Improved Treatment of Saturation in a Synchronous Machine Model: GENTPW

Size: px
Start display at page:

Download "Improved Treatment of Saturation in a Synchronous Machine Model: GENTPW"

Transcription

1 Improved Treatment of Saturation in a Synchronous Machine Model: GENTPW Dr. Jamie Weber, Director of Software Development Dr. Saurav Mohapatra, Senior Engineer NERC SAMS November 7-8, 018 (Eagan, MISO) WECC MVWG, November 9, 018 (Salt Lake City, WECC) 001 South First Street Champaign, Illinois (17) weber@powerworld.com

2 Background Quincy Wang (B.C. Hydro) and Jamie Weber (PowerWorld) have been discussing GENTPW model Quincy was having trouble with the dynamic response of some particular machine tests GENTPJ was not capturing some dynamic behavior Steve Yang and Dmitry Kosterev at BPA sponsored work on running tests with a modified new synchronous machine model GENTPW Can it better match machine tests in both steady state and dynamic response? Saurav Mohapatra did this work at PowerWorld Corporation

3 Summary of GENTPW model GENTPW model is available in PowerWorld Simulator Version 0 Intended to be used for synchronous machines that are either round rotor or salient pole Has same parameter list as GENTPJ Changes the dynamic equations Applies similar concept for saturation used in network boundary equation of GENTPF/GENTPJ Applies concepts directly to the original GENROU model Changes the saturation function Additional scaling between d/q axis saturation is applied to input to saturation function 3

4 Summary of GENTPW Test Results Steady state characteristics of GENTPW are very similar to GENTPJ GENTPJ was desirable because it better matched steady state tests and measurements for field current and field voltage We won t present a bunch of plots showing these are the same at steady state. Dynamic response of GENTPW better matches test data as compared to GENTPJ Notably better trend of field current transient during Mvar trip tests Next slide shows this WECC interconnection dynamic simulation shows a similar trend 4

5 Dynamic Response: Reactive Power Trip Tests Measured GENTPJ GENTPW Trip to 0.0 Mvar GENTPJ transient response doesn t match GENTPW matches shape of measured transient response (suspect there is measurement delay here) Steady State Response of GENTPW and GENTPJ are very similar Initial Mvar 5

6 Applying Saturation to the Dynamic Equations Bringing treatment of network equations of GENTPF/GENTPJ into the dynamic equations From machine design and analysis, these are the reactance values that saturate: X md, X fd, X 1d, and X mq, X 1q, X q Assume leakage reactance does NOT saturate: X l In transient stability, we use transformed constants: X d, X d, X d, and X q, X q, X q GENTPF/GENTPJ used following in network boundary equations X dsat = X d X l + X SSSStt l X qsat = X q X l d SSSSSS q + X l Bottom line is that we think the dynamic behavior of GENPTF/GENTPJ could be improved for Quincy 6

7 GENTPW Extend concept used in GENTPJ algebraic network equations d-axis q-axis Reactance Values X dsat X dsat = X d X l + X SSSStt l X qsat = X q X l + X d SSSSSS l q = X d X l + X SSSSSS l X qsat = X q X l + X d SSSSSS l q Time Constants (are a function of reactance values) Exciter Interface Signals X dsat = X d X l + X SSSSSS l X qsat = X q X l + X d SSSSSS l q T dosat T dosat = T do SSSSSS d = T do SSSSSS d EE fdsat = EE fd SSSSSS d X mdsat II fd = T qosat = T qo SSSSSS q T qosat = T qo SSSSSS q X dsat X l II fd = X d X l SSSSSS d II fd White paper referenced on last slide has more detailed analysis of why this is appropriate 7

8 GENROU Block Diagram Without Saturation 8

9 GENTPW Block Diagram After a bunch of Algebra SSSSSS dd = SSSStt qq = 1 + SSSSSS ψψ mm + KK iiii II dd + II qq ψψ mm = 1 1+ωω VV qqqqqq + VV qqqqqq = VV qqqqqqqqqq + II qq RR aa + II dd XX ll VV dddddd = VV dddddddddd + II dd RR aa II qq XX ll XX dd XX ll VV XX qq XX dddddd ll 9

10 Network and Torque Equations GENTPW uses identical formulation as GENPTJ/GENTPF XX dddddddd = XX dd XX ll SSSStt dd + XX ll XX qqqqqqqq = XX qq XX ll + XX SSSStt ll qq Network Interface VV dddddddddd = VV dd RR aa II dd + XX qqqqqqqq VV qqqqqqqqqq = VV qq XX dddddddd II dd RR aa II qq II qq Torque Equation ψ qq = ψ qq II qq XX qqqqqqqq ψ dd = ψ dd II dd XX dddddddd TT eeeeeeee = ψ dd II qq ψ qq II dd δδ = ωω ωω 0 ωω = 1 PP mmmmmmm DDDD TT HH 1+ωω eeeeeeee Note: XX dddddddd <> XX qqssssss, so you must implement equations directly in software and not use circuit equation as was done for GENROU For GENROU, this is simplified by assuming XX dd = XX qq and not saturating this reactance 10

11 Saturation Assumption in GENROU Same degree of saturation on d and q-axis XX qq XX ll XX dd XX ll = X mqq X mdd X mqsat X mdsat = X mqq SSSSSS dd SSSSSS q X mdd This is same assumption used in GENROU Saturation Term in GENROU is done with addition of flux We want ratio of fluxes to remain XX mmqq XX mmdd. Thus the additional terms must be scaled by factor which was used In GENTPW saturation is applied by using multiplication on the reactance terms Scaling on output not needed SSSSSS d SSSSSS q 11

12 Limitation Only have open-circuit magnetization saturation curve Same Assumption as GENROU: XX qq XX ll XX dd XX ll = X mqq X mdd X mqsat X mdsat = X mqq SSSSSS dd SSSSSS q X mdd SSSSSS d SSSSSS q DOES mean that both X md and X mq saturate to the same extent DOES NOT require that ψψ md and ψψ mq contribute equally towards the degree of saturation More discussion on next two slides 1

13 Scaled Saturation Function What should be the input variable? Input Variable= ψψ m Trick used when only d-axis saturation curve is available Widely researched and now accepted as the right way ψψ m ψψ md + j = XX md II md + j XX md XX mq ψψ mq XX md XX mq XX mq II mq This choice means that ψψ m = XX md II m XX md shows up as a linear factor relating ψψ m and II m INCORRECT ψψ m ψψ md + jjψψ mmmm II m II md + j X mq II X mq md OR = XX md II md + j II m II md + j XX mq XX md II mq XX mq XX md II mq Hence, d-axis saturation curve can be used for both axes ψψ m ψψ md + j XX md XX mq ψψ mq II m II md + jii mq References dating back from 1991, 1998, 013 A. L Pierrat, E Dejaeger, MS Garrido, Models unification for the saturated synchronous machines, - International conference on Evolution and modern and Modern Aspects of Synchronous Machines, 1991 B. E. Levi, State-space d-q axis models of saturated salient pole synchronous machines, in IEE Proceedings - Electric Power Applications, vol. 145, no. 3, pp , May doi: /ip-epa: C. F. Therrien, L. Wang, J. Jatskevich and O. Wasynczuk, "Efficient Explicit Representation of AC Machines Main Flux Saturation in State- Variable-Based Transient Simulation Packages," in IEEE Transactions on Energy Conversion, vol. 8, no., pp , June

14 Scaled Saturation Function What should be the input variable? xx = ψψ m, where ψψ m ψψ md + j XX md XX mq ψψ mq Compare with : ψψ ag ψψ md + jψψ mq One of the INCORRECT transformations (reference B) E. Levi, State-space d-q axis models of saturated salient pole synchronous machines, in IEE Proceedings - Electric Power Applications, vol. 145, no. 3, pp , May XX If XX mq < XX md md > 1 XX mq i.e. Contribution of ψψ mq towards saturation is amplified INCORRECT ψψ m ψψ md + jjψψ mmmm II m II md + j X mq II X mq md OR ψψ m ψψ md + j XX md XX mq ψψ mq II m II md + jii mq Pierrat, Levi, Wasynczuk: Machines background Determining rotor position accurately is VERY important for controlling machines Drove the work to calculate II fd accurately during saturation 14

15 Algebra to get input to Saturation Function ψψ m ψψ md + j ψψ md = ψψ ddag = VV dddddd 1+ωω ψψ mqq = ψψ qag = VV qqaaaa 1+ωω XX md XX mq ψψ mq = ψψ md + j (air gap flux on d axis) (air gap flux on q axis) XX d XX ll XX q XX ll ψψ mq ψψ m = ψψ dag + XX d XX ll XX q XX ll ψψ qqag = VV dddddd 1+ωω XX + d XX ll VV qqqqqq XX q XX ll 1+ωω ψψ m = 1 1+ωω VV dddddd + XX d XX ll XX q XX ll VV qqqqqq 15

16 Saturation Function Input We continue to add the KK iiii to include additional saturation as the stator current increases SSSSSS dd = SSSStt qq = 1 + SSSSSS ψψ mm + KK iiii II dd + II qq ψψ mm = 1 1+ωω VV qqqqqq + XX dd XX ll VV XX qq XX dddddd ll Air Gap Voltage Terms can be calculated from circuit equation VV qqqqqq = VV qqqqqqqqqq + II qq RR aa + II dd XX ll VV dddddd = VV dddddddddd + II dd RR aa II qq XX ll 16

17 GENTPW Status GENTPW is available and released in PowerWorld Simulator Version 0. We believe this model combines the improvements made in GENTPJ with some dynamic behavior that may have been lost What you should NOT do All these synchronous machine models (GENROU, GENTPJ, GENTPW) are slightly different Input parameters (X d, X d, X d, X q, X q, X q, and X l ) are specifically tuned using test data for ONE model type You should not just switch model types and copy parameters over! When you should use GENTPW When you do a generator test in the next decade, look at using GENTPW Our expectation is you will have very good success using the manufacture specified reactances with this model 17

18 GENTPW Documentation This presentation is posted in a knowledge base article on PowerWorld s website Also, a very detailed white-paper is included there that explains how to implement this model in software Initialization is more difficult, but doable Network Boundary Equation is identical to GENTPF/GENTPJ, so nothing new there (that s still the hard part!) 18

Transient Stability Analysis with PowerWorld Simulator

Transient Stability Analysis with PowerWorld Simulator Transient Stability Analysis with PowerWorld Simulator T1: Transient Stability Overview, Models and Relationships 2001 South First Street Champaign, Illinois 61820 +1 (217) 384.6330 support@powerworld.com

More information

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines)

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines) Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines) d axis: L fd L F - M R fd F L 1d L D - M R 1d D R fd R F e fd e F R 1d R D Subscript Notations: ( ) fd ~ field winding quantities

More information

Dynamics of the synchronous machine

Dynamics of the synchronous machine ELEC0047 - Power system dynamics, control and stability Dynamics of the synchronous machine Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 38 Time constants and

More information

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi AC Machines Operating Principles: Synchronous Motor In synchronous motors, the stator of the motor has a rotating magnetic

More information

The synchronous machine (detailed model)

The synchronous machine (detailed model) ELEC0029 - Electric Power System Analysis The synchronous machine (detailed model) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct February 2018 1 / 6 Objectives The synchronous

More information

Q. 1 Q. 25 carry one mark each.

Q. 1 Q. 25 carry one mark each. Q. 1 Q. 25 carry one mark each. Q.1 Given ff(zz) = gg(zz) + h(zz), where ff, gg, h are complex valued functions of a complex variable zz. Which one of the following statements is TUE? (A) If ff(zz) is

More information

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory 1 Modeling ree Acceleration of a Salient Synchronous Machine Using Two-Axis Theory Abdullah H. Akca and Lingling an, Senior Member, IEEE Abstract This paper investigates a nonlinear simulation model of

More information

Understanding the Inductances

Understanding the Inductances Understanding the Inductances We have identified six different inductances (or reactances) for characterizing machine dynamics. These are: d, q (synchronous), ' d, ' q (transient), '' d,'' q (subtransient)

More information

MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator

MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator 628 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator A. Kishore,

More information

Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi

Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi AC Machines Operating Principles: Rotating Magnetic Field The key to the functioning of AC machines is the rotating magnetic

More information

ECE 692 Advanced Topics on Power System Stability 2 Power System Modeling

ECE 692 Advanced Topics on Power System Stability 2 Power System Modeling ECE 692 Avance Topics on Power System Stability 2 Power System Moeling Spring 2016 Instructor: Kai Sun 1 Outline Moeling of synchronous generators for Stability Stuies Moeling of loas Moeling of frequency

More information

ECE 585 Power System Stability

ECE 585 Power System Stability Homework 1, Due on January 29 ECE 585 Power System Stability Consider the power system below. The network frequency is 60 Hz. At the pre-fault steady state (a) the power generated by the machine is 400

More information

Use of the finite element method for parameter estimation of the circuit model of a high power synchronous generator

Use of the finite element method for parameter estimation of the circuit model of a high power synchronous generator BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 63, No. 3, 2015 DOI: 10.1515/bpasts-2015-0067 Use of the finite element method for parameter estimation of the circuit model of a high

More information

Modeling of Symmetrical Squirrel Cage Induction Machine with MatLab Simulink

Modeling of Symmetrical Squirrel Cage Induction Machine with MatLab Simulink Modeling of Symmetrical Squirrel Cage Induction Machine with MatLab Simulink Marcus Svoboda *, Lucian Tutelea *, Gheorghe Madescu **, Marius Biriescu *, Martian Mot ** * University POLITEHNICA Timisoara/Electrical

More information

ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models

ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements Read Chapter

More information

ECEN 667 Power System Stability Lecture 15: PIDs, Governors, Transient Stability Solutions

ECEN 667 Power System Stability Lecture 15: PIDs, Governors, Transient Stability Solutions ECEN 667 Power System Stability Lecture 15: PIDs, Governors, Transient Stability Solutions Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements

More information

ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous Machine Modeling

ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous Machine Modeling ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous achine odeling Spring 214 Instructor: Kai Sun 1 Outline Synchronous achine odeling Per Unit Representation Simplified

More information

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Power System Stability and Control Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Contents Chapter 1 Introduction to Power System Stability

More information

Parameter Estimation of Three Phase Squirrel Cage Induction Motor

Parameter Estimation of Three Phase Squirrel Cage Induction Motor International Conference On Emerging Trends in Mechanical and Electrical Engineering RESEARCH ARTICLE OPEN ACCESS Parameter Estimation of Three Phase Squirrel Cage Induction Motor Sonakshi Gupta Department

More information

Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS

Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS Abhijit N Morab, Abhishek P Jinde, Jayakrishna Narra, Omkar Kokane Guide: Kiran R Patil

More information

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients)

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients) ELEC0047 - Power system dynamics, control and stability (a simple example of electromagnetic transients) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 25 Objectives

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

More information

EE 742 Chapter 3: Power System in the Steady State. Y. Baghzouz

EE 742 Chapter 3: Power System in the Steady State. Y. Baghzouz EE 742 Chapter 3: Power System in the Steady State Y. Baghzouz Transmission Line Model Distributed Parameter Model: Terminal Voltage/Current Relations: Characteristic impedance: Propagation constant: π

More information

From now, we ignore the superbar - with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ

From now, we ignore the superbar - with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ From now, we ignore the superbar - with variables in per unit. ψ 0 L0 i0 ψ L + L L L i d l ad ad ad d ψ F Lad LF MR if = ψ D Lad MR LD id ψ q Ll + Laq L aq i q ψ Q Laq LQ iq 41 Equivalent Circuits for

More information

Determination of a Synchronous Generator Characteristics via Finite Element Analysis

Determination of a Synchronous Generator Characteristics via Finite Element Analysis SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 2, No. 2, November 25, 157-162 Determination of a Synchronous Generator Characteristics via Finite Element Analysis Zlatko Kolondzovski 1, Lidija Petkovska

More information

Analog Circuits Part 1 Circuit Theory

Analog Circuits Part 1 Circuit Theory Introductory Medical Device Prototyping Analog Circuits Part 1 Circuit Theory, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Covered Circuit Theory

More information

Dynamic d-q Model of Induction Motor Using Simulink

Dynamic d-q Model of Induction Motor Using Simulink Dynamic d-q Model of Induction Motor Using Simulink Anand Bellure #1, Dr. M.S Aspalli #2, #1,2 Electrical and Electronics Engineering Department, Poojya Doddappa Appa College of Engineering, Gulbarga,

More information

Chapter 22 : Electric potential

Chapter 22 : Electric potential Chapter 22 : Electric potential What is electric potential? How does it relate to potential energy? How does it relate to electric field? Some simple applications What does it mean when it says 1.5 Volts

More information

Coordinated Initialization of the Load Distribution Equivalent, Load Characteristic, and Load Distributed Generation Models

Coordinated Initialization of the Load Distribution Equivalent, Load Characteristic, and Load Distributed Generation Models Coordinated Initialization of the Load Distribution Equivalent, Load Characteristic, and Load Distributed Generation Models Date : January 7, 016 Prepared by : James Weber, Ph.D. Director of Software Development

More information

A Power System Dynamic Simulation Program Using MATLAB/ Simulink

A Power System Dynamic Simulation Program Using MATLAB/ Simulink A Power System Dynamic Simulation Program Using MATLAB/ Simulink Linash P. Kunjumuhammed Post doctoral fellow, Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom

More information

Starting, Steady-State Modelling and Simulation Studies Of Single-Phase Transfer-Field Reluctance Motor, Operating In the Asynchronous Mode

Starting, Steady-State Modelling and Simulation Studies Of Single-Phase Transfer-Field Reluctance Motor, Operating In the Asynchronous Mode International Journal of Scientific and Research Publications, Volume 7, Issue 1, January 2017 182 Starting, Steady-State Modelling and Simulation Studies Of Single-Phase Transfer-Field Reluctance Motor,

More information

ABOUT DYNAMIC STABILITY OF HIGH POWER SYNCHRONOUS MACHINE. A REVIEW

ABOUT DYNAMIC STABILITY OF HIGH POWER SYNCHRONOUS MACHINE. A REVIEW Rev. Roum. Sci. Techn. Électrotechn. et Énerg. Vol. 62, 1, pp. 8 13, Bucarest, 217 Dedicated to the memory of Academician Toma Dordea ABOUT DYNAMIC STABILITY OF HIGH POWER SYNCHRONOUS MACHINE. A REVIEW

More information

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition Rotational Motion Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 We ll look for a way to describe the combined (rotational) motion 2 Angle Measurements θθ ss rr rrrrrrrrrrrrrr

More information

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems SECTION 7: FAULT ANALYSIS ESE 470 Energy Distribution Systems 2 Introduction Power System Faults 3 Faults in three-phase power systems are short circuits Line-to-ground Line-to-line Result in the flow

More information

JRE SCHOOL OF Engineering

JRE SCHOOL OF Engineering JRE SCHOOL OF Engineering Class Test-1 Examinations September 2014 Subject Name Electromechanical Energy Conversion-II Subject Code EEE -501 Roll No. of Student Max Marks 30 Marks Max Duration 1 hour Date

More information

Chapter 4. Synchronous Generators. Basic Topology

Chapter 4. Synchronous Generators. Basic Topology Basic Topology Chapter 4 ynchronous Generators In stator, a three-phase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.

More information

A STUDY OF THE EIGENVALUE ANALYSIS CAPABILITIES OF POWER SYSTEM DYNAMICS SIMULATION SOFTWARE

A STUDY OF THE EIGENVALUE ANALYSIS CAPABILITIES OF POWER SYSTEM DYNAMICS SIMULATION SOFTWARE A STUDY OF THE EIGENVALUE ANALYSIS CAPABILITIES OF POWER SYSTEM DYNAMICS SIMULATION SOFTWARE J.G. Slootweg 1, J. Persson 2, A.M. van Voorden 1, G.C. Paap 1, W.L. Kling 1 1 Electrical Power Systems Laboratory,

More information

Model of Induction Machine to Transient Stability Programs

Model of Induction Machine to Transient Stability Programs Model of Induction Machine to Transient Stability Programs Pascal Garcia Esteves Instituto Superior Técnico Lisbon, Portugal Abstract- this paper reports the work performed on the MSc dissertation Model

More information

EEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2 - TEST

EEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2 - TEST ATTEMPT ALL QUESTIONS (EACH QUESTION 20 Marks, FULL MAKS = 60) Given v 1 = 100 sin(100πt+π/6) (i) Find the MS, period and the frequency of v 1 (ii) If v 2 =75sin(100πt-π/10) find V 1, V 2, 2V 1 -V 2 (phasor)

More information

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008] Doubly salient reluctance machine or, as it is also called, switched reluctance machine [Pyrhönen et al 2008] Pros and contras of a switched reluctance machine Advantages Simple robust rotor with a small

More information

Research on Permanent Magnet Linear Synchronous Motor Control System Simulation *

Research on Permanent Magnet Linear Synchronous Motor Control System Simulation * Available online at www.sciencedirect.com AASRI Procedia 3 (2012 ) 262 269 2012 AASRI Conference on Modeling, Identification and Control Research on Permanent Magnet Linear Synchronous Motor Control System

More information

Synchronous Machines

Synchronous Machines Synchronous machine 1. Construction Generator Exciter View of a twopole round rotor generator and exciter. A Stator with laminated iron core C Slots with phase winding B A B Rotor with dc winding B N S

More information

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015 ECE 325 Electric Energy System Components 7- Synchronous Machines Instructor: Kai Sun Fall 2015 1 Content (Materials are from Chapters 16-17) Synchronous Generators Synchronous Motors 2 Synchronous Generators

More information

ECEN 667 Power System Stability Lecture 20: Oscillations, Small Signal Stability Analysis

ECEN 667 Power System Stability Lecture 20: Oscillations, Small Signal Stability Analysis ECEN 667 Power System Stability Lecture 20: Oscillations, Small Signal Stability Analysis Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements

More information

Anakapalli Andhra Pradesh, India I. INTRODUCTION

Anakapalli Andhra Pradesh, India I. INTRODUCTION Robust MRAS Based Sensorless Rotor Speed Measurement of Induction Motor against Variations in Stator Resistance Using Combination of Back Emf and Reactive Power Methods Srikanth Mandarapu Pydah College

More information

Lecture 7 MOS Capacitor

Lecture 7 MOS Capacitor EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 7 MOS Capacitor Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030

More information

1. Introduction. Keywords Transient Stability Analysis, Power System, Swing Equation, Three-Phase Fault, Fault Clearing Time

1. Introduction. Keywords Transient Stability Analysis, Power System, Swing Equation, Three-Phase Fault, Fault Clearing Time Energy and Power 17, 7(1): -36 DOI: 1.593/j.ep.1771.3 Numerical Simulations for Transient Stability Analysis of Two-Machine Power System Considering Three-Phase Fault under Different Fault Clearing Times

More information

Mathematical Modelling of an 3 Phase Induction Motor Using MATLAB/Simulink

Mathematical Modelling of an 3 Phase Induction Motor Using MATLAB/Simulink 2016 IJSRSET Volume 2 Issue 3 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Mathematical Modelling of an 3 Phase Induction Motor Using MATLAB/Simulink ABSTRACT

More information

Nonlinear Electrical FEA Simulation of 1MW High Power. Synchronous Generator System

Nonlinear Electrical FEA Simulation of 1MW High Power. Synchronous Generator System Nonlinear Electrical FEA Simulation of 1MW High Power Synchronous Generator System Jie Chen Jay G Vaidya Electrodynamics Associates, Inc. 409 Eastbridge Drive, Oviedo, FL 32765 Shaohua Lin Thomas Wu ABSTRACT

More information

TRANSIENT ANALYSIS OF SELF-EXCITED INDUCTION GENERATOR UNDER BALANCED AND UNBALANCED OPERATING CONDITIONS

TRANSIENT ANALYSIS OF SELF-EXCITED INDUCTION GENERATOR UNDER BALANCED AND UNBALANCED OPERATING CONDITIONS TRANSIENT ANALYSIS OF SELF-EXCITED INDUCTION GENERATOR UNDER BALANCED AND UNBALANCED OPERATING CONDITIONS G. HARI BABU Assistant Professor Department of EEE Gitam(Deemed to be University), Visakhapatnam

More information

Module 7 (Lecture 25) RETAINING WALLS

Module 7 (Lecture 25) RETAINING WALLS Module 7 (Lecture 25) RETAINING WALLS Topics Check for Bearing Capacity Failure Example Factor of Safety Against Overturning Factor of Safety Against Sliding Factor of Safety Against Bearing Capacity Failure

More information

SECTION 5: CAPACITANCE & INDUCTANCE. ENGR 201 Electrical Fundamentals I

SECTION 5: CAPACITANCE & INDUCTANCE. ENGR 201 Electrical Fundamentals I SECTION 5: CAPACITANCE & INDUCTANCE ENGR 201 Electrical Fundamentals I 2 Fluid Capacitor Fluid Capacitor 3 Consider the following device: Two rigid hemispherical shells Separated by an impermeable elastic

More information

ECE 421/521 Electric Energy Systems Power Systems Analysis I 3 Generators, Transformers and the Per-Unit System. Instructor: Kai Sun Fall 2013

ECE 421/521 Electric Energy Systems Power Systems Analysis I 3 Generators, Transformers and the Per-Unit System. Instructor: Kai Sun Fall 2013 ECE 41/51 Electric Energy Systems Power Systems Analysis I 3 Generators, Transformers and the Per-Unit System Instructor: Kai Sun Fall 013 1 Outline Synchronous Generators Power Transformers The Per-Unit

More information

L.6 Absolute Value Equations and Inequalities

L.6 Absolute Value Equations and Inequalities L.6 Absolute Value Equations and Inequalities 1 The concept of absolute value (also called numerical value) was introduced in Section R. Recall that when using geometrical visualisation of real numbers

More information

ME5286 Robotics Spring 2017 Quiz 2

ME5286 Robotics Spring 2017 Quiz 2 Page 1 of 5 ME5286 Robotics Spring 2017 Quiz 2 Total Points: 30 You are responsible for following these instructions. Please take a minute and read them completely. 1. Put your name on this page, any other

More information

Last Name _Piatoles_ Given Name Americo ID Number

Last Name _Piatoles_ Given Name Americo ID Number Last Name _Piatoles_ Given Name Americo ID Number 20170908 Question n. 1 The "C-V curve" method can be used to test a MEMS in the electromechanical characterization phase. Describe how this procedure is

More information

Lecture 3 Transport in Semiconductors

Lecture 3 Transport in Semiconductors EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 3 Transport in Semiconductors Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken,

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous generators or alternators are used to convert mechanical power derived from steam, gas, or hydraulic-turbine to ac electric power Synchronous generators are the primary

More information

ECEN 667 Power System Stability Lecture 11: Exciter Models

ECEN 667 Power System Stability Lecture 11: Exciter Models CN 667 Power System Stability Lecture : xciter Models Prof. Tom Overbye Dept. of lectrical and Computer ngineering Texas A&M University, overbye@tamu.edu Announcements Read Chapter 4 Homework 3 is due

More information

Crash course Verification of Finite Automata CTL model-checking

Crash course Verification of Finite Automata CTL model-checking Crash course Verification of Finite Automata CTL model-checking Exercise session - 07.12.2016 Xiaoxi He 1 Reminders Big picture Objective Verify properties over DES models Formal method Absolute guarantee!

More information

Charge carrier density in metals and semiconductors

Charge carrier density in metals and semiconductors Charge carrier density in metals and semiconductors 1. Introduction The Hall Effect Particles must overlap for the permutation symmetry to be relevant. We saw examples of this in the exchange energy in

More information

Generators. What its all about

Generators. What its all about Generators What its all about How do we make a generator? Synchronous Operation Rotor Magnetic Field Stator Magnetic Field Forces and Magnetic Fields Force Between Fields Motoring Generators & motors are

More information

Module 3 : Sequence Components and Fault Analysis

Module 3 : Sequence Components and Fault Analysis Module 3 : Sequence Components and Fault Analysis Lecture 12 : Sequence Modeling of Power Apparatus Objectives In this lecture we will discuss Per unit calculation and its advantages. Modeling aspects

More information

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra Worksheets for GCSE Mathematics Algebraic Expressions Mr Black 's Maths Resources for Teachers GCSE 1-9 Algebra Algebraic Expressions Worksheets Contents Differentiated Independent Learning Worksheets

More information

Electromagnetic Torque From Event Report Data A Measure of Machine Performance

Electromagnetic Torque From Event Report Data A Measure of Machine Performance Electromagnetic Torque From Event Report Data A Measure of Machine Performance Dale Finney and Derrick Haas, Schweitzer Engineering Laboratories, Inc. Abstract Power system events (such as starting a motor),

More information

SECTION 4: ULTRACAPACITORS. ESE 471 Energy Storage Systems

SECTION 4: ULTRACAPACITORS. ESE 471 Energy Storage Systems SECTION 4: ULTRACAPACITORS ESE 471 Energy Storage Systems 2 Introduction Ultracapacitors 3 Capacitors are electrical energy storage devices Energy is stored in an electric field Advantages of capacitors

More information

Lesson 17: Synchronous Machines

Lesson 17: Synchronous Machines Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines

More information

EE 410/510: Electromechanical Systems Chapter 4

EE 410/510: Electromechanical Systems Chapter 4 EE 410/510: Electromechanical Systems Chapter 4 Chapter 4. Direct Current Electric Machines and Motion Devices Permanent Magnet DC Electric Machines Radial Topology Simulation and Experimental Studies

More information

SYNCHRONOUS GENERATOR s ROTOR INVESTIGATION OF A HYBRID POWER SYSTEM INCLUDING A.G.

SYNCHRONOUS GENERATOR s ROTOR INVESTIGATION OF A HYBRID POWER SYSTEM INCLUDING A.G. Proc. of the 5th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 25 (pp59-514) SYNCHRONOUS GENERATOR s ROTOR INVESTIGATION OF A HYBRID

More information

Control Lyapunov Functions for Controllable Series Devices

Control Lyapunov Functions for Controllable Series Devices IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 4, NOVEMBER 2001 689 Control Lyapunov Functions for Controllable Series Devices Mehrdad Ghandhari, Member, IEEE, Göran Andersson, Fellow, IEEE, and Ian

More information

Synchronous machine with PM excitation Two-axis model

Synchronous machine with PM excitation Two-axis model Synchronous machine with PM excitation q Two-axis model q i q u q d i Q d Q D i d N S i D u d Voltage, flux-linkage and motion equations for a PM synchronous machine dd ud Ri s d q dt dq uq Ri s q d dt

More information

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Control of Wind Turbine Generators James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Review from Day 1 Review Last time, we started with basic concepts from physics such as

More information

Mathematical Model of a Synchronous Machine under Complicated Fault Conditions

Mathematical Model of a Synchronous Machine under Complicated Fault Conditions Mathematical Model of a Synchronous Machine under Complicated Fault Conditions Prof. Hani Obeid PhD EE, P.Eng.,SMIEEE, Applied Sciences University, P.O.Box 950674, Amman 11195- Jordan. Abstract This paper

More information

Modeling of Hydraulic Turbine and Governor for Dynamic Studies of HPP

Modeling of Hydraulic Turbine and Governor for Dynamic Studies of HPP Modeling of Hydraulic Turbine and Governor for Dynamic Studies of HPP Nanaware R. A. Department of Electronics, Shivaji University, Kolhapur Sawant S. R. Department of Technology, Shivaji University, Kolhapur

More information

Experimental and Finite Element Analysis of an Electronic Pole-Change Drive

Experimental and Finite Element Analysis of an Electronic Pole-Change Drive Experimental and Finite Element Analysis of an Electronic Pole-Change Drive Mohamed Osama Thomas A. Lipo General Electric Company University of Wisconsin - Madison Corporate Research and Development Center

More information

(1) Introduction: a new basis set

(1) Introduction: a new basis set () Introduction: a new basis set In scattering, we are solving the S eq. for arbitrary VV in integral form We look for solutions to unbound states: certain boundary conditions (EE > 0, plane and spherical

More information

PROPOSAL FOR ADDITION OF IEC 34-4 STANDARD IN PART FOR DETERMINATION OF POTIER REACTANCE

PROPOSAL FOR ADDITION OF IEC 34-4 STANDARD IN PART FOR DETERMINATION OF POTIER REACTANCE PROPOSAL FOR ADDITION OF IEC 34-4 STANDARD IN PART FOR DETERMINATION OF POTIER REACTANCE M. M. Kostic * Electrical Engeneering Institute Nikola Tesla, Belgrade, SERBIA* Abstract: On the base of ones investigations

More information

Torque Performance and Permanent Magnet Arrangement for Interior Permanent Magnet Synchronous Motor

Torque Performance and Permanent Magnet Arrangement for Interior Permanent Magnet Synchronous Motor Extended Summary pp.954 960 Torque Performance and Permanent Magnet Arrangement for Interior Permanent Magnet Synchronous Motor Naohisa Matsumoto Student Member (Osaka Prefecture University, matumoto@eis.osakafu-u.ac.jp)

More information

Application on Unloading Transient Electromagnetic Computation of Brushless AC Exciter with Magnet

Application on Unloading Transient Electromagnetic Computation of Brushless AC Exciter with Magnet Application on Unloading Transient Electromagnetic Computation of Brushless AC Exciter with Magnet Ma Zhen ma_zhen_2008@126.com Li Jianlei Gong Feng Zhang Xianjiang Abstract To investigate the internal

More information

Shanming Wang, Ziguo Huang, Shujun Mu, and Xiangheng Wang. 1. Introduction

Shanming Wang, Ziguo Huang, Shujun Mu, and Xiangheng Wang. 1. Introduction Mathematical Problems in Engineering Volume 215, Article ID 467856, 6 pages http://dx.doi.org/1.1155/215/467856 Research Article A Straightforward Convergence Method for ICCG Simulation of Multiloop and

More information

Lecture 9: Space-Vector Models

Lecture 9: Space-Vector Models 1 / 30 Lecture 9: Space-Vector Models ELEC-E8405 Electric Drives (5 ECTS) Marko Hinkkanen Autumn 2017 2 / 30 Learning Outcomes After this lecture and exercises you will be able to: Include the number of

More information

Generalized Theory of Electrical Machines- A Review

Generalized Theory of Electrical Machines- A Review Generalized Theory of Electrical Machines- A Review Dr. Sandip Mehta Department of Electrical and Electronics Engineering, JIET Group of Institutions, Jodhpur Abstract:-This paper provides an overview

More information

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods International Journal of Electrical and Electronics Research ISSN 348-6988 (online) Vol., Issue 3, pp: (58-66), Month: July - September 04, Available at: www.researchpublish.com Transient Stability Analysis

More information

SECTION 5: POWER FLOW. ESE 470 Energy Distribution Systems

SECTION 5: POWER FLOW. ESE 470 Energy Distribution Systems SECTION 5: POWER FLOW ESE 470 Energy Distribution Systems 2 Introduction Nodal Analysis 3 Consider the following circuit Three voltage sources VV sss, VV sss, VV sss Generic branch impedances Could be

More information

d-q Equivalent Circuit Representation of Three-Phase Flux Reversal Machine with Full Pitch Winding

d-q Equivalent Circuit Representation of Three-Phase Flux Reversal Machine with Full Pitch Winding d-q Equivalent Circuit epresentation of Three-Phase Flux eversal Machine with Full Pitch Winding D. S. More, Hari Kalluru and B. G. Fernandes Department of Electrical Engineering, Indian Institute of Technology

More information

A New Novel of transverse differential protection Scheme

A New Novel of transverse differential protection Scheme A New Novel of transverse differential protection Scheme Li Xiaohua, Yin Xianggen, Zhang Zhe, Chen Deshu Dept of Electrical Engineering, Huazhong University of science and technology, Wuhan Hubei, 430074,

More information

Apparatus Models: Transformers

Apparatus Models: Transformers Apparatus Models: Transformers Normally model as series impedance from winding resistance and leakage reactance Positive and negative impedances equal In a Y- transformer that phase shift is in the opposite

More information

EE 451 Power System Stability

EE 451 Power System Stability EE 451 Power System Stability Power system operates in synchronous mode Power system is subjected to a wide range of disturbances (small and large) - Loads and generation changes - Network changes - Faults

More information

LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES

LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES ET 332b Ac Motors, Generators and Power Systems LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES 1 LEARNING OBJECTIVES After this presentation you will be able to: Interpret alternator phasor diagrams

More information

Transient Performance Simulation and Analysis of AC Exciter in Aeronautic AC Power Supply Based on Maxwell 2D

Transient Performance Simulation and Analysis of AC Exciter in Aeronautic AC Power Supply Based on Maxwell 2D Transient Performance Simulation and Analysis of AC Exciter in Aeronautic AC Power Supply Based on Maxwell D Li Jianlei li_jian_lei_008@6.com Cao Yanyan Department of the Industry Engineering Binzhou Vocational

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability ECE 4/5 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability Spring 014 Instructor: Kai Sun 1 Transient Stability The ability of the power system to maintain synchronism

More information

Coulomb s Law and Coulomb s Constant

Coulomb s Law and Coulomb s Constant Pre-Lab Quiz / PHYS 224 Coulomb s Law and Coulomb s Constant Your Name: Lab Section: 1. What will you investigate in this lab? 2. Consider a capacitor created when two identical conducting plates are placed

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous Machines n 1 Φ f n 1 Φ f I f I f I f damper (run-up) winding Stator: similar to induction (asynchronous) machine ( 3 phase windings that forms a rotational circular magnetic

More information

ELECTRICALMACHINES-I QUESTUION BANK

ELECTRICALMACHINES-I QUESTUION BANK ELECTRICALMACHINES-I QUESTUION BANK UNIT-I INTRODUCTION OF MAGNETIC MATERIAL PART A 1. What are the three basic rotating Electric machines? 2. Name the three materials used in machine manufacture. 3. What

More information

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Page 359 World Electric Vehicle Journal Vol. 3 - ISSN 232-6653 - 29 AVERE Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Tao Sun, Soon-O Kwon, Geun-Ho Lee, Jung-Pyo

More information

Vector control of asymmetrical six-phase synchronous motor

Vector control of asymmetrical six-phase synchronous motor Iqbal et al., Cogent Engineering (216, 3: 11344 ELECTRICAL & ELECTRONIC ENGINEERING RESEARCH ARTICLE Vector control of asymmetrical six-phase synchronous motor Arif Iqbal 1 *, G.K. Singh 1 and Vinay Pant

More information

Power System Stability GENERATOR CONTROL AND PROTECTION

Power System Stability GENERATOR CONTROL AND PROTECTION Power System Stability Outline Basis for Steady-State Stability Transient Stability Effect of Excitation System on Stability Small Signal Stability Power System Stabilizers Speed Based Integral of Accelerating

More information

Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator

Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator Project Work Dmitry Svechkarenko Royal Institute of Technology Department of Electrical Engineering Electrical Machines and

More information

Static Characteristics of Switched Reluctance Motor 6/4 By Finite Element Analysis

Static Characteristics of Switched Reluctance Motor 6/4 By Finite Element Analysis Australian Journal of Basic and Applied Sciences, 5(9): 1403-1411, 2011 ISSN 1991-8178 Static Characteristics of Switched Reluctance Motor 6/4 By Finite Element Analysis 1 T. Jahan. 2 M.B.B. Sharifian

More information

CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM

CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM 20 CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM 2. GENERAL Dynamic stability of a power system is concerned with the dynamic behavior of the system under small perturbations around an operating

More information