2014 MECHANICS OF MATERIALS

Size: px
Start display at page:

Download "2014 MECHANICS OF MATERIALS"

Transcription

1 R10 SET - 1 II. Tech I Semester Regular Examinations, March 2014 MEHNIS OF MTERILS (ivil Engineering) Time: 3 hours Max. Marks: 75 nswer any FIVE Questions ll Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~ 1. a) Four forces of magnitude P, 2P, 5.196P and 4P are acting at a point O. The angles made by these forces with x-axis are 0 0, 60 0, and respectively. Find the magnitude and direction of the resultant force. b) Four forces of magnitude 10 kn, 20 kn, 30 kn and 40 kn are acting respectively along the four sides of a square D as shown in Figure 1. Determine: i) the resultant force, line of action and its direction. ii) Determine the resultant moment about point. 20 N 30 N D 2 m 40 N Figure 1 2. a) ladder 5 m long and of 250 N weight is placed against a vertical wall in a position where its inclination to the vertical is man weighing 800 N climbs the ladder. t what position will he induce slipping? The coefficient of friction for both the contact surfaces of the ladder viz. with the wall and the floor is 0.2. b) Two locomotives on opposite banks of a canal pull a vessel moving parallel to the banks by means of two horizontal ropes. The tensions in the ropes are 2000 N and 2400 N while angle between them is Find the resultant pull on the vessel and the angle between each of the ropes and the sides of the canal. (8M+7M) 3. a) Show that the maximum power can be transmitted at τ = max 3τ c b) shaft rotating at 200 r.p.m drives another shaft at 300 r.p.m and transmits 6KW through a belt, the belt is 100mm wide and 10mm thick. The distance between the shafts is 4000mm the smaller pulley is 500mm in diameter. alculate the stress in, (i) Open - belt and (ii) rossed belt. Take µ = 0.3. Neglect centrifugal tension. 4. a) Find out the mass moment inertia of a right circular cone of base radius, R, and mass, M, bout the axis of the cone. b) Find the moment of inertia about the horizontal centriodal axis of shaded portion for the Figure 2. R=30mm (8M+7M) 2 m R 10 N 10 mm 10 mm 10 mm Figure 2 1 of 2

2 R10 SET a) Explain the terms: i) Modulus of elasticity ii) Modulus of rigidity and iii) ulk modulus. b) Show that in a compound bar of length L, when temperature increases by t, the force P developed is given by PL PL + 1 E1 2 E2 = ( a1 a2 ) tl Where 1, 2 ross-sectional areas of bar 1 and bar 2 respectively E 1, E 2 Young s moduli of bar 1 and bar 2 respectively and α 1 and α 2 are coefficient of thermal expansion of bars 1 and 2 respectively. (6M+9M) 6. Draw M and SF diagrams for the beam shown in Figure 3, indicating the values at all salient points. 20 kn 40 kn 30 kn/m 25 kn/m D E F 1 m 2 m R 7. a) ompute the section modulus of rectangular section of dimensions b x d. b) simply supported beam of span 5.0 m has a cross-section 230 mm 350 mm. If the permissible stress in the material of the beam is 10 N/mm 2, determine i) maximum uniformly distributed load it can carry ii) maximum concentrated load at a point 1 m from support it can carry. Neglect moment due to self weight. (6M+9M) 8. beam has cross-section as shown in Figure 4. If the shear force acting on this is 150 kn, Draw the shear stress distribution diagram across the depth. 12 mm Figure mm 12 mm Figure 4 1 m 120 mm 1 m R E 1 m 2 of 2

3 R10 SET - 2 II. Tech I Semester Regular Examinations, March 2014 MEHNIS OF MTERILS (ivil Engineering) Time: 3 hours Max. Marks: 75 nswer any FIVE Questions ll Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~ 1. Find the resultant of the concurrent force system shown in Figure 1 which consists of the forces T = 500 N, P = 250 N and F = 800 N directed from D towards, and respectively. Z 3m 6m F m Y O 3m 5m Figure 1 P m 2. a) Explain the principles of operation of a screw-jack with a neat sketch. b) Outside diameter of a square threaded spindle of a screw Jack is 40mm. The screw pitch is 10mm. If the coefficient of friction between the screw and the nut is 0.15, neglecting friction between the nut and collar, determine i) Force required to be applied at the screw to raise a load of 2000N ii) The efficiency of screw jack iii) Force required to be applied at pitch radius to lower the same load of 2000N iv) Efficiency while lowering the load v) What should be the pitch for the maximum efficiency of the screw and what should be the value of the maximum efficiency. (6M+9M) 3. leather belt is required to transmit 9kW from a pulley 1200 mm in diameter running at 200 r.p.m The angle embraced is 1650 and the coefficient of friction between leather belt and pulley is 0.3. If the safe working stress for the leather belt is 1.4N/mm 2 the weight of leather is 1000Kg/m 3 and the thickness of the belt is 10mm, determine the width of the belt taking the centrifugal tension in to account. D 12m 6m T m X 1 of 3

4 R10 SET a) Determine the volume generated by the shaded area as shown in Figure 2 about X axis y mm Figure 2 b) Show that the moment of inertia of a thin circular ring of mass M and mean radius R with respect to its geometric axis is MR a) If the Poisson s ratio of a material is 0.3 and its young s modulus is N/mm 2. What is the value of shear modulus? b) steel rod of 20 mm diameter passes centrally through a tight copper tube of external diameter 40 mm. The tube is closed with the help of the rigid washers of negligible thickness and nuts threaded on the rod. The nuts are tightened till the compressive load on the tube is 50kN. Determine the stresses in the rod and the tube, when the temperature of the assembly falls by Take E s = 200 GN/mm 2, E c = 100 GN/mm 2, α s = per 0, α c = per 0. (6M+9M) 6. The simply supported beam D is subjected to a uniform load over the segment together with a concentrated force applied at as shown in Fig.3 Draw Shear force and bending moment diagram and indicate the values at salient points. R 2.5m 1m 1m 2 of 3 x 12 kn 10 kn/m Figure 3 D R D

5 R10 SET The cross-section of a cast iron beam is as shown in Figure 4. The top flange is in compression and bottom flange is in tension. Permissible stress in tension is 30 N/mm 2 and its value in compression is 90 N/mm 2. What is the maximum uniformly distributed load the beam can carry over a simply supported span of 5 m? 75 mm mm Figure 4 8. I-Section has flanges of size mm and its overall depth is 360 mm. The thickness of the web is also 12 mm. It is used as a simply supported beam over a span of 4 m to carry a load of 60 kn/m over its entire span. Draw the variation of bending and shearing stresses across the depth. 3 of 3 50 mm 100 mm 50 mm

6 R10 SET - 3 II. Tech I Semester Regular Examinations, March 2014 MEHNIS OF MTERILS (ivil Engineering) Time: 3 hours Max. Marks: 75 nswer any FIVE Questions ll Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~ 1. a) Three identical cylinders, each of weighing W, are staked as shown in Figure 1, on smooth inclined surfaces, each inclined at an angle, θ with the horizontal. Determine the smallest angle θ to prevent stack from collapsing. b) The boom of crane is shown in Figure 2, if the weight of the boom is negligible compared with the load W = 60 kn, find the compression in the boom and also limiting value of tension T when the boom approaches the vertical position. θ Figure 1 θ 2. a) Find the least horizontal force P to start motion of any part of the system of three blocks resting upon one another as shown in figure 3. The weights of the blocks are =300N, = 1000 N, = 2000 N. etween and, µ = 0.3, between and, µ = 0.2 and between and the ground µ = 0.1. b) Define the following terms i) Friction; ii) ngle of friction; iii) one of Friction c) What are the characteristic of friction? (6M+6M+3M) 1 of 3 T 6 m α Figure 2 θ W = 5 m Figure 3 P

7 R10 SET a) Distinguish between quarter turn and compound belt drives. b) Determine the maximum power that can transmitted using a belt of 100 mm 10 mm with an angle of lap of The density of belt is 1000kg/m 3 and coefficient of friction may be taken as The tension in the belt should not exceed 1.5N/mm 2. (6M+9M) 4. a) thin plate of mass m is cut in the shape of a parallelogram of thickness, t as shown in Figure 4. Determine the mass moment of inertia of the plate about the x-axis. b) Determine the centriod for a semicircular arc about its diameteral base. y 5. a) bar of uniform thickness t tapers uniformly from a width b1 at one end to b2 at the other end in a length L. Find the expression for its extension under an axial pull P. b) Tension test was conducted on a specimen and the following readings were recorded. Diameter = 25 mm Gauge length of extensometer = 200 mm Least count of extensometer = mm t a load of 30 kn, extensometer reading = 60 t a load of 50 kn, extensometer reading = 100 Yield load = 160 kn Maximum load = 205 kn Diameter neck = 17 mm Final extension over 125 mm original length = 150 mm Find Young s Modulus, yield stress, ultimate stress, percentage elongation and percentage reduction in area. 6. The eam is simply supported at and and subjected to the uniformly distributed load of 300 N/m plus the couple of magnitude 2700 N-m as shown in Figure 5 Write equations for shearing force and bending moment and make plots of these equations. y z t x b b Figure N/m 3 m 3 m 3 m D b x 2700 N/m x R Figure 5 R 2 of 3

8 R10 SET The cross-section of a cast iron beam is as shown in Figure 6. The top flange is in compression and bottom flange is in tension. Permissible stress in tension is 30 N/mm 2 and its value in compression is 90 N/mm 2. What is the maximum uniformly distributed load the beam can carry over a simply supported span of 5 m? 75 mm mm Figure 6 8. The unsymmetrical I-section shown in Figure 7 Is the cross section of a beam, which is subjected to a hear force of 60 kn. Draw the shear stress variation diagram across the depth. 100 mm y mm (a) Figure 7 3 of 3 20 mm 50 mm 100 mm 50 mm 200 mm

9 R10 SET - 4 II. Tech I Semester Regular Examinations, March 2014 MEHNIS OF MTERILS (ivil Engineering) Time: 3 hours Max. Marks: 75 nswer any FIVE Questions ll Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~ 1. a) tripod consists of three bars joined at D as shown in Fig.1. Find the component of force F along the direction T and the angle between F & T. b) ompute the horizontal component and its direction from X axis of resultant force of the force system T = 400 N, P = 200 N and F = 650 N directed from D towards, and respectively acting as shown in Figure 1. (8M+7M) Z 3m 6m F m Y O 3m 5m Figure 1 2. Two smooth ball bearings each of weight w and radius r are placed inside a cylindrical open at both ends. The assembly rests on a horizontal surface as shown in Figure 2. If the cylinder is of weight W and radius R < 2r, find: a) the force exerted by either ball bearing on the cylinder, b) the smallest value of W that will prevent the cylinder from tipping over c) could the cylinder possibly tip if it were closed at the bottom? 2R P m D 12m 6m r r T m X Figure 2 1 of 3

10 R10 SET a) Deduce an expression for centrifugal tension of belt drive. b) The maximum allowed tension in a belt is 1500 N. The angle of lap is and coefficient of friction between the belt and material of the pulley is Neglecting the effect of centrifugal tension, calculate the net driving tension and power transmitted if the belt speed is 2 m/s. 4. a) Determine the product of inertia of shaded area as shown in Figure 3 about the x-y axis. b) Define mass moment of inertia and explain Transfer formula for mass moments of inertia. y 80 mm Figure 3 5. a) tapering rod has diameter d 1 at one end and it tapers uniformly to a diameter d2 at the other end in a length L. If the modulus of elasticity is E, find the change in length when subjected to an axial force P. b) Derive the relationship between i) Modulus of elasticity and modulus of rigidity ii) Modulus of elasticity and bulk modulus. 6. Draw the bending moment and shear force diagram for the beam loaded as shown in Figure 4. Mark the values at the salient points. Determine the point of contraflexure also. 50 kn 2 m 1 m 20 kn/m x 10 kn/m 7 m 3 m R 1 Figure 4 R 2 40 kn 2 of 3

11 R10 SET symmetric I-section of size 200mm 500mm, 15 mm thick is strengthened with 300mm 20 mm rectangular plate on top flange as shown is Figure 5. If permissible stress in the material is 150 N/mm 2, determine how much concentrated load the beam of this section can carry at centre of 6 m span. Given ends of beam are simply supported. 15 mm thick 300 mm 200 mm Figure 5 8. a) Derive the expression for shear stress distribution of a rectangular section. b) For a circular section of a diameter D. determine formula of shear stress at a distance a from neutral axis at a section of a beam where shearing force is F. Hence find the ratio of shear stresses, q max to q average. 3 of 3 20 mm 500 mm

2012 MECHANICS OF SOLIDS

2012 MECHANICS OF SOLIDS R10 SET - 1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

PES Institute of Technology

PES Institute of Technology PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

More information

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA (Declared as Deemed-to-be University under Section 3 of the UGC Act, 1956, Vide notification No.F.9.9/92-U-3 dated 26 th May 1993 of the Govt. of

More information

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

More information

SN QUESTION YEAR MARK 1. State and prove the relationship between shearing stress and rate of change of bending moment at a section in a loaded beam.

SN QUESTION YEAR MARK 1. State and prove the relationship between shearing stress and rate of change of bending moment at a section in a loaded beam. ALPHA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING MECHANICS OF SOLIDS (21000) ASSIGNMENT 1 SIMPLE STRESSES AND STRAINS SN QUESTION YEAR MARK 1 State and prove the relationship

More information

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05010302 Set No. 1 I B.Tech Supplimentary Examinations, February 2008 ENGINEERING MECHANICS ( Common to Mechanical Engineering, Mechatronics, Metallurgy & Material Technology, Production Engineering,

More information

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

More information

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM - 613 403 - THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information

3 Hours/100 Marks Seat No.

3 Hours/100 Marks Seat No. *17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full

More information

STRESS, STRAIN AND DEFORMATION OF SOLIDS

STRESS, STRAIN AND DEFORMATION OF SOLIDS VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I -------------------------------------------------------------------------------------------------------------------------------

More information

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR: MECHANICS OF STRUCTURES- ASSIGNMENT NO 1 SEMESTER: V 1) Find the least moment of Inertia about the centroidal axes X-X and Y-Y of an unequal angle section 125 mm 75 mm 10 mm as shown in figure 2) Determine

More information

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure.

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure. CE6306 STREGNTH OF MATERIALS Question Bank Unit-I STRESS, STRAIN, DEFORMATION OF SOLIDS PART-A 1. Define Poison s Ratio May/June 2009 2. What is thermal stress? May/June 2009 3. Estimate the load carried

More information

ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING

ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING QUESTION BANK FOR THE MECHANICS OF MATERIALS-I 1. A rod 150 cm long and of diameter 2.0 cm is subjected to an axial pull of 20 kn. If the modulus

More information

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 UNIT-I STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm

More information

Sample Question Paper

Sample Question Paper Scheme I Sample Question Paper Program Name : Mechanical Engineering Program Group Program Code : AE/ME/PG/PT/FG Semester : Third Course Title : Strength of Materials Marks : 70 Time: 3 Hrs. Instructions:

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 9-22 from Hibbeler - Statics and Mechanics of Materials) A short

More information

N = Shear stress / Shear strain

N = Shear stress / Shear strain UNIT - I 1. What is meant by factor of safety? [A/M-15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M-15]

More information

Sub. Code:

Sub. Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK UNIT I - PART-A

KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK UNIT I - PART-A KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK Sub. Code: CE1151 Sub. Name: Engg. Mechanics UNIT I - PART-A Sem / Year II / I 1.Distinguish the following system of forces with a suitable

More information

MARKS DISTRIBUTION AS PER CHAPTER (QUESTION ASKED IN GTU EXAM) Name Of Chapter. Applications of. Friction. Centroid & Moment.

MARKS DISTRIBUTION AS PER CHAPTER (QUESTION ASKED IN GTU EXAM) Name Of Chapter. Applications of. Friction. Centroid & Moment. Introduction Fundamentals of statics Applications of fundamentals of statics Friction Centroid & Moment of inertia Simple Stresses & Strain Stresses in Beam Torsion Principle Stresses DEPARTMENT OF CIVIL

More information

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR DEPARTMENT OF MECHANICAL ENGINEERING

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR DEPARTMENT OF MECHANICAL ENGINEERING VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR 603203 DEPARTMENT OF MECHANICAL ENGINEERING BRANCH: MECHANICAL YEAR / SEMESTER: I / II UNIT 1 PART- A 1. State Newton's three laws of motion? 2.

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -00 04 CIVIL ENGINEERING QUESTION BANK Course Name : STRENGTH OF MATERIALS II Course Code : A404 Class : II B. Tech II Semester Section

More information

For more Stuffs Visit Owner: N.Rajeev. R07

For more Stuffs Visit  Owner: N.Rajeev. R07 Code.No: 43034 R07 SET-1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD II.B.TECH - I SEMESTER REGULAR EXAMINATIONS NOVEMBER, 2009 FOUNDATION OF SOLID MECHANICS (AERONAUTICAL ENGINEERING) Time: 3hours

More information

C7047. PART A Answer all questions, each carries 5 marks.

C7047. PART A Answer all questions, each carries 5 marks. 7047 Reg No.: Total Pages: 3 Name: Max. Marks: 100 PJ DUL KLM TEHNOLOGIL UNIVERSITY FIRST SEMESTER.TEH DEGREE EXMINTION, DEEMER 2017 ourse ode: E100 ourse Name: ENGINEERING MEHNIS PRT nswer all questions,

More information

Semester: BE 3 rd Subject :Mechanics of Solids ( ) Year: Faculty: Mr. Rohan S. Kariya. Tutorial 1

Semester: BE 3 rd Subject :Mechanics of Solids ( ) Year: Faculty: Mr. Rohan S. Kariya. Tutorial 1 Semester: BE 3 rd Subject :Mechanics of Solids (2130003) Year: 2018-19 Faculty: Mr. Rohan S. Kariya Class: MA Tutorial 1 1 Define force and explain different type of force system with figures. 2 Explain

More information

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

More information

Only for Reference Page 1 of 18

Only for Reference  Page 1 of 18 Only for Reference www.civilpddc2013.weebly.com Page 1 of 18 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER II EXAMINATION WINTER 2013 Subject Code: X20603 Date: 26-12-2013 Subject

More information

Unit I Stress and Strain

Unit I Stress and Strain Unit I Stress and Strain Stress and strain at a point Tension, Compression, Shear Stress Hooke s Law Relationship among elastic constants Stress Strain Diagram for Mild Steel, TOR steel, Concrete Ultimate

More information

JNTU World. Subject Code: R13110/R13

JNTU World. Subject Code: R13110/R13 Set No - 1 I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E) Time: 3 hours Max. Marks: 70 Question

More information

CHAPTER 4. Stresses in Beams

CHAPTER 4. Stresses in Beams CHAPTER 4 Stresses in Beams Problem 1. A rolled steel joint (RSJ) of -section has top and bottom flanges 150 mm 5 mm and web of size 00 mm 1 mm. t is used as a simply supported beam over a span of 4 m

More information

PART-A. a. 60 N b. -60 N. c. 30 N d. 120 N. b. How you can get direction of Resultant R when number of forces acting on a particle in plane.

PART-A. a. 60 N b. -60 N. c. 30 N d. 120 N. b. How you can get direction of Resultant R when number of forces acting on a particle in plane. V.S.. ENGINEERING OLLEGE, KRUR EPRTMENT OF MEHNIL ENGINEERING EMI YER: 2009-2010 (EVEN SEMESTER) ENGINEERING MEHNIS (MEH II SEM) QUESTION NK UNIT I PRT- EM QUESTION NK 1. efine Mechanics 2. What is meant

More information

UNIT I SIMPLE STRESSES AND STRAINS

UNIT I SIMPLE STRESSES AND STRAINS Subject with Code : SM-1(15A01303) Year & Sem: II-B.Tech & I-Sem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES

More information

(Please write your Roll No. immediately) Mid Term Examination. Regular (Feb 2017)

(Please write your Roll No. immediately) Mid Term Examination. Regular (Feb 2017) (Please write your Roll No. immediately) Roll No... Mid Term Examination Regular (Feb 2017) B.Tech-II sem Sub-Engineering Mechanics Paper code- ETME-110 Time-1.5 hours Max Marks-30 Note: 1. Q.No. 1 is

More information

Sample Test Paper - I

Sample Test Paper - I Scheme - G Sample Test Paper - I Course Name : Civil, Chemical, Mechanical and Electrical Engineering Group Course Code : AE/CE/CH/CR/CS/CV/EE/EP/FE/ME/MH/MI/PG/PT/PS Semester : Second Subject Title :

More information

SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS

SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS Time Allowed:2 Hours Maximum Marks: 300 Attention: 1. Paper consists of Part A (Civil & Structural) Part B (Electrical) and Part C (Mechanical)

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

Questions from all units

Questions from all units Questions from all units S.NO 1. 1 UNT NO QUESTON Explain the concept of force and its characteristics. BLOOMS LEVEL LEVEL 2. 2 Explain different types of force systems with examples. Determine the magnitude

More information

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) I B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) Term-End Examination 00 December, 2009 Co : ENGINEERING MECHANICS CD Time : 3 hours Maximum Marks : 70 Note : Attempt

More information

UNIT 3 Friction and Belt Drives 06ME54. Structure

UNIT 3 Friction and Belt Drives 06ME54. Structure UNIT 3 Friction and Belt Drives 06ME54 Structure Definitions Types of Friction Laws of friction Friction in Pivot and Collar Bearings Belt Drives Flat Belt Drives Ratio of Belt Tensions Centrifugal Tension

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17204 15116 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary. (4)

More information

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

More information

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3

Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 Statics Chapter II Fall 2018 Exercises Corresponding to Sections 2.1, 2.2, and 2.3 2 3 Determine the magnitude of the resultant force FR = F1 + F2 and its direction, measured counterclockwise from the

More information

Mechanics of Structure

Mechanics of Structure S.Y. Diploma : Sem. III [CE/CS/CR/CV] Mechanics of Structure Time: Hrs.] Prelim Question Paper Solution [Marks : 70 Q.1(a) Attempt any SIX of the following. [1] Q.1(a) Define moment of Inertia. State MI

More information

Dept of ECE, SCMS Cochin

Dept of ECE, SCMS Cochin B B2B109 Pages: 3 Reg. No. Name: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SECOND SEMESTER B.TECH DEGREE EXAMINATION, MAY 2017 Course Code: BE 100 Course Name: ENGINEERING MECHANICS Max. Marks: 100 Duration:

More information

Simple Stresses in Machine Parts

Simple Stresses in Machine Parts Simple Stresses in Machine Parts 87 C H A P T E R 4 Simple Stresses in Machine Parts 1. Introduction.. Load. 3. Stress. 4. Strain. 5. Tensile Stress and Strain. 6. Compressive Stress and Strain. 7. Young's

More information

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

More information

NAME: Given Formulae: Law of Cosines: Law of Sines:

NAME: Given Formulae: Law of Cosines: Law of Sines: NME: Given Formulae: Law of Cosines: EXM 3 PST PROBLEMS (LESSONS 21 TO 28) 100 points Thursday, November 16, 2017, 7pm to 9:30, Room 200 You are allowed to use a calculator and drawing equipment, only.

More information

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR 2014-2015 UNIT - 1 STRESS, STRAIN AND DEFORMATION OF SOLIDS PART- A 1. Define tensile stress and tensile strain. The stress induced

More information

SECOND ENGINEER REG. III/2 APPLIED MECHANICS

SECOND ENGINEER REG. III/2 APPLIED MECHANICS SECOND ENGINEER REG. III/2 APPLIED MECHANICS LIST OF TOPICS Static s Friction Kinematics Dynamics Machines Strength of Materials Hydrostatics Hydrodynamics A STATICS 1 Solves problems involving forces

More information

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C CE-1259, Strength of Materials UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS Part -A 1. Define strain energy density. 2. State Maxwell s reciprocal theorem. 3. Define proof resilience. 4. State Castigliano

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

2. a) Explain the equilibrium of i) Concurrent force system, and ii) General force system.

2. a) Explain the equilibrium of i) Concurrent force system, and ii) General force system. Code No: R21031 R10 SET - 1 II B. Tech I Semester Supplementary Examinations Dec 2013 ENGINEERING MECHANICS (Com to ME, AE, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information

Reg. No. : Question Paper Code : B.Arch. DEGREE EXAMINATION, APRIL/MAY Second Semester AR 6201 MECHANICS OF STRUCTURES I

Reg. No. : Question Paper Code : B.Arch. DEGREE EXAMINATION, APRIL/MAY Second Semester AR 6201 MECHANICS OF STRUCTURES I WK 4 Reg. No. : Question Paper Code : 71387 B.Arch. DEGREE EXAMINATION, APRIL/MAY 2017. Second Semester AR 6201 MECHANICS OF STRUCTURES I (Regulations 2013) Time : Three hours Maximum : 100 marks Answer

More information

STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains

STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains STRENGTH OF MATERIALS-I Unit-1 Simple stresses and strains 1. What is the Principle of surveying 2. Define Magnetic, True & Arbitrary Meridians. 3. Mention different types of chains 4. Differentiate between

More information

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

More information

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

More information

Strength of Materials (15CV 32)

Strength of Materials (15CV 32) Strength of Materials (15CV 32) Module 1 : Simple Stresses and Strains Dr. H. Ananthan, Professor, VVIET,MYSURU 8/21/2017 Introduction, Definition and concept and of stress and strain. Hooke s law, Stress-Strain

More information

AE302,ME302,DAE14,DME14

AE302,ME302,DAE14,DME14 AE302,ME302,DAE14,DME14 III SEMESTER DIPLOMA EXAMINATION, JANUARY-2013 MANUFACTURING TECHNOLOGY-I Time: 3 Hours Max. Marks: 75 GROUP A : Answer any three questions. (Question No. 1 is compulsory) Q.1 What

More information

Direct and Shear Stress

Direct and Shear Stress Direct and Shear Stress 1 Direct & Shear Stress When a body is pulled by a tensile force or crushed by a compressive force, the loading is said to be direct. Direct stresses are also found to arise when

More information

MECHANICS OF SOLIDS Credit Hours: 6

MECHANICS OF SOLIDS Credit Hours: 6 MECHANICS OF SOLIDS Credit Hours: 6 Teaching Scheme Theory Tutorials Practical Total Credit Hours/week 4 0 6 6 Marks 00 0 50 50 6 A. Objective of the Course: Objectives of introducing this subject at second

More information

Statics deal with the condition of equilibrium of bodies acted upon by forces.

Statics deal with the condition of equilibrium of bodies acted upon by forces. Mechanics It is defined as that branch of science, which describes and predicts the conditions of rest or motion of bodies under the action of forces. Engineering mechanics applies the principle of mechanics

More information

2016 ENGINEERING MECHANICS

2016 ENGINEERING MECHANICS Set No 1 I B. Tech I Semester Regular Examinations, Dec 2016 ENGINEERING MECHANICS (Com. to AE, AME, BOT, CHEM, CE, EEE, ME, MTE, MM, PCE, PE) Time: 3 hours Max. Marks: 70 Question Paper Consists of Part-A

More information

if the initial displacement and velocities are zero each. [ ] PART-B

if the initial displacement and velocities are zero each. [ ] PART-B Set No - 1 I. Tech II Semester Regular Examinations ugust - 2014 ENGINEERING MECHNICS (Common to ECE, EEE, EIE, io-tech, E Com.E, gri. E) Time: 3 hours Max. Marks: 70 Question Paper Consists of Part- and

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

JUT!SI I I I TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER:

JUT!SI I I I TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER: JUT!SI I I I TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER: COURSE: Tutor's name: Tutorial class day & time: SPRING

More information

1. Replace the given system of forces acting on a body as shown in figure 1 by a single force and couple acting at the point A.

1. Replace the given system of forces acting on a body as shown in figure 1 by a single force and couple acting at the point A. Code No: Z0321 / R07 Set No. 1 I B.Tech - Regular Examinations, June 2009 CLASSICAL MECHANICS ( Common to Mechanical Engineering, Chemical Engineering, Mechatronics, Production Engineering and Automobile

More information

Advanced Structural Analysis EGF Section Properties and Bending

Advanced Structural Analysis EGF Section Properties and Bending Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear

More information

Levers. 558 A Textbook of Machine Design

Levers. 558 A Textbook of Machine Design 558 A Textbook of Machine Design C H A P T E R 15 Levers 1. Introduction.. Application of Levers in Engineering Practice.. Design of a Lever. 4. Hand Lever. 5. Foot Lever. 6. Cranked Lever. 7. Lever for

More information

The example of shafts; a) Rotating Machinery; Propeller shaft, Drive shaft b) Structural Systems; Landing gear strut, Flap drive mechanism

The example of shafts; a) Rotating Machinery; Propeller shaft, Drive shaft b) Structural Systems; Landing gear strut, Flap drive mechanism TORSION OBJECTIVES: This chapter starts with torsion theory in the circular cross section followed by the behaviour of torsion member. The calculation of the stress stress and the angle of twist will be

More information

mportant nstructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE 1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

More information

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the

More information

1. What would be the value of F1 to balance the system if F2=20N? 20cm T =? 20kg

1. What would be the value of F1 to balance the system if F2=20N? 20cm T =? 20kg 1. What would be the value of F1 to balance the system if F2=20N? F2 5cm 20cm F1 (a) 3 N (b) 5 N (c) 4N (d) None of the above 2. The stress in a wire of diameter 2 mm, if a load of 100 gram is applied

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 3 ME 276 Spring 2017-2018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress

More information

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a. E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

More information

COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6

COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6 COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 0 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6 TIME SCHEDULE Module Topics Period Moment of forces Support reactions Centre

More information

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

More information

STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections

STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections STRESS! Stress Evisdom! verage Normal Stress in an xially Loaded ar! verage Shear Stress! llowable Stress! Design of Simple onnections 1 Equilibrium of a Deformable ody ody Force w F R x w(s). D s y Support

More information

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS Unit 2: Unit code: QCF Level: 4 Credit value: 15 Engineering Science L/601/1404 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS 1. Be able to determine the behavioural characteristics of elements of static engineering

More information

9 MECHANICAL PROPERTIES OF SOLIDS

9 MECHANICAL PROPERTIES OF SOLIDS 9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body

More information

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002 student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

More information

USHA RAMA COLLEGE OF ENGINEERING & TECHNOLOGY

USHA RAMA COLLEGE OF ENGINEERING & TECHNOLOGY Set No - 1 I B. Tech II Semester Supplementary Examinations Feb. - 2015 ENGINEERING MECHANICS (Common to ECE, EEE, EIE, Bio-Tech, E Com.E, Agri. E) Time: 3 hours Max. Marks: 70 Question Paper Consists

More information

AQA Maths M2. Topic Questions from Papers. Moments and Equilibrium

AQA Maths M2. Topic Questions from Papers. Moments and Equilibrium Q Maths M2 Topic Questions from Papers Moments and Equilibrium PhysicsndMathsTutor.com PhysicsndMathsTutor.com 11 uniform beam,, has mass 20 kg and length 7 metres. rope is attached to the beam at. second

More information

This equation of motion may be solved either by differential equation method or by graphical method as discussed below:

This equation of motion may be solved either by differential equation method or by graphical method as discussed below: 2.15. Frequency of Under Damped Forced Vibrations Consider a system consisting of spring, mass and damper as shown in Fig. 22. Let the system is acted upon by an external periodic (i.e. simple harmonic)

More information

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5 BTECH MECHANICAL PRINCIPLES AND APPLICATIONS Level 3 Unit 5 FORCES AS VECTORS Vectors have a magnitude (amount) and a direction. Forces are vectors FORCES AS VECTORS (2 FORCES) Forces F1 and F2 are in

More information

DESIGN OF BEAMS AND SHAFTS

DESIGN OF BEAMS AND SHAFTS DESIGN OF EAMS AND SHAFTS! asis for eam Design! Stress Variations Throughout a Prismatic eam! Design of pristmatic beams! Steel beams! Wooden beams! Design of Shaft! ombined bending! Torsion 1 asis for

More information

JNTU World. Subject Code: R13110/R13 '' '' '' ''' '

JNTU World. Subject Code: R13110/R13 '' '' '' ''' ' Set No - 1 I B. Tech I Semester Supplementary Examinations Sept. - 2014 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E) Time: 3 hours Max. Marks: 70 Question

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

Government of Karnataka Department of Technical Education Board of Technical Examinations, Bangalore

Government of Karnataka Department of Technical Education Board of Technical Examinations, Bangalore CIE- 25 Marks Government of Karnataka Department of Technical Education Board of Technical Examinations, Bangalore Course Title: STRENGTH OF MATERIALS Course Code: Scheme (L:T:P) : 4:0:0 Total Contact

More information

R05 I B.TECH EXAMINATIONS, JUNE ENGINEERING MECHANICS (COMMON TO ME, MCT, AE)

R05 I B.TECH EXAMINATIONS, JUNE ENGINEERING MECHANICS (COMMON TO ME, MCT, AE) Code.No: R0501030 Time: 3hours R05 I B.TECH EXAMINATIONS, JUNE - 011 ENGINEERING MECHANICS (COMMON TO ME, MCT, AE) Max.Marks:80 SET-1 Answer any FIVE questions All questions carry equal marks - - - 1.a)

More information

Equilibrium of a Particle

Equilibrium of a Particle ME 108 - Statics Equilibrium of a Particle Chapter 3 Applications For a spool of given weight, what are the forces in cables AB and AC? Applications For a given weight of the lights, what are the forces

More information

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY Spring 2006 Final Examination STUDENT S NAME (please print) STUDENT S SIGNATURE STUDENT NUMBER IDE 110 CLASS SECTION INSTRUCTOR S NAME Do not turn this page until instructed to start. Write your name on

More information

ENGINEERING MECHANICS

ENGINEERING MECHANICS Set No - 1 I B. Tech II Semester Regular/Supply Examinations July/Aug. - 2015 ENGINEERING MECHANICS (Common to ECE, EEE, EIE, Bio-Tech, E Com.E, Agri. E) Time: 3 hours Max. Marks: 70 Question Paper Consists

More information