Save this PDF as:

Size: px
Start display at page:

## Transcription

1 CHAPTER OBJECTIVES qanalyze the stress developed in thin-walled pressure vessels qreview the stress analysis developed in previous chapters regarding axial load, torsion, bending and shear qdiscuss the solution of problems where several of these internal loads occur simultaneously on a member s x-section 1 CHAPTER OUTLINE 1. Thin-Walled Pressure Vessels 2. State of Stress Caused by Combined Loadings 2 1

2 8.1 THIN-WALLED PRESSURE VESSELS qcylindrical or spherical vessels are commonly used in industry to serve as boilers or tanks qwhen under pressure, the material which they are made of, is subjected to a loading from all directions qhowever, we can simplify the analysis provided it has a thin wall q Thin wall refers to a vessel having an innerradius-thickness ratio of 10 or more (r/t 10) qwhen r/t = 10, results of a thin-wall analysis will predict a stress approximately 4% less than actual maximum stress in the vessel THIN-WALLED PRESSURE VESSELS qassumption taken before analysis is that the thickness of the pressure vessel is uniform or constant throughout qthe pressure in the vessel is understood to be the gauge pressure, since it measures the pressure above atmospheric pressure, which is assumed to exist both inside and outside the vessel s wall 4 2

3 8.1 THIN-WALLED PRESSURE VESSELS Cylindrical vessels qa gauge pressure p is developed within the vessel by a contained gas or fluid, and assumed to have negligible weight qdue to uniformity of loading, an element of the vessel is subjected to normal stresses σ 1 in the circumferential or hoop direction and σ 2 in the longitudinal or axial direction THIN-WALLED PRESSURE VESSELS Cylindrical vessels qwe use the method of sections and apply the equations of force equilibrium to get the magnitudes of the stress components qfor equilibrium in the x direction, we require σ 1 = pr t Equation

4 8.1 THIN-WALLED PRESSURE VESSELS Cylindrical vessels qas shown, σ 2 acts uniformly throughout the wall, and p acts on the section of gas or fluid. Thus for equilibrium in the y direction, we require σ 2 = pr 2t Equation THIN-WALLED PRESSURE VESSELS Cylindrical vessels qfor Eqns 8-1 and 8-2, σ 1, σ 2 = normal stress in the hoop and longitudinal directions, respectively. Each is assumed to be constant throughout the wall of the cylinder, and each subjects the material to tension p = internal gauge pressure developed by the contained gas or fluid r = inner radius of the cylinder t = thickness of the wall (r/t 10) 8 4

5 8.1 THIN-WALLED PRESSURE VESSELS Cylindrical vessels qcomparing Eqns 8-1 and 8-2, note that the hoop or circumferential stress is twice as large as the longitudinal or axial stress qwhen engineers fabricate cylindrical pressure vessels from rolled-form plates, the longitudinal joints must be designed to carry twice as much stress as the circumferential joints THIN-WALLED PRESSURE VESSELS Spherical vessels qthe analysis for a spherical pressure vessel can be done in a similar manner qlike the cylinder, equilibrium in the y direction requires σ 2 = pr 2t Equation

6 8.1 THIN-WALLED PRESSURE VESSELS Spherical vessels qnote that Eqn 8-3 is similar to Eqn 8-2. Thus, this stress is the same regardless of the orientation of the hemispheric free-body diagram An element of material taken from either a cylindrical or spherical pressure vessel is subjected to biaxial stress; normal stress existing in two directions THIN-WALLED PRESSURE VESSELS Spherical vessels qthe material is also subjected to radial stress, σ 3. It has a value equal to pressure p at the interior wall and decreases to zero at exterior surface of the vessel However, we ignore the radial stress component for thin-walled vessels, since the limiting assumption of r/t = 10, results in σ 3 and σ 2 being 5 and 10 times higher than maximum radial stress (σ 3 ) max = p 12 6

7 EXAMPLE 8.1 Cylindrical pressure vessel has an inner diameter of 1.2 m and thickness of 12 mm. Determine the maximum internal pressure it can sustain so that neither its circumferential nor its longitudinal stress component exceeds 140 MPa. Under the same conditions, what is the maximum internal pressure that a similar-size spherical vessel 13 EXAMPLE 8.1 (SOLN) Cylindrical pressure vessel Maximum stress occurs in the circumferential direction. From Eqn 8-1, we have pr σ 1 = ; t p(600 mm) 140 N/mm 2 = 12 mm p = 2.8 N/mm 2 Note that when pressure is reached, from Eqn 8-2, stress in the longitudinal direction will be σ 2 = 0.5(140 MPa) = 70 MPa. 14 7

8 EXAMPLE 8.1 (SOLN) Cylindrical pressure vessel Furthermore, maximum stress in the radial direction occurs on the material at the inner wall of the vessel and is (σ 3 ) max = p = 2.8 MPa. This value is 50 times smaller than the circumferential stress (140 MPa), and as stated earlier, its effects will be neglected. 15 EXAMPLE 8.1 (SOLN) Spherical pressure vessel Here, the maximum stress occurs in any two perpendicular directions on an element of the vessel. From Eqn 8-3, we have pr σ 2 = ; 2t p(600 mm) 140 N/mm 2 = 2(12 mm) p = 5.6 N/mm 2 Although it is more difficult to fabricate, the spherical pressure vessel will carry twice as much internal pressure as a cylindrical vessel. 16 8

10 8.2 STATE OF STRESS CAUSED BY COMBINED LOADINGS q This is necessary to ensure that the stress produced by one load is not related to the stress produced by any other load STATE OF STRESS CAUSED BY COMBINED LOADINGS Procedure for analysis Internal loading q Section the member perpendicular to its axis at the pt where the stress is to be determined q Obtain the resultant internal normal and shear force components and the bending and torsional moment components q Force components should act through the centroid of the x-section, and moment components should be computed about centroidal axes, which represent the principal axes of inertia for x-section 20 10

11 8.2 STATE OF STRESS CAUSED BY COMBINED LOADINGS Procedure for analysis Average normal stress q Compute the stress component associated with each internal loading. q For each case, represent the effect either as a distribution of stress acting over the entire x- sectional area, or show the stress on an element of the material located at a specified pt on the x- section STATE OF STRESS CAUSED BY COMBINED LOADINGS Procedure for analysis Normal force q Internal normal force is developed by a uniform normal-stress distribution by σ = P/A Shear force q Internal shear force in member subjected to bending is developed from shear-stress distribution determined from the shear formula, τ = VQ/It. Special care must be exercised as highlighted in section

12 8.2 STATE OF STRESS CAUSED BY COMBINED LOADINGS Procedure for analysis Bending moment q For straight members, the internal bending moment is developed by a normal-stress distribution that varies linearly from zero at the neutral axis to a maximum at outer boundary of the member. q Stress distribution obtained from flexure formula, τ = My/I. q For curved member, stress distribution is nonlinear and determined from σ = My/[Ae(R y)] STATE OF STRESS CAUSED BY COMBINED LOADINGS Procedure for analysis Torsional moment q For circular shafts and tubes, internal torsional moment is developed by a shear-stress distribution that varies linearly from the central axis of shaft to a maximum at shaft s outer boundary q Shear-stress distribution is determined from the torsional formula,τ = Tρ/J. q If member is a closed thin-walled tube, use τ = T/2A m t 24 12

13 8.2 STATE OF STRESS CAUSED BY COMBINED LOADINGS Procedure for analysis Thin-walled pressure vessels q If vessel is a thin-walled cylinder, internal pressure p will cause a biaxial state of stress in the material such that the hoop or circumferential stress component is σ 1 = pr/t and longitudinal σ 2 = pr/2t. q If vessel is a thin-walled sphere, then biaxial state of stress is represented by two equivalent components, each having a magnitude of σ 2 = pr/2t STATE OF STRESS CAUSED BY COMBINED LOADINGS Procedure for analysis Superposition q Once normal and shear stress components for each loading have been calculated, use the principle of superposition and determine the resultant normal and shear stress components q Represent the results on an element of material located at the pt, or show the results as a distribution of stress acting over the member s x-sectional area 26 13

14 EXAMPLE 8.2 A force of 15,000 N is applied to the edge of the member shown. Neglect the weight of the member and determine the state of stress at pts B and C. 27 EXAMPLE 8.2 (SOLN) Internal loadings Member is sectioned through B and C. For equilibrium at section, there must be an axial force of 15,000 N acting through the centroid and a bending moment of 750,000 N mm about the centroidal or principal axis

15 EXAMPLE 8.2 (SOLN) Stress components 1. Normal force Uniform normal-stress distribution due to normal force is shown. σ = P/A = = 3.75 MPa 2. Bending moment Normal stress distribution due to bending moment is shown. σ max = Mc/I = = MPa 29 EXAMPLE 8.2 (SOLN) Superposition If above normal-stress distributions are added algabraically, resultant stress distribution is shown. Although not needed here, the location of the line of zero stress can be determined by proportional triangles, i.e., 7.5 MPa x = 15 MPa (100 mm x) x= 33.3 mm 30 15

16 EXAMPLE 8.2 (SOLN) Superposition Elements of material at B and C are subjected only to normal or uniaxial stress as shown. Hence σ B = 7.5 MPa σ C = 15 MPa 31 EXAMPLE 8.3 Tank shown has inner radius of 600 mm and a thickness of 12 mm. It is filled to the top with water having a specific weight of γ st = 78 kn/m 3. Determine the state of stress at pt A. Tank is open at the top

17 EXAMPLE 8.3 (SOLN) Internal loadings Free-body diagram of section of both the tank and water above pt A is shown. Notice that the weight of the water is supported by the water surface just below the section, not by the walls of the tank. In this vertical direction, the walls simply hold up the weight of the tank. W st = γ st V st = = 3.56 kn 33 EXAMPLE 8.3 (SOLN) Internal loadings The stress in the circumferential direction is developed by the water pressure at level A. To obtain this pressure, we use Pascal s law, which states that the pressure at a pt located at depth z in the water is p = γ w z. Consequently, pressure on tank at level A is p = γ w z = (10 kn/m 3 )(1 m) = 10 kn/m

18 EXAMPLE 8.3 (SOLN) Stress components 1. Circumferential stress Applying Eqn 8-1, using inner radius of r = 600 mm, we have σ 1 = pr/t = = 500 kpa 2. Longitudinal stress Since weight of tank is supported uniformly by the walls, we have σ 2 = W st /A st = = 77.9 kpa 35 EXAMPLE 8.3 (SOLN) Stress components Note that Eqn 8-2, σ 2 = pr/2t does not apply here, since tank is open at the top and therefore, as stated previously, the water cannot develop a loading on the walls in the longitudinal direction. Pt A is therefore subjected to the biaxial stress as shown

19 EXAMPLE 8.5 The solid rod shown has a radius of 0.75 cm. If it is subjected to the loading shown, determine the stress at pt A. 37 EXAMPLE 8.5 (SOLN) Internal loadings Rod is sectioned through pt A. Using free-body diagram of segment AB, the resultant internal loadings can be determined from the six equations of equilibrium

20 EXAMPLE 8.5 (SOLN) Internal loadings The normal force (500 N) and shear force (800 N) must act through the centroid of the x- section and the bending-moment components (8000 N cm) and 7000 N cm) are applied about centroidal (principal) axes. In order to better visualize the stress distributions due to each of these loadings, we will consider the equal but opposite resultants acting on AC. 39 EXAMPLE 8.5 (SOLN) Stress components 1. Normal force Normal stress distribution is shown. For pt A, we have σ A = P/A = = 2.83 MPa 40 20

21 EXAMPLE 8.5 (SOLN) Stress components 2. Shear force Shear-stress distribution is shown. For pt A, Q is determined from the shaded semicircular area. Using tables provided in textbook, we have Q = y A = = cm 3 τ A = VQ/It = = 6.04 MPa 41 EXAMPLE 8.5 (SOLN) Stress components 3. Bending moments For the 8000 N cm component, pt A lies on the neutral axis, so the normal stress is σ A = 0 For the 7000 N cm component, c = 0.75 cm, so normal stress at pt A, is σ A = Mc/I = = MPa 42 21

22 EXAMPLE 8.5 (SOLN) Stress components 4. Torsional moment At pt A, ρ A = c = 0.75 cm, thus τ A = Tc/J = = MPa 43 EXAMPLE 8.5 (SOLN) Superposition When the above results are superimposed, it is seen that an element of material at pt A is subjected to both normal and shear stress components 44 22

23 CHAPTER REVIEW A pressure vessel is considered to have a thin wall provided r/t 10. For a thin-walled cylindrical vessel, the circumferential or hoop stress is σ 1 = pr/t. This stress is twice as great as the longitudinal stress, σ 2 = pr/2t. Thinwalled spherical vessels have the same stress within their walls in all directions so that σ 1 = σ 2 = pr/2t Superposition of stress components can be used to determine the normal and shear stress at a pt in a member subjected to a combined loading. 45 CHAPTER REVIEW To solve, it is first necessary to determine the resultant axial and shear force and the resultant torsional and bending moment at the section where the pt is located. Then the stress components are determined due to each of these loadings. The normal and shearstress resultants are then determined by algebraically adding the normal and shear-stress components

### 6. Bending CHAPTER OBJECTIVES

CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where

### Chapter 3. Load and Stress Analysis

Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

### Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

### CHAPTER -6- BENDING Part -1-

Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER -6- BENDING Part -1-1 CHAPTER -6- Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and

### Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

### 9. Stress Transformation

9.7 ABSOLUTE MAXIMUM SHEAR STRESS A pt in a body subjected to a general 3-D state of stress will have a normal stress and shear-stress components acting on each of its faces. We can develop stress-transformation

### UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

### Spherical Pressure Vessels

Spherical Pressure Vessels Pressure vessels are closed structures containing liquids or gases under essure. Examples include tanks, pipes, essurized cabins, etc. Shell structures : When essure vessels

### CHAPTER 6: Shearing Stresses in Beams

(130) CHAPTER 6: Shearing Stresses in Beams When a beam is in pure bending, the only stress resultants are the bending moments and the only stresses are the normal stresses acting on the cross sections.

### MECE 3321 MECHANICS OF SOLIDS CHAPTER 1

MECE 3321 MECHANICS O SOLIDS CHAPTER 1 Samantha Ramirez, MSE WHAT IS MECHANICS O MATERIALS? Rigid Bodies Statics Dynamics Mechanics Deformable Bodies Solids/Mech. Of Materials luids 1 WHAT IS MECHANICS

### The example of shafts; a) Rotating Machinery; Propeller shaft, Drive shaft b) Structural Systems; Landing gear strut, Flap drive mechanism

TORSION OBJECTIVES: This chapter starts with torsion theory in the circular cross section followed by the behaviour of torsion member. The calculation of the stress stress and the angle of twist will be

### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -00 04 CIVIL ENGINEERING QUESTION BANK Course Name : STRENGTH OF MATERIALS II Course Code : A404 Class : II B. Tech II Semester Section

### Only for Reference Page 1 of 18

Only for Reference www.civilpddc2013.weebly.com Page 1 of 18 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER II EXAMINATION WINTER 2013 Subject Code: X20603 Date: 26-12-2013 Subject

### Chapter 5 Torsion STRUCTURAL MECHANICS: CE203. Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson

STRUCTURAL MECHANICS: CE203 Chapter 5 Torsion Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson Dr B. Achour & Dr Eng. K. El-kashif Civil Engineering Department, University

### Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently 9 7. Determine the normal stress and shear stress acting

### 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

### 2014 MECHANICS OF MATERIALS

R10 SET - 1 II. Tech I Semester Regular Examinations, March 2014 MEHNIS OF MTERILS (ivil Engineering) Time: 3 hours Max. Marks: 75 nswer any FIVE Questions ll Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~

### Torsion Stresses in Tubes and Rods

Torsion Stresses in Tubes and Rods This initial analysis is valid only for a restricted range of problem for which the assumptions are: Rod is initially straight. Rod twists without bending. Material is

### For more Stuffs Visit Owner: N.Rajeev. R07

Code.No: 43034 R07 SET-1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD II.B.TECH - I SEMESTER REGULAR EXAMINATIONS NOVEMBER, 2009 FOUNDATION OF SOLID MECHANICS (AERONAUTICAL ENGINEERING) Time: 3hours

### Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels: In the previous lectures we have discussed elements subjected

### Mechanics of Materials MENG 270 Fall 2003 Exam 3 Time allowed: 90min. Q.1(a) Q.1 (b) Q.2 Q.3 Q.4 Total

Mechanics of Materials MENG 70 Fall 00 Eam Time allowed: 90min Name. Computer No. Q.(a) Q. (b) Q. Q. Q.4 Total Problem No. (a) [5Points] An air vessel is 500 mm average diameter and 0 mm thickness, the

### AE3610 Experiments in Fluid and Solid Mechanics TRANSIENT MEASUREMENTS OF HOOP STRESSES FOR A THIN-WALL PRESSURE VESSEL

Objective AE3610 Experiments in Fluid and Solid Mechanics TRANSIENT MEASUREMENTS OF OOP STRESSES FOR A TIN-WA PRESSURE VESSE This experiment will allow you to investigate hoop and axial stress/strain relations

### 3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

### MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

### 14. *14.8 CASTIGLIANO S THEOREM

*14.8 CASTIGLIANO S THEOREM Consider a body of arbitrary shape subjected to a series of n forces P 1, P 2, P n. Since external work done by forces is equal to internal strain energy stored in body, by

### MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAALLI - 6113. QUESTION WITH ANSWERS DEARTMENT : CIVIL SEMESTER: V SUB.CODE/ NAME: CE 5 / Strength of Materials UNIT 3 COULMNS ART - A ( marks) 1. Define columns

### The problem of transmitting a torque or rotary motion from one plane to another is frequently encountered in machine design.

CHAPER ORSION ORSION orsion refers to the twisting of a structural member when it is loaded by moments/torques that produce rotation about the longitudinal axis of the member he problem of transmitting

### Fig Example 8-4. Rotor shaft of a helicopter (combined torsion and axial force).

PEF 309 Fundamentos de Mecânica das Estruturas Eercícios resolvidos etraídos de Mechanics of Materials, th edition, GERE, J.M. e Timoshenko, S.P.,PWS Publishing Company, 997, Boston, USA, p.08-0, 580-583.

### FIXED BEAMS IN BENDING

FIXED BEAMS IN BENDING INTRODUCTION Fixed or built-in beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported

### Lab Exercise #3: Torsion

Lab Exercise #3: Pre-lab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round

### 7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses

7 TRANSVERSE SHEAR Before we develop a relationship that describes the shear-stress distribution over the cross section of a beam, we will make some preliminary remarks regarding the way shear acts within

### BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

### σ = Eα(T T C PROBLEM #1.1 (4 + 4 points, no partial credit)

PROBLEM #1.1 (4 + 4 points, no partial credit A thermal switch consists of a copper bar which under elevation of temperature closes a gap and closes an electrical circuit. The copper bar possesses a length

### MECH 401 Mechanical Design Applications

MECH 401 Mechanical Design Applications Dr. M. O Malley Master Notes Spring 008 Dr. D. M. McStravick Rice University Updates HW 1 due Thursday (1-17-08) Last time Introduction Units Reliability engineering

### Beams. Beams are structural members that offer resistance to bending due to applied load

Beams Beams are structural members that offer resistance to bending due to applied load 1 Beams Long prismatic members Non-prismatic sections also possible Each cross-section dimension Length of member

### BME 207 Introduction to Biomechanics Spring 2017

April 7, 2017 UNIVERSITY OF RHODE ISAND Department of Electrical, Computer and Biomedical Engineering BE 207 Introduction to Biomechanics Spring 2017 Homework 7 Problem 14.3 in the textbook. In addition

### 7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

### Mechanics of Solids notes

Mechanics of Solids notes 1 UNIT II Pure Bending Loading restrictions: As we are aware of the fact internal reactions developed on any cross-section of a beam may consists of a resultant normal force,

### CIVL222 STRENGTH OF MATERIALS. Chapter 6. Torsion

CIVL222 STRENGTH OF MATERIALS Chapter 6 Torsion Definition Torque is a moment that tends to twist a member about its longitudinal axis. Slender members subjected to a twisting load are said to be in torsion.

### CHAPTER OBJECTIVES CHAPTER OUTLINE. 4. Axial Load

CHAPTER OBJECTIVES Determine deformation of axially loaded members Develop a method to find support reactions when it cannot be determined from euilibrium euations Analyze the effects of thermal stress

### MECE 3321: MECHANICS OF SOLIDS CHAPTER 5

MECE 3321: MECHANICS OF SOLIDS CHAPTER 5 SAMANTHA RAMIREZ TORSION Torque A moment that tends to twist a member about its longitudinal axis 1 TORSIONAL DEFORMATION OF A CIRCULAR SHAFT Assumption If the

OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

### MECHANICS OF MATERIALS. Analysis of Beams for Bending

MECHANICS OF MATERIALS Analysis of Beams for Bending By NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources Chapter Description Expected Outcomes Define the elastic deformation of an axially

### essure Vessels 224 n A Textbook of Machine Design

4 n A Textbook of Machine Design C H A P T E R 7 Pressure Vessels 1. Introduction.. Classification of Pressure Vessels. 3. Stresses in a Thin Cylindrical Shell due to an Internal Pressure. 4. Circumferential

### 4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support

4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between

### MARKS DISTRIBUTION AS PER CHAPTER (QUESTION ASKED IN GTU EXAM) Name Of Chapter. Applications of. Friction. Centroid & Moment.

Introduction Fundamentals of statics Applications of fundamentals of statics Friction Centroid & Moment of inertia Simple Stresses & Strain Stresses in Beam Torsion Principle Stresses DEPARTMENT OF CIVIL

### AP Physics C. Gauss s Law. Free Response Problems

AP Physics Gauss s Law Free Response Problems 1. A flat sheet of glass of area 0.4 m 2 is placed in a uniform electric field E = 500 N/. The normal line to the sheet makes an angle θ = 60 ẘith the electric

### The general rules of statics (as applied in solid mechanics) apply to fluids at rest. From earlier we know that:

ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 2 Pressure This section will study the forces acting on or generated by fluids at rest. Objectives Introduce the concept

### Reference material Reference books: Y.C. Fung, "Foundations of Solid Mechanics", Prentice Hall R. Hill, "The mathematical theory of plasticity",

Reference material Reference books: Y.C. Fung, "Foundations of Solid Mechanics", Prentice Hall R. Hill, "The mathematical theory of plasticity", Oxford University Press, Oxford. J. Lubliner, "Plasticity

### MECHANICS OF MATERIALS Design of a Transmission Shaft

Design of a Transmission Shaft If power is transferred to and from the shaft by gears or sprocket wheels, the shaft is subjected to transverse loading as well as shear loading. Normal stresses due to transverse

### STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections

STRESS! Stress Evisdom! verage Normal Stress in an xially Loaded ar! verage Shear Stress! llowable Stress! Design of Simple onnections 1 Equilibrium of a Deformable ody ody Force w F R x w(s). D s y Support

### Symmetric Bending of Beams

Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications

### The Islamic University of Gaza Department of Civil Engineering ENGC Design of Spherical Shells (Domes)

The Islamic University of Gaza Department of Civil Engineering ENGC 6353 Design of Spherical Shells (Domes) Shell Structure A thin shell is defined as a shell with a relatively small thickness, compared

### LECTURE 14 Strength of a Bar in Transverse Bending. 1 Introduction. As we have seen, only normal stresses occur at cross sections of a rod in pure

V. DEMENKO MECHNCS OF MTERLS 015 1 LECTURE 14 Strength of a Bar in Transverse Bending 1 ntroduction s we have seen, onl normal stresses occur at cross sections of a rod in pure bending. The corresponding

### Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

### Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method

Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method V.M.F. Nascimento Departameto de ngenharia Mecânica TM, UFF, Rio de Janeiro

### PROBLEM 7.1 SOLUTION. σ = 5.49 ksi. τ = ksi

PROBLEM 7.1 For the given state of stress, determine the normal and shearing stresses exerted on the oblique face of the shaded triangular element shon. Use a method of analysis based on the equilibrium

### External Pressure... Thermal Expansion in un-restrained pipeline... The critical (buckling) pressure is calculated as follows:

External Pressure... The critical (buckling) pressure is calculated as follows: P C = E. t s ³ / 4 (1 - ν ha.ν ah ) R E ³ P C = Critical buckling pressure, kn/m² E = Hoop modulus in flexure, kn/m² t s

### Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

50 Module 4: Lecture 1 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-Coulomb failure

### week 3 chapter 28 - Gauss s Law

week 3 chapter 28 - Gauss s Law Here is the central idea: recall field lines... + + q 2q q (a) (b) (c) q + + q q + +q q/2 + q (d) (e) (f) The number of electric field lines emerging from minus the number

### Mechanics of Materials

Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics

### Solution ME 323 EXAM #2 FALL SEMESTER :00 PM 9:30 PM Nov. 2, 2010

Solution ME 33 EXAM # FALL SEMESTER 1 8: PM 9:3 PM Nov., 1 Instructions 1. Begin each problem in the space provided on the eamination sheets. If additional space is required, use the paper provided. Work

### CH. 4 BEAMS & COLUMNS

CH. 4 BEAMS & COLUMNS BEAMS Beams Basic theory of bending: internal resisting moment at any point in a beam must equal the bending moments produced by the external loads on the beam Rx = Cc + Tt - If the

### LIMITATIONS OF THE STANDARD INTERACTION FORMULA FOR BIAXIAL BENDING AS APPLIED TO RECTANGULAR STEEL TUBULAR COLUMNS

LIMITATIONS OF THE STANDARD INTERACTION FORMULA FOR BIAXIAL BENDING AS APPLIED TO RECTANGULAR STEEL TUBULAR COLUMNS Ramon V. Jarquio 1 ABSTRACT The limitations of the standard interaction formula for biaxial

### Now we are going to use our free body analysis to look at Beam Bending (W3L1) Problems 17, F2002Q1, F2003Q1c

Now we are going to use our free body analysis to look at Beam Bending (WL1) Problems 17, F00Q1, F00Q1c One of the most useful applications of the free body analysis method is to be able to derive equations

### March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano

### Levers. 558 A Textbook of Machine Design

558 A Textbook of Machine Design C H A P T E R 15 Levers 1. Introduction.. Application of Levers in Engineering Practice.. Design of a Lever. 4. Hand Lever. 5. Foot Lever. 6. Cranked Lever. 7. Lever for

### KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK UNIT I - PART-A

KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK Sub. Code: CE1151 Sub. Name: Engg. Mechanics UNIT I - PART-A Sem / Year II / I 1.Distinguish the following system of forces with a suitable

### 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor.

Elasticity Homework Problems 2014 Section 1. The Strain Tensor. 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. 2. Given a steel bar compressed with a deformation

### Outline: Centres of Mass and Centroids. Beams External Effects Beams Internal Effects

Outline: Centres of Mass and Centroids Centre of Mass Centroids of Lines, Areas and Volumes Composite Bodies Beams External Effects Beams Internal Effects 1 Up to now all forces have been concentrated

Failure from static loading Topics Quiz /1/07 Failures from static loading Reading Chapter 5 Homework HW 3 due /1 HW 4 due /8 What is Failure? Failure any change in a machine part which makes it unable

### 1-1 Locate the centroid of the plane area shown. 1-2 Determine the location of centroid of the composite area shown.

Chapter 1 Review of Mechanics of Materials 1-1 Locate the centroid of the plane area shown 650 mm 1000 mm 650 x 1- Determine the location of centroid of the composite area shown. 00 150 mm radius 00 mm

### dv dx Slope of the shear diagram = - Value of applied loading dm dx Slope of the moment curve = Shear Force

Beams SFD and BMD Shear and Moment Relationships w dv dx Slope of the shear diagram = - Value of applied loading V dm dx Slope of the moment curve = Shear Force Both equations not applicable at the point

### Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata

### Flexure: Behavior and Nominal Strength of Beam Sections

4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

### ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 4 COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those studying

### VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR DEPARTMENT OF MECHANICAL ENGINEERING

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR 603203 DEPARTMENT OF MECHANICAL ENGINEERING BRANCH: MECHANICAL YEAR / SEMESTER: I / II UNIT 1 PART- A 1. State Newton's three laws of motion? 2.

### CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

Example on Design of Slab Bridge Design Data and Specifications Chapter 5 SUPERSTRUCTURES Superstructure consists of 10m slab, 36m box girder and 10m T-girder all simply supported. Only the design of Slab

### Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...

### D e s i g n o f R i v e t e d J o i n t s, C o t t e r & K n u c k l e J o i n t s

D e s i g n o f R i v e t e d J o i n t s, C o t t e r & K n u c k l e J o i n t s 1. Design of various types of riveted joints under different static loading conditions, eccentrically loaded riveted joints.

### Stress transformation and Mohr s circle for stresses

Stress transformation and Mohr s circle for stresses 1.1 General State of stress Consider a certain body, subjected to external force. The force F is acting on the surface over an area da of the surface.

### ME 176 Final Exam, Fall 1995

ME 176 Final Exam, Fall 1995 Saturday, December 16, 12:30 3:30 PM, 1995. Answer all questions. Please write all answers in the space provided. If you need additional space, write on the back sides. Indicate

### How to define the direction of A??

Chapter Gauss Law.1 Electric Flu. Gauss Law. A charged Isolated Conductor.4 Applying Gauss Law: Cylindrical Symmetry.5 Applying Gauss Law: Planar Symmetry.6 Applying Gauss Law: Spherical Symmetry You will

### APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES

163 APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES A1.1 DESIGN AS PER NORTH AMERICAN SPECIFICATION OF COLD FORMED STEEL (AISI S100: 2007) 1. Based on Initiation of Yielding: Effective yield moment, M n

### FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS

FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS J. Kandasamy 1, M. Madhavi 2, N. Haritha 3 1 Corresponding author Department of Mechanical

### Outline. Organization. Stresses in Beams

Stresses in Beams B the end of this lesson, ou should be able to: Calculate the maimum stress in a beam undergoing a bending moment 1 Outline Curvature Normal Strain Normal Stress Neutral is Moment of

### MECHANICS OF SOLIDS Credit Hours: 6

MECHANICS OF SOLIDS Credit Hours: 6 Teaching Scheme Theory Tutorials Practical Total Credit Hours/week 4 0 6 6 Marks 00 0 50 50 6 A. Objective of the Course: Objectives of introducing this subject at second

### BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS Level 3 Unit 5 FORCES AS VECTORS Vectors have a magnitude (amount) and a direction. Forces are vectors FORCES AS VECTORS (2 FORCES) Forces F1 and F2 are in

### Shear Force V: Positive shear tends to rotate the segment clockwise.

INTERNL FORCES IN EM efore a structural element can be designed, it is necessary to determine the internal forces that act within the element. The internal forces for a beam section will consist of a shear

### CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES

S. Kakay et al. Int. J. Comp. Meth. and Exp. Meas. Vol. 5 No. (017) 116 14 CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES SAMDAR KAKAY DANIEL BÅRDSEN

### Unit 21 Couples and Resultants with Couples

Unit 21 Couples and Resultants with Couples Page 21-1 Couples A couple is defined as (21-5) Moment of Couple The coplanar forces F 1 and F 2 make up a couple and the coordinate axes are chosen so that

### CH 23. Gauss Law. A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface.

CH 23 Gauss Law [SHIVOK SP212] January 4, 2016 I. Introduction to Gauss Law A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface.

### 4 Mechanics of Fluids (I)

1. The x and y components of velocity for a two-dimensional flow are u = 3.0 ft/s and v = 9.0x ft/s where x is in feet. Determine the equation for the streamlines and graph representative streamlines in

### This chapter is devoted to the study of torsion and of the stresses and deformations it causes. In the jet engine shown here, the central shaft links

his chapter is devoted to the study of torsion and of the stresses and deformations it causes. In the jet engine shown here, the central shaft links the components of the engine to develop the thrust that

### BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana Lilkova-Markova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL

### Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

### Strength of Material. Shear Strain. Dr. Attaullah Shah

Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume