Introduction to Aerospace Engineering


 Phillip Evans
 1 years ago
 Views:
Transcription
1 Introduction to Aerospace Engineering Lecture slides Challenge the future 1
2 Aircraft & spacecraft loads Translating loads to stresses Faculty of Aerospace Engineering Delft University of Technology Challenge the future
3 Learning objectives Student should be able to Calculate the stresses in Fuselage shell due to pressurization (case I) Fuselage shells due to applied torsional load (case II) Wing spars due to applied bending loads (case III) Aircraft loads 2 32
4 Fuselage structure Pressurization (case I) Revisit stresses in pressure vessel σ circ pr pr = ; σ = t long 2t R dϕ p And the Hooke s law for plane stress or biaxial stress condition ε ε circ long σ circ = E σ long = E σ ν E σ ν E long circ σ long F y ϕ p Aircraft loads 3 32
5 Fuselage structure Pressurization (case I) With σ circ =2σ long this is ε ε circ long σ circ ν = 1 E 2 σ circ 1 = ν E 2 For a metallic pressure vessel with ν 0.3 this means that ε circ =4.25 ε long Aircraft loads 4 32
6 Fuselage structure Pressurization (case I) For a sphere under pressure σ = σ = pr t The strain in a sphere is equal in all directions ε sphere pr 1 = 1 2t E ( ν ) Aircraft loads 5 32
7 Fuselage structure Pressurization (case I) What ratio t sphere /t cylinder is needed to connect cylinder to sphere in a pressure vessel? Avoid discontinuities in ε circ to avoid these deformation mismatches Thus ε circ = ε sphere! Aircraft loads 6 32
8 Fuselage structure Pressurization (case I) Derivation ε cylinder Thus R R sphere cylinder = ε sphere ( ν ) 2t 1 sphere = 2 = 1 t cylinder ( 1 ν ) pr cylinder 1 ν pr sphere 1 1 = 1 t E 2 2t E cylinder sphere ( ν ) With R cylinder = R sphere this means t sphere 0.4 t cylinder Aircraft loads 7 32
9 Fuselage structure Pressurization (case I) Aircraft pressure cabin Role frames & stringers (510%) Other disturbances (doublers around cutouts) Fracture of fuselage could be disastrous: exploding balloon No limit load (formal definition: once in the lifetime of the aircraft), limit load occurs every flight during pressurization of the cabin safety factor is 2 Aircraft loads 8 32
10 Fuselage structure Pressurization (case I) Aircraft pressure cabin Design pressure differential p d = p cabin  p h Cabin altitude: p cabin related to altitude of m Safety factor j=2: p ult = 2 p d = 2(p cabin  p h ) Example Pressure differential is 45 kpa Aircraft altitude of h =9050 m cabin altitude of 2440 m Aircraft altitude of h =10350 m cabin altitude of 3050 m Aircraft loads 9 32
11 Fuselage structure Torsional loading (case II) The axial stresses in a tube under torsion Aircraft loads 10 32
12 Fuselage structure Torsional loading (case II) F 1 Function of cylinder against torsional loading Rectangular shape d 1 Deforms like d 2 F 2 M 1 Equilibrium if F 1 d 1 = F 2 d 2 = F n d n M 1 = M 2 = M T M 2 Aircraft loads 11 32
13 Fuselage structure Torsional loading (case II) Torsion causes shear stress & strain τ γ = G M T γ Equilibrium: τ outside = τ cross section M T τ Aircraft loads 12 32
14 Fuselage structure Torsional loading (case II) Torsion causes shear stress τ γ = G M T γ Equilibrium: τ outside = τ cross section M T Torsional moment τ π τπ 2 M = 2 r t r = 2 r t T circumference circle area circle τ Define q = τ t M T = 2qA Aircraft loads 13 32
15 Fuselage & wing structure Torsional loading (case II) Thin walled box, stringers not loaded, torsion moment MT Moment around an arbitrary point: q ds a = M T with a ds = 2 A All fractions together: M T = 2qA q = M T 2A Aircraft loads 14 32
16 Fuselage & wing structure Torsional loading (case II) For a thin walled closed box (enclosed area A) the shear flow is q = M T 2A enclosed area A All cross sections have the same shearflow q A torsion box does not need to have a circular cross section enclosed area A enclosed area A enclosed area A Aircraft loads 15 32
17 Fuselage & wing structure Torsional loading (case II) The torsion box will not function at a cutout A stiff frame with rigid corners around the cutout is needed Aircraft loads 16 32
18 Wing structure Bending of wing spar Consider elementary spar Diamond shaped deformation is resisted by sheets Frame exercises a shear stress on the sheets As reaction: sheets exercise shear stress on the frame Assumption: bars of frame very stiff, no deformation Without sheets: Frame is not functioning Aircraft loads 17 32
19 Wing structure Bending of wing spar If frame functions, sheets in equilibrium High forces: pleat formation However: Structure still functions! Resistance to shear is the resistance to tension and compression under 45 degrees. Relationship: E, ν, G Aircraft loads 18 32
20 Wing structure Bending of wing spar Break down the elements book keeping F 1x Global Horizontal equilibrium: F  F 1x  F 2x = 0 Vertical equilibrium: F 1y  F 2y = 0 Moment equilibrium: F h + F 1y w = 0 Local Equilibrium in elements F 1y F 2x F 2y Aircraft loads 19 32
21 Wing structure Bending of wing spar Break down the elements book keeping For shear there is physically no difference but we need a sign convention _ + Aircraft loads 20 32
22 Wing structure Bending of wing spar In bending, the function of spar webs (shear) is essential! The webs have to be supported on the upper and lower side by caps in order to realize equilibrium webs transfer (external) transverse forces into shearflows caps transfer shearflows in normal forces Aircraft loads 21 32
23 Wing structure Bending of wing spar Global equilibrium (always check!) Horizontal: N N = 0 Vertical: U L 4 4 F + F + F q h = Moment: 4 ( ) ( ) N h F l + l + l F l + l F l = 0 U Aircraft loads 22 32
24 Wing structure Bending of wing spar Web plate 1 and upper and lower cap 1 Equilibrium of forces in cap 1 F q h = N = q l = l U N q l l L F h F = = h q 1 is shear flow in web plate 1 Aircraft loads 23 32
25 Wing structure Bending of wing spar Web plate 2 and upper and lower cap 2 Equilibrium of forces in cap 2 F = q h q h = q h F N = N + q l = l + l U U N =... = l + l L h F F + F h F F + F h h Aircraft loads 24 32
26 Wing structure Bending of wing spar Web plate 3 and upper and lower cap 3 Equilibrium of forces in cap 3 F = q h q h = q h F F N = N + q l U U 3 3 F F + F F + F + F = l + l + l h 1 h 2 h 3 F F + F F + F + F N =... = l + l + l L h h h Aircraft loads 25 32
27 Wing structure Bending of wing spar Shear flow in the webs: Transverse force building up: q n = D h n D = F + F F = F n 1 2 n n 1 n Aircraft loads 26 32
28 Wing structure Bending of wing spar Shear flow in the webs: Transverse force building up: Normal force in the caps at the location of stringers: q n = D h n D = F + F F = F n 1 2 n n 1 n N m+ 1 1 m = D l h n= 1 n n Next slide What about normal forces in the caps between the stringers? Aircraft loads 27 32
29 Wing structure Bending of wing spar Equilibrium in A: N N q x D D = 0 ( ) 2 1 N = l x + l U U 2 U 3 x x h h 2 1 Equilibrium in B: ( ) N N q l x = 0 U x U ( ) 2 1 N = l x + l U 2 1 x D h D h Normal force increases linearly from outboard to inboard! Aircraft loads 28 32
30 Wing structure Bending of wing spar The bending moment at location x in the spar is: U x x ( ) N h M = D l x + D l We see that that for l 2 dm x dx = D 2 This is valid on every location x on the spar: dm x dx = D x Aircraft loads 29 32
31 Wing structure Bending of wing spar External forces F n Transverse shear forces known at every location D n q = D n n h n = 1 Normal forces in caps known at every location M m N = h M = D l n+ 1 n F n n n Aircraft loads 30 32
32 Wing structure Lift, engine and fuselage weight Shear stress in webs q D x x τ = = x t ht x Normal stress in spar caps N x σ = ± = ± x A x x M ha x x In a spar ha x is called the moment of resistance (W) Aircraft loads 31 32
33 Summary Loads to stresses Three cases studied Fuselage shell due to pressurization Fuselage shells due to applied torsional load Wing spars due to applied bending loads Aircraft loads 32 32
UNIT I Thin plate theory, Structural Instability:
UNIT I Thin plate theory, Structural Instability: Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and inplane loading Thin plates having
More informationMechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002
student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity
More informationUnit 15 Shearing and Torsion (and Bending) of Shell Beams
Unit 15 Shearing and Torsion (and Bending) of Shell Beams Readings: Rivello Ch. 9, section 8.7 (again), section 7.6 T & G 126, 127 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering
More informationChapter 3. Load and Stress Analysis
Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3
More information2. (a) Explain different types of wing structures. (b) Explain the advantages and disadvantages of different materials used for aircraft
Code No: 07A62102 R07 Set No. 2 III B.Tech II Semester Regular/Supplementary Examinations,May 2010 Aerospace Vehicle Structures II Aeronautical Engineering Time: 3 hours Max Marks: 80 Answer any FIVE
More informationMechanical Properties of Materials
Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of
More informationReview Lecture. AE1108II: Aerospace Mechanics of Materials. Dr. Calvin Rans Dr. Sofia Teixeira De Freitas
Review Lecture AE1108II: Aerospace Mechanics of Materials Dr. Calvin Rans Dr. Sofia Teixeira De Freitas Aerospace Structures & Materials Faculty of Aerospace Engineering Analysis of an Engineering System
More informationChapter 3. Load and Stress Analysis. Lecture Slides
Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.
More informationFinal Exam Ship Structures Page 1 MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Engineering Ship Structures
Final Exam  53  Ship Structures  16 Page 1 MEMORIA UNIVERSITY OF NEWFOUNDAND Faculty of Engineering and Applied Science Engineering 53  Ship Structures FINA EXAMINATION SONS Date: Wednesday April 13,
More informationPRESSURE VESSELS & PRESSURE CABINS FOR BLENDED WING BODIES
PRESSURE VESSELS & PRESSURE CABINS FOR BLENDED WING BODIES F.J.J.M.M. Geuskens, O.K. Bergsma 2, S. Koussios 2 & A. Beukers 3 PhD Researcher, 2 Associate professor, 3 Professor / DPCS, TU Delft Kluyverweg,
More informationNORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.
NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric
More informationAircraft Structures Beams Torsion & Section Idealization
Universit of Liège Aerospace & Mechanical Engineering Aircraft Structures Beams Torsion & Section Idealiation Ludovic Noels omputational & Multiscale Mechanics of Materials M3 http://www.ltascm3.ulg.ac.be/
More information7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses
7 TRANSVERSE SHEAR Before we develop a relationship that describes the shearstress distribution over the cross section of a beam, we will make some preliminary remarks regarding the way shear acts within
More informationModule 4 : Deflection of Structures Lecture 4 : Strain Energy Method
Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under
More information1. Tasks of designing
1 Lecture #18(14) Designing calculation of cross section of a highly aspect ratio wing Plan: 1 Tass of designing Distribution of shear force between wing spars Computation of the elastic center 4 Distribution
More information[8] Bending and Shear Loading of Beams
[8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight
More information1. The structurally  power fuselage schemes.
Lecture 24(14). Strength analysis of fuselages Plan: 1. The structurally  power fuselage schemes. 2. Strength calculation of the fuselages crosssections. 3. The semimonocoque fuselage crosssection calculation.
More informationLecture 5: Pure bending of beams
Lecture 5: Pure bending of beams Each end of an initiall straight, uniform beam is subjected to equal and opposite couples. The moment of the couples is denoted b (units of FL. t is shown in solid mechanics
More informationShafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3
M9 Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6., 6.3 A shaft is a structural member which is long and slender and subject to a torque (moment) acting about its long axis. We
More informationMechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection
Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts
More informationSummary AE1102: Materials & Structures
Summary AE1102: Materials & Structures Bram Peerlings B.Peerlings@student.tudelft.nl December 22, 2010 Based on Reader Materials & Structures (v. 21/12/2010) R. Alderliesten Chapter 1: Material Physics
More informationCHAPTER 5. Beam Theory
CHPTER 5. Beam Theory SangJoon Shin School of Mechanical and erospace Engineering Seoul National University ctive eroelasticity and Rotorcraft Lab. 5. The EulerBernoulli assumptions One of its dimensions
More informationDEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum
DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum SEMESTER I AS5010 Engg. Aerodyn. & Flt. Mech. 3 0 0 3 AS5020 Elements of Gas Dyn. & Propln. 3 0 0 3 AS5030 Aircraft and Aerospace Structures
More informationD : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.
D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having
More informationQUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS
QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,
More informationTorsion of Solid Sections. Introduction
Introduction Torque is a common load in aircraft structures In torsion of circular sections, shear strain is a linear function of radial distance Plane sections are assumed to rotate as rigid bodies These
More informationMechanics of Materials
Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics
More informationShear of Thin Walled Beams. Introduction
Introduction Apart from bending, shear is another potential structural failure mode of beams in aircraft For thinwalled beams subjected to shear, beam theory is based on assumptions applicable only to
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)
More informationELASTICITY AND FRACTURE MECHANICS. Vijay G. Ukadgaonker
THEORY OF ELASTICITY AND FRACTURE MECHANICS y x Vijay G. Ukadgaonker Theory of Elasticity and Fracture Mechanics VIJAY G. UKADGAONKER Former Professor Indian Institute of Technology Bombay Delhi110092
More informationME325 EXAM I (Sample)
ME35 EXAM I (Sample) NAME: NOTE: COSED BOOK, COSED NOTES. ONY A SINGE 8.5x" ORMUA SHEET IS AOWED. ADDITIONA INORMATION IS AVAIABE ON THE AST PAGE O THIS EXAM. DO YOUR WORK ON THE EXAM ONY (NO SCRATCH PAPER
More informationStrength of Materials II (Mechanics of Materials) (SI Units) Dr. Ashraf Alfeehan
Strength of Materials II (Mechanics of Materials) (SI Units) Dr. Ashraf Alfeehan 20172018 Mechanics of Material II Text Books Mechanics of Materials, 10th edition (SI version), by: R. C. Hibbeler, 2017
More informationModule 5: Theories of Failure
Module 5: Theories of Failure Objectives: The objectives/outcomes of this lecture on Theories of Failure is to enable students for 1. Recognize loading on Structural Members/Machine elements and allowable
More informationPressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials
Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels: In the previous lectures we have discussed elements subjected
More informationTwo Tier projects for students in ME 160 class
ME 160 Introduction to Finite Element Method Spring 2016 Topics for Term Projects by Teams of 2 Students Instructor: Tai Ran Hsu, Professor, Dept. of Mechanical engineering, San Jose State University,
More informationQUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A
DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State
More informationMECHANICS OF MATERIALS
STATICS AND MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr, John T. DeWolf David E Mazurek \Cawect Mc / iur/» Craw SugomcT Hilt Introduction 1 1.1 What is Mechanics? 2 1.2 Fundamental
More informationand F NAME: ME rd Sample Final Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points)
ME 270 3 rd Sample inal Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points) IND: In your own words, please state Newton s Laws: 1 st Law = 2 nd Law = 3 rd Law = PROBLEM
More informationCHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES
CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric
More information(48) CHAPTER 3: TORSION
(48) CHAPTER 3: TORSION Introduction: In this chapter structural members and machine parts that are in torsion will be considered. More specifically, you will analyze the stresses and strains in members
More informationMontgomery County Community College EGR 213 Mechanics of Materials 322
Montgomery County Community College EGR 213 Mechanics of Materials 322 COURSE DESCRIPTION: This course covers the deformation of beams and shafts using energy methods and structural analysis, the analysis
More informationCE 715: Advanced Strength of Materials
CE 715: Advanced Strength of Materials Lecture 1 CE 715 Course Information Instructor: Tasnim Hassan Office: Mann Hall 419 Office Hours: TTh 2:004:00 pm Phone: 5158123 Email: thassan@eos.ncsu.edu 1 Course
More informationThe science of elasticity
The science of elasticity In 1676 Hooke realized that 1.Every kind of solid changes shape when a mechanical force acts on it. 2.It is this change of shape which enables the solid to supply the reaction
More informationTEMPLATE FOR COURSE SPECIFICATION
TEMPLATE FOR COURSE SPECIFICATION HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW COURSE SPECIFICATION This Course Specification provides a concise summary of the main features of the course and
More informationSTRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS
1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The
More informationStress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering
(3.83.1, 3.14) MAE 316 Strength of Mechanical Components NC State Universit Department of Mechanical & Aerospace Engineering 1 Introduction MAE 316 is a continuation of MAE 314 (solid mechanics) Review
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1  LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS
EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1  LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering
More informationtwenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty one concrete construction: Copyright Kirk Martini shear & deflection Concrete Shear 1 Shear in Concrete
More informationTable of Contents. Preface...xvii. Part 1. Level
Preface...xvii Part 1. Level 1... 1 Chapter 1. The Basics of Linear Elastic Behavior... 3 1.1. Cohesion forces... 4 1.2. The notion of stress... 6 1.2.1. Definition... 6 1.2.2. Graphical representation...
More informationUNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.
UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude
More informationMECHANICS OF AEROSTRUCTURES
MECHANICS OF AEROSTRUCTURES Mechanics of Aerostructures is a concise textbook for students of aircraft structures, which covers aircraft loads and maneuvers, as well as torsion and bending of singlecell,
More informationUsing the finite element method of structural analysis, determine displacements at nodes 1 and 2.
Question 1 A pinjointed plane frame, shown in Figure Q1, is fixed to rigid supports at nodes and 4 to prevent their nodal displacements. The frame is loaded at nodes 1 and by a horizontal and a vertical
More informationUnit 13 Review of Simple Beam Theory
MIT  16.0 Fall, 00 Unit 13 Review of Simple Beam Theory Readings: Review Unified Engineering notes on Beam Theory BMP 3.8, 3.9, 3.10 T & G 1015 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics
More informationINTRODUCTION TO STRAIN
SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,
More informationPROBLEM #1.1 (4 + 4 points, no partial credit)
PROBLEM #1.1 ( + points, no partial credit A thermal switch consists of a copper bar which under elevation of temperature closes a gap and closes an electrical circuit. The copper bar possesses a length
More informationME 243. Mechanics of Solids
ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET Email: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil
More information7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment
7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment à It is more difficult to obtain an exact solution to this problem since the presence of the shear force means that
More informationN = Shear stress / Shear strain
UNIT  I 1. What is meant by factor of safety? [A/M15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M15]
More informationME311 Machine Design
ME311 Machine Design Lecture : Materials; Stress & Strain; Power Transmission W Dornfeld 13Sep018 airfield University School of Engineering StressStrain Curve for Ductile Material Ultimate Tensile racture
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion
EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion Introduction Stress and strain in components subjected to torque T Circular Crosssection shape Material Shaft design Noncircular
More informationMechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering
Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1  STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1  STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN 1 Static and dynamic forces Forces: definitions of: matter, mass, weight,
More informationMECHANICS OF MATERIALS
CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced
More informationModule 3 : Equilibrium of rods and plates Lecture 15 : Torsion of rods. The Lecture Contains: Torsion of Rods. Torsional Energy
The Lecture Contains: Torsion of Rods Torsional Energy This lecture is adopted from the following book 1. Theory of Elasticity, 3 rd edition by Landau and Lifshitz. Course of Theoretical Physics, vol7
More information8. Combined Loadings
CHAPTER OBJECTIVES qanalyze the stress developed in thinwalled pressure vessels qreview the stress analysis developed in previous chapters regarding axial load, torsion, bending and shear qdiscuss the
More informationTuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE
1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & FreeBody Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for
More information: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE
COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses
More informationCOURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5
COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses
More informationME 202 STRENGTH OF MATERIALS SPRING 2014 HOMEWORK 4 SOLUTIONS
ÇANKAYA UNIVERSITY MECHANICAL ENGINEERING DEPARTMENT ME 202 STRENGTH OF MATERIALS SPRING 2014 Due Date: 1 ST Lecture Hour of Week 12 (02 May 2014) Quiz Date: 3 rd Lecture Hour of Week 12 (08 May 2014)
More informationSAULTCOLLEGE of AppliedArtsand Technology SaultSte. Marie COURSEOUTLINE
SAULTCOLLEGE of AppliedArtsand Technology SaultSte. Marie COURSEOUTLINE STRENGTH OF ~1ATERIALS MCH 1033 revised June 1981 by W.J. Adolph  STRENGHT OF MATERIALS MCH 1033 To'Cic Periods Tooic Description
More informationFinite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module  01 Lecture  13
Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras (Refer Slide Time: 00:25) Module  01 Lecture  13 In the last class, we have seen how
More informationUNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich
UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST
More informationINSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
NSTTUTE OF AERONAUTCAL ENGNEERNG (Autonomous) Dundigal, Hyderabad  00 043 AERONAUTCAL ENGNEERNG TUTORAL QUESTON BANK Course Name : ARCRAFT VEHCLES STRUCTURES Course Code : A2109 Class : B. Tech Semester
More informationDEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS).
DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). Lab Director: Coordinating Staff: Mr. Muhammad Farooq (Lecturer) Mr. Liaquat Qureshi (Lab Supervisor)
More information11 Locate the centroid of the plane area shown. 12 Determine the location of centroid of the composite area shown.
Chapter 1 Review of Mechanics of Materials 11 Locate the centroid of the plane area shown 650 mm 1000 mm 650 x 1 Determine the location of centroid of the composite area shown. 00 150 mm radius 00 mm
More informationCOURSE TITLE : THEORY OF STRUCTURES I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6
COURSE TITLE : THEORY OF STRUCTURES I COURSE CODE : 0 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6 TIME SCHEDULE Module Topics Period Moment of forces Support reactions Centre
More informationENGINEERING MECHANICS
ENGINEERING MECHANICS Engineering Mechanics Volume 2: Stresses, Strains, Displacements by C. HARTSUIJKER Delft University of Technology, Delft, The Netherlands and J.W. WELLEMAN Delft University of Technology,
More informationStress Analysis on Bulkhead Model for BWB Heavy Lifter Passenger Aircraft
The International Journal Of Engineering And Science (IJES) Volume 3 Issue 01 Pages 3843 014 ISSN (e): 319 1813 ISSN (p): 319 1805 Stress Analysis on Bulkhead Model for BWB Heavy Lifter Passenger Aircraft
More informationStress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy
Stress Analysis Lecture 4 ME 76 Spring 017018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a
More informationSymmetric Bending of Beams
Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications
More informationChapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements
CIVL 7/8117 Chapter 12  Plate Bending Elements 1/34 Chapter 12 Plate Bending Elements Learning Objectives To introduce basic concepts of plate bending. To derive a common plate bending element stiffness
More informationSamantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2
Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force
More informationME 2570 MECHANICS OF MATERIALS
ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation
More informationFinite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module  01 Lecture  11
Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module  01 Lecture  11 Last class, what we did is, we looked at a method called superposition
More informationBeams. Beams are structural members that offer resistance to bending due to applied load
Beams Beams are structural members that offer resistance to bending due to applied load 1 Beams Long prismatic members Nonprismatic sections also possible Each crosssection dimension Length of member
More informationD : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.
GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 Ns/m. To make the system
More informationTORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)
Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thinwall open sections is not included in most commonly used frame analysis programs. Almost
More informationMAE 322 Machine Design. Dr. Hodge Jenkins Mercer University
MAE 322 Machine Design Dr. Hodge Jenkins Mercer University What is this Machine Design course really about? What you will learn: How to design machine elements 1) Design so they won t break under varying
More informationFLEXIBILITY METHOD FOR INDETERMINATE FRAMES
UNIT  I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These
More informationME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam crosssec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.
ME 323  Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM12:20PM Ghosh 2:303:20PM Gonzalez 12:301:20PM Zhao 4:305:20PM M (x) y 20 kip ft 0.2
More informationDownloaded from Downloaded from / 1
PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their
More informationCHAPTER 6: Shearing Stresses in Beams
(130) CHAPTER 6: Shearing Stresses in Beams When a beam is in pure bending, the only stress resultants are the bending moments and the only stresses are the normal stresses acting on the cross sections.
More informationPES Institute of Technology
PES Institute of Technology Bangalore south campus, Bangalore5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject
More informationSTRUCTURAL SURFACES & FLOOR GRILLAGES
STRUCTURAL SURFACES & FLOOR GRILLAGES INTRODUCTION Integral car bodies are 3D structures largely composed of approximately subassemblies SSS Planar structural subassemblies can be grouped into two categories
More informationIf the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.
1 of 6 EQUILIBRIUM OF A RIGID BODY AND ANALYSIS OF ETRUCTURAS II 9.1 reactions in supports and joints of a twodimensional structure and statically indeterminate reactions: Statically indeterminate structures
More information3 2 6 Solve the initial value problem u ( t) 3. a If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1
Math Problem a If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b True or false and why 1. if A is
More informationChapter 5 Elastic Strain, Deflection, and Stability 1. Elastic StressStrain Relationship
Chapter 5 Elastic Strain, Deflection, and Stability Elastic StressStrain Relationship A stress in the xdirection causes a strain in the xdirection by σ x also causes a strain in the ydirection & zdirection
More informationReview of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis
uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods
More information3. BEAMS: STRAIN, STRESS, DEFLECTIONS
3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets
More informationConsider an elastic spring as shown in the Fig.2.4. When the spring is slowly
.3 Strain Energy Consider an elastic spring as shown in the Fig..4. When the spring is slowly pulled, it deflects by a small amount u 1. When the load is removed from the spring, it goes back to the original
More information