcs 3 Poulou str. 53 Athes

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

Z = = = = X np n. n n. npq. npq pq

Z = = = = X np n. n n. npq. npq pq Stt 4, secto 4 Goodess of Ft Ctegory Probbltes Specfed otes by Tm Plchowsk Recll bck to Lectures 6c, 84 (83 the 8 th edto d 94 whe we delt wth populto proportos Vocbulry from 6c: The pot estmte for populto

More information

SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS RELATED TO GENERALIZED POWER AND ALTERNATING SUMS

SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS RELATED TO GENERALIZED POWER AND ALTERNATING SUMS Bullet of Mthemtcl Alyss d Applctos ISSN: 181-191, URL: http://www.mth.org Volume 4 Issue 4 01, Pges 76-90. SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002)

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002) Nevlle Robbs Mathematcs Departmet, Sa Fracsco State Uversty, Sa Fracsco, CA 943 (Submtted August -Fal Revso December ) INTRODUCTION The Lucas tragle s a fte tragular array of atural umbers that s a varat

More information