CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM


 Rafe Haynes
 1 years ago
 Views:
Transcription
1 20 CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM 2. GENERAL Dynamic stability of a power system is concerned with the dynamic behavior of the system under small perturbations around an operating condition and more specifically it is a phenomena of slow and poorly damped or sustained or even diverging power oscillations which are essentially due to varying system loads and ill controlled controllers of the system. Computer analysis of this problem requires mathematical models which simulate as accurately as the behavior of physical system but at the same time not very complex to handle. This chapter presents the development of the mathematical model for the dynamic stability analysis of Single Machine Infinite Bus System (SMIB) and Multi machine power system. 2.2 SIMPLIFIED LINEAR MODEL FOR SMIB SYSTEM In stability analysis, the mathematical model is used for dynamic analysis of power systems Assumptions The following assumptions are made for the development of simplified linear model of SMIB system:
2 2. Damper windings both in the d and q axes are neglected. 2. Armature resistance of the machine is neglected. 3. Excitation system is represented by a single time constant. 4. Balanced conditions are assumed and saturation effects are neglected Classical Machine Model In the classical methods of analysis, the simplified model or classical model of the generator is used (Kundur 994). Here, the machine is modeled by an equivalent voltage source behind impedance connected to an infinitebus as shown in Figure 2.. Infinite Bus An infinite bus is a source of invariable frequency and voltage (both in magnitude and angle). A major bus of a power system of very large capacity compared to the rating of the machine under consideration is approximately an infinite bus. x e Figure 2. Oneline diagram of SMIB The state space classical machine model is shown in Figure 2.2.
3 22 K s Figure 2.2 Classical Machine Model The state equations of the classical model are given in equation (2.): p( ω ) = Tm K S D 2H δ ω p( δ ) = ω ω (2.) 0 State vector T x = ( ω δ ) (2.2) And when the effect of flux linkage is included, three states are used to model the generator: ω, δ and E q '. The state equations are given in equation (2.3) as follows: T K K D p ω=  δ E  ω τ τ τ τ m 2 ' q j j j j p( δ ) = ω ω 0  K p E = E + E  δ (2.3) ' ' 4 q ' q ' FD ' Kτ 3 do τdo τdo where τ j = 2H, H is the inertia constant.
4 23 State Vector of the SMIB system including the effect of flux linkage is given by equation (2.4) t x [ E' q] = ω δ (2.4) where the variables are E q ' ω δ  quadrature axis component of voltage behind transient reactance  angular velocity of rotor  rotor angle in radians K to K 6 is the Heffron Philips constants (Padiyar 2002). 2.3 EXCITATION SYSTEM REPRESENTATION The excitation system model considered is the simplified form of STA model shown in Figure 2.3. A high exciter gain, without derivative feedback, is used. By inspection of Figure 2.3, the state space equations can be written as, V V t KA + st A E FD Figure 2.3 Excitation System Representation p E FD = /T A (K A V t + E FD ) (2.5) with T R is neglected, V ref =constant. And V t = K 5 δ + K 6 E q '
5 24 where E FD  Equivalent stator emf proportional to field voltage K A  Gain of the Exciter T A  Time constant of the exciter T R V t  Terminal Voltage Transuder Time Constant  Terminal voltage of the Synchronous machine V ref  Reference voltage of the Synchronous machine Combining the Equations (2.3) with the exciter equation (2.5), the complete state space description of SMIB system including exciter is given in equation (2.6). T K K D p ω=  δ E  ω τ τ τ τ m 2 ' q j j j j p δ = ω0 ω  K p E = E + E  δ ' ' 4 q ' q ' FD ' Kτ 3 do τdo τdo pe FD = /T A (K A K 5 δ + K A K 6 E q ' + E FD ) (2.6) The state vector is thus defined by Equation (2.7): t x [ E' q E FD] = ω δ (2.7) 2.4 SMIB SYSTEM REPRESENTATION WITH CPSS The block diagram of the CPSS is shown in Figure 2.4. The state equations for the same can be written as follows. p V 2 = K PSS p ω (/T w ) V 2 (2.8) p V s = (T /T 2 ) p V 2 + (/T 2 ) V 2 (/T 2 ) V s (2.9)
6 25 where K PSS  CPSS gain T, T 2  Phase compensator time constants T w  Wash out time constant CPSS V t V s Figure 2.4 CPSS Representation State vector of the synchronous machine model including PSS is given by equation (2.0): T x = [ E q' EFD V2 V s] ω δ (2.0) The block diagram of simplified linear model of a synchronous machine connected to an infinite bus with exciter and PSS is shown in Figure 2.5. V t Conventional Power System Stabilizer Figure 2.5 State Space Model of SMIB system representation with CPSS
7 DYNAMIC STABILITY MODEL OF MULTI MACHINE POWER SYSTEM In stability analysis of a multimachine system, modelling of all the machines in a more detailed manner is exceedingly complex in view of the large number of synchronous machines to be simulated. Therefore simplifying assumptions and approximations are usually made in modelling the system. In this thesis two axis model is used for all machines in the sample system taken for investigation Assumptions Made In this work the synchronous machine is modeled using the twoaxis model (Anderson and Fouad 2003). In the twoaxis model the transient effects are accounted for, while the sub transient effects are neglected. The transient effects are dominated by the rotor circuits, which are the field circuit in daxis and an equivalent circuit in the qaxis formed by the solid rotor. The amortisseur winding effects are neglected. An additional assumption made in this model is that in stator voltage equations the terms pλ d and pλ q are negligible compared to the speed voltage terms and that ω ω =p.u. The R block diagram representation of the synchronous machine in twoaxis model is shown in Figure 2.6.
8 Figure 2.6 Block diagram representation of two axis model for synchronous machine 27
9 Synchronous Machine Representation Using the block diagram reduction technique and with the simplifying assumptions the state equations for the twoaxis model in p.u. form pe d ' = {E d '  (x q x q ') I q } / τ qo ' pe q ' = {E FD  E q '  ( x d  x d ' ) I d } / τ do ' pω = {T m  Dω  T e } / τ j pδ = ω  (2.) where the state variables are E d '  direct axis component of voltage behind transient reactance E q '  quadrature axis component of voltage behind transient reactance ω  angular velocity of rotor δ  rotor angle in radians and T e = E d 'I d + E q 'I q (x q ' x d ' ) I d I q τ j = 4πfH x d  direct axis synchronous reactance x q  quadrature axis synchronous reactance x d '  direct axis transient reactance x q '  quadrature axis transient reactance τ do '  direct axis open circuit time constant
10 29 τ qo '  quadrature axis open circuit time constant T e  electrical torque of synchronous machine T m  mechanical torque of synchronous machine D  damping coefficient of synchronous machine E FD  Equivalent stator emf corresponding to field voltage I q  quadrature axis armature current I d  direct axis armature current H  inertia constant of synchronous machine in sec f  frequency in Hz A multimachine power system is shown in Figure 2.7 and the network has n machines and r loads. The active source nodal voltages in Figure 2.7 are taken as the terminal voltages V i, i =.2.n instead of the internal EMF`s. The loads are represented by constant impedances and the network has n active sources representing the synchronous machines. Figure 2.7 Multimachine with constant impedance loads
11 30 This network is reduced to a nnode network shown in Figure 2.8 in which the current and voltage phases of each node are expressed in terms of the respective machine reference frame. Figure 2.8 Reduced nport network The objective here is to derive relations between v di and v qi, i=,2,.n, and the state variables. This will be obtained in the form of a relation between these voltages, the machine currents i qi and i di, and the angles δ i, i=,2,.n. For convenience we will use a complex notation as follows. For a machine i we define the phasors V and I i i as V = V + jv ; I = I + ji (2.2) i qi di i qi di
12 3 where V = v / 3 : V = v / 3 qi qi di di I = i / 3 : I = i / 3 qi qi di di and where the axis q i is taken as the phasor reference in each case. Then we define the complex vectors V and I by V V + jv q V V jv 2 + V = = V V + jv qn n d q 2 d 2 dn (2.3) I I I + ji q d I I + ji 2 q 2 d 2 = = I I + ji qn dn n (2.4) The voltage Vi and thecurrent I i are referred to the q and d axes of machine i. In the other words the different voltages and currents are expressed in terms of different reference. To obtain general network relationships, it is desirable to express the various branch quantities to the same reference which is given by equation (2.5): The node voltages and currents are expressed as Vˆ and ˆI i i, i =,2,..n, and ˆI = YV ˆ (2.5) where Y is the short circuit admittance of the network.
13 Converting to Common Reference Frame Let us assume that we want to convert the phasor Vi V jv qi di = + to the common reference frame (moving at synchronous speed). Let the same voltage, expressed in new notation, be ˆV = V + jv i Qi Di as shown in Figure 2.9. where, = + and ˆV = V + jv i Qi Di (2.6) Vi V jv qi di D ref V Di V i = V ˆi d i q i V qi V di δ i δ i Q ref V Qi Figure 2.9 Two frames of reference for phasor quantities From the Figure 2.9 V Qi = [Vqi cos δ i Vdi cos δ i ] (2.7) V = [V cos δ V cos δ ] Di di i qi i (2.8) V + V = (V cos δ V cos δ ) + (V sin δ + V cos δ ) Qi Di qi i di i qi i di i (2.9) ˆV i j i = V e δ i (2.20)
14 33 The equation (2.20) can be written in generalized matrix form as below jδ V jv e V jv Q D + q d jδ2 V + jv e 0 V jv Q2 D2 + = q2 d V jv + V qn jv Qn Dn j n + δ e dn (2.2) jδ e 0 0 jδ2 e 0 T = 0 0 jδn e (2.22) The equation (2.20) can be written as ˆV = TV (2.23) Thus T is a transformation that transforms the d and q quantities of all machines to the system frame, which a common frame is moving at synchronous speed. The transformation matrix T contains elements only at the leading diagonal and hence we can show that T is orthogonal, i.e. T  = T *. Now the equation (2.23) can be rewritten as * ˆ V=T V (2.24) Similarly for node current Î = TI (2.25)
15 34 * ˆ I = T I (2.26) we get Substituting equation (2.25) and equation (2.23) in equation (2.5), I = MV (2.27) where M = T  YT (2.28) Linearizing equation (2.27) and making necessary substitutions (Anderson and Fouad 2003), the following equations are obtained. I qi = G ii V qi B ii V di + n [ Y ii cos(θ ij  δ ij0 ) V qj ] j=  n [ j= Y ij sin (θ ij  δ ij0 ) V dj ] + n [ Y ij {sin(θ ij  δ ij0 ) V qj0 + cos(θ ij  δ ij0 )V dj0 ] δ ij j= ; i =,...n (2.29) I di = B ii V qi + G ii V di + n [ Y ij cos (θ ij  δ ij0 ) V dj ] j= + n [ j= Y ij sin (θ ij  δ ij0 ) V qj ] + n [ Y ij {sin (θ ij  δ ij0 )V dj0  cos(θ ij  δ ij0 )V qj0 ] δ ij j= ; i =,...n (2.30) The state space model for linearized system is obtained by linearizing the differential and algebraic equations at an operating point. While doing this linearization process, additional terms involving terminal voltage components (which are not state variables) remain in the differential
16 35 equations. To express the voltage components in terms of state variables, the machine currents are also linearized and expressed in terms of state variables and voltage components. Finally the current components are eliminated using the interconnecting network algebraic equations. From the initial conditions, E d ' i0, E q ' i0, I qi0, I di0, E FDi0 and δ i0 are determined. Linearizing equation (2.) we get p E d ' i = { E d ' i  (x qi  x q ' i ) I qi } / τ qo ' i ; i =,...n p E q ' i = { E FDi  E q ' i + ( x di  x d ' i ) I di } / τ do ' i ; i =,...n p ω i = { T mi (I di0 E d ' i + I qi0 E q ' i + E d ' i0 I di +E q ' i0 I qi ) D i ω i } / τ j ; i =,...n (replacing V by E'): p δ i = ω i ; i =, n (2.3) Substituting equations (2.29) and (2.30) in equation (2.3). p E d i = {[(x qi  x q ' i ) B ii ] E d ' i τ qo ' i + (x qi  x q ' i ) n [ Y ik {sin (θ ik  δ ik0 ) E d ' k (x qi  x q ' i ) G ii E q ' i k=  (x qi  x q ' i ) n [ Y ik cos (θ ik  δ ik0 ) ] E q ' k k=  (x qi  x q ' i ) n [ Y ik cos(θ ik δ ik0 )] E d ' k0 +Y ik sin ((θ ik  δ ik0 ) E d ' k0 ] δ ik } k= i =,2.n (2.32)
17 36 p E q ' i = τ ' do i {[(x di x d ' i ) B ii ] E q ' i + (x di x d i ) n [ Y ik {sin (θ ik  δ ik0 )] E d ' k + (x di x d ' i ) G ii E d ' i k= + (x di x d ' i ) n [ Y ik sin (θ ik  δ ik0 ) ] E q ' k k=  (x di x d ' i ) n [ Y ik cos(θ ik δ ik0 ) E q ' k0 Y ik sin((θ ik δ ik0 )E d ' k0 ] δ ik + E FDi )} k= i =,2.n (2.33) p ω i = τ ji {[ T mi  D i ω i [I di0 + G ii E d ' i0  B ii E q ' i0 ] E d ' i  [ I qi0 + B ii E d ' i0 + G ii E q ' i0 ] E q 'i  n [ k= Y ik cos (θ ik  δ ik0 ) E d ' i0  Y ik sin (θ ik  δ ik0 ) E q ' i0 ] E d ' k  n [ k= Y ik sin (θ ik  δ ik0 ) E d ' i0 + Y ik cos (θ ik  δ ik0 ) E q ' i0 ] E q ' k  n [ k= Y ik cos (θ ik  δ ik0 ) (E q ' k0 E d ' i0 +E d ' k0 E q ' i0 ) + Y ik sin ((θ ik  δ ik0 ) (E d ' k0 E d ' i0 +E q ' k0 E q ' i0 ) δ ik } i =,2.n (2.34) p δ i = ω  ω i (2.35) i = 2,3.n taking machine as reference.
18 37 The above set of equations (2.32 to 2.35) gives the state space model of nmachine system. 2.6 EXCITER REPRESENTATION The state space equation of the exciter can be derived from the block diagram of the exciter shown in the Figure 2.3. From the Figure 2.3, we get K A EFD = + STA V t (2.36) For n, number of exciters, the state equations is as follows: K p E =  V + V  E ; ( ) Ai fdi Refi i fdi TAi TAi i=, n (2.37) Now the state vector of the n machine state model including exciter equation is as follows. X T i = [ E d ' i E q ' i ω i δ i E FD i ] ; i=, n (2.38) 2.7 CONVENTIONAL POWER SYSTEM STABILIZER REPRESENTATION The Conventional Power System Stabilizer (PSS) adds damping to the generator rotor oscillations by controlling its excitation using auxiliary stabilizing signals. To provide damping, the stabilizer must produce a component of electrical torque in phase with the rotor speed deviations.
19 38 The important blocks in a power system stabilizer are: Washout circuit. Phase compensator. Stabilizer gain. The state space equation for the power system stabilizer (PSS) can be obtained from the block diagram shown in Figure 2.0. Figure 2.0 Conventional Power System Stabilizer Structure (CPSS) From the wash out block, we get st V = (K ω) w 2 PSS + stw (2.39) p V 2i = K PSSi p ωi (/T wi ) V 2i ; i =,...n (2.40) From the phase compensator block we get + st V V + st 2 = s 2 (2.4) From equation (2.4) we get p V si = (T i /T 2i ) p V 2i +(/T 2i ) V 2i (/T 2i ) V si ; i =,...n (2.42)
20 39 The state vector of the complete system after the inclusion of power system stabilizer is as follows: x T i = [ E' di E' qi ω i δ i E FDi V 2i Vs i ] ; i=, n (2.43) 2.8 FUZZY LOGIC BASED POWER SYSTEM STABILIZER (FPSS) FPSS. Figure 2. shows the schematic block diagram of the system with d dt ω ω FPSS V s + V t  + V ref Power System Generator and Exciter ω Figure 2. Structure of the Power system with FPSS Speed Deviation of the synchronous machine ( ω) and its deviation ( ω ) are chosen as inputs to the FPSS. Simulation of the sample SMIB system without PSS is carried out for several operating conditions and different disturbances and the inputs are normalized using their estimated peak values. Seven labels are taken for both the inputs and output. The labels are LP (large positive), MP (medium positive), SP (small positive), VS (very small), SN (small negative), MN (medium negative) and LN (Large negative). Linear triangular membership function is used in the design of FPSS. In our design of FPSS, the fuzzy sets with triangular membership function for ω are shown in Figure 2.2. The membership function for similar to the above Figure 2.2. ω and Vs are
21 40 LN MN SN VS SP MP LP Figure 2.2 Triangular membership function of ω Khan 2000). Table 2. shows the rules of fuzzy logic based PSS (Lakshmi and Table 2. Rule Table of fuzzy logic PSS ω LP MP SP VS SN MN LN LP LP LP LP LP MP SP VS ω MP LP LP MP MP SP VS SN SP LP MP SP SP VS SN MN VS MP MP SP VS SN MN N SN MP SP VS SN SN MN LN MN SP VS SN MN MN LN LN LN VS SN MN LN LN LN LN
22 4 2.9 CONCLUSION Mathematical model of SMIB system for dynamic stability analysis is presented in this chapter. Various state variables with PSS, system matrix including static exciter and CPSS are included in this chapter. Block diagram of simplified linear model of SMIB including exciter and CPSS is also neatly presented in this chapter. Non linear mathematical model representing the dynamics of the multi machine power system combining the synchronous machine model, excitation system (IEEE Type ST A), with conventional power system stabilizers are described in this chapter. The fuzzy logic based PSS model is also described.
1 Unified Power Flow Controller (UPFC)
Power flow control with UPFC Rusejla Sadikovic Internal report 1 Unified Power Flow Controller (UPFC) The UPFC can provide simultaneous control of all basic power system parameters ( transmission voltage,
More informationComparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS
Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS Abhijit N Morab, Abhishek P Jinde, Jayakrishna Narra, Omkar Kokane Guide: Kiran R Patil
More informationDynamics of the synchronous machine
ELEC0047  Power system dynamics, control and stability Dynamics of the synchronous machine Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 38 Time constants and
More informationAnalysis of Bifurcations in a Power System Model with Excitation Limits
Analysis of Bifurcations in a Power System Model with Excitation Limits Rajesh G. Kavasseri and K. R. Padiyar Department of Electrical Engineering Indian Institute of Science, Bangalore, India Abstract
More informationECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7  Transient Stability
ECE 4/5 Power System Operations & Planning/Power Systems Analysis II : 7  Transient Stability Spring 014 Instructor: Kai Sun 1 Transient Stability The ability of the power system to maintain synchronism
More informationFrom now, we ignore the superbar  with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ
From now, we ignore the superbar  with variables in per unit. ψ 0 L0 i0 ψ L + L L L i d l ad ad ad d ψ F Lad LF MR if = ψ D Lad MR LD id ψ q Ll + Laq L aq i q ψ Q Laq LQ iq 41 Equivalent Circuits for
More informationCHAPTER 3 MATHEMATICAL MODELING OF HYDEL AND STEAM POWER SYSTEMS CONSIDERING GT DYNAMICS
28 CHAPTER 3 MATHEMATICAL MODELING OF HYDEL AND STEAM POWER SYSTEMS CONSIDERING GT DYNAMICS 3.1 INTRODUCTION This chapter focuses on the mathematical state space modeling of all configurations involved
More informationSCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS. Transient Stability LECTURE NOTES SPRING SEMESTER, 2008
SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS LECTURE NOTES Transient Stability SPRING SEMESTER, 008 October 7, 008 Transient Stability Transient stability refers to the ability of a synchronous
More informationCHAPTER 3 SYSTEM MODELLING
32 CHAPTER 3 SYSTEM MODELLING 3.1 INTRODUCTION Models for power system components have to be selected according to the purpose of the system study, and hence, one must be aware of what models in terms
More informationThe synchronous machine (detailed model)
ELEC0029  Electric Power System Analysis The synchronous machine (detailed model) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct February 2018 1 / 6 Objectives The synchronous
More informationThe Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System
1 The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System M. M. Alomari and B. S. Rodanski University of Technology, Sydney (UTS) P.O. Box 123, Broadway NSW 2007, Australia
More informationEE 742 Chapter 3: Power System in the Steady State. Y. Baghzouz
EE 742 Chapter 3: Power System in the Steady State Y. Baghzouz Transmission Line Model Distributed Parameter Model: Terminal Voltage/Current Relations: Characteristic impedance: Propagation constant: π
More informationA Power System Dynamic Simulation Program Using MATLAB/ Simulink
A Power System Dynamic Simulation Program Using MATLAB/ Simulink Linash P. Kunjumuhammed Post doctoral fellow, Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom
More informationECE 585 Power System Stability
Homework 1, Due on January 29 ECE 585 Power System Stability Consider the power system below. The network frequency is 60 Hz. At the prefault steady state (a) the power generated by the machine is 400
More informationLesson 17: Synchronous Machines
Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines
More informationDESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE
DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE LATHA.R Department of Instrumentation and Control Systems Engineering, PSG College of Technology, Coimbatore, 641004,
More informationEquivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines)
Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines) d axis: L fd L F  M R fd F L 1d L D  M R 1d D R fd R F e fd e F R 1d R D Subscript Notations: ( ) fd ~ field winding quantities
More informationBehaviour of synchronous machine during a shortcircuit (a simple example of electromagnetic transients)
ELEC0047  Power system dynamics, control and stability (a simple example of electromagnetic transients) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 25 Objectives
More informationPower system modelling under the phasor approximation
ELEC0047  Power system dynamics, control and stability Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 16 Electromagnetic transient vs. phasormode simulations
More informationJRE SCHOOL OF Engineering
JRE SCHOOL OF Engineering Class Test1 Examinations September 2014 Subject Name Electromechanical Energy ConversionII Subject Code EEE 501 Roll No. of Student Max Marks 30 Marks Max Duration 1 hour Date
More informationCHAPTER 3 ANALYSIS OF THREE PHASE AND SINGLE PHASE SELFEXCITED INDUCTION GENERATORS
26 CHAPTER 3 ANALYSIS OF THREE PHASE AND SINGLE PHASE SELFEXCITED INDUCTION GENERATORS 3.1. INTRODUCTION Recently increase in energy demand and limited energy sources in the world caused the researchers
More informationSymmetrical Components Fall 2007
0.1 Variables STEADYSTATE ANALYSIS OF SALIENTPOLESYNCHRONOUS GENERATORS This paper is intended to provide a procedure for calculating the internal voltage of a salientpole synchronous generator given
More informationPower System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India
Power System Stability and Control Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Contents Chapter 1 Introduction to Power System Stability
More informationMathematical Model of a Synchronous Machine under Complicated Fault Conditions
Mathematical Model of a Synchronous Machine under Complicated Fault Conditions Prof. Hani Obeid PhD EE, P.Eng.,SMIEEE, Applied Sciences University, P.O.Box 950674, Amman 11195 Jordan. Abstract This paper
More informationCURENT Course Power System Coherency and Model Reduction
CURENT Course Power System Coherency and Model Reduction Prof. Joe H. Chow Rensselaer Polytechnic Institute ECSE Department November 1, 2017 Slow Coherency A large power system usually consists of tightly
More informationDesign of PSS and SVC Controller Using PSO Algorithm to Enhancing Power System Stability
IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) eissn: 22781676,pISSN: 23203331, Volume 10, Issue 2 Ver. II (Mar Apr. 2015), PP 0109 www.iosrjournals.org Design of PSS and SVC Controller
More informationIntroduction to Synchronous. Machines. Kevin Gaughan
Introduction to Synchronous Machines Kevin Gaughan The Synchronous Machine An AC machine (generator or motor) with a stator winding (usually 3 phase) generating a rotating magnetic field and a rotor carrying
More informationUnified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System
Unified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System (Ms) N Tambey, Nonmember Prof M L Kothari, Member This paper presents a systematic
More informationTHE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunications FINALEXAMINATION. Session
Name: Student ID: Signature: THE UNIVERSITY OF NEW SOUTH WALES School of Electrical Engineering & Telecommunications FINALEXAMINATION Session 00 ELEC46 Power System Analysis TIME ALLOWED: 3 hours TOTAL
More informationIn these notes, we will address (2) and then return to (1) in the next class.
Linearized Analysis of the Synchronous Machine for PSS Chapter 6 does two basic things:. Shows how to linearize the 7state model (model #2, IEEE #2., called full model without Gcct. ) of a synchronous
More informationThe synchronous machine (SM) in the power system (2) (Where does the electricity come from)?
1 The synchronous machine (SM) in the power system (2) (Where does the electricity come from)? 2 Lecture overview Synchronous machines with more than 2 magnetic poles The relation between the number of
More informationLecture 9: SpaceVector Models
1 / 30 Lecture 9: SpaceVector Models ELECE8405 Electric Drives (5 ECTS) Marko Hinkkanen Autumn 2017 2 / 30 Learning Outcomes After this lecture and exercises you will be able to: Include the number of
More informationModule 3 : Sequence Components and Fault Analysis
Module 3 : Sequence Components and Fault Analysis Lecture 12 : Sequence Modeling of Power Apparatus Objectives In this lecture we will discuss Per unit calculation and its advantages. Modeling aspects
More informationCHAPTER 6 STEADYSTATE ANALYSIS OF SINGLEPHASE SELFEXCITED INDUCTION GENERATORS
79 CHAPTER 6 STEADYSTATE ANALYSIS OF SINGLEPHASE SELFEXCITED INDUCTION GENERATORS 6.. INTRODUCTION The steadystate analysis of sixphase and threephase selfexcited induction generators has been presented
More informationPOWER SYSTEM STABILITY
LESSON SUMMARY1: POWER SYSTEM STABILITY 1. Introduction 2. Classification of Power System Stability 3. Dynamic Equation of Synchronous Machine Power system stability involves the study of the dynamics
More informationPower System Stability GENERATOR CONTROL AND PROTECTION
Power System Stability Outline Basis for SteadyState Stability Transient Stability Effect of Excitation System on Stability Small Signal Stability Power System Stabilizers Speed Based Integral of Accelerating
More informationMitigating Subsynchronous resonance torques using dynamic braking resistor S. Helmy and Amged S. ElWakeel M. Abdel Rahman and M. A. L.
Proceedings of the 14 th International Middle East Power Systems Conference (MEPCON 1), Cairo University, Egypt, December 1921, 21, Paper ID 192. Mitigating Subsynchronous resonance torques using dynamic
More informationA Computer Application for Power System Control Studies
A Computer Application for Power System Control Studies Dinis C. A. Bucho Student nº55262 of Instituto Superior Técnico Technical University of Lisbon Lisbon, Portugal Abstract  This thesis presents studies
More informationDESIGNING POWER SYSTEM STABILIZER WITH PID CONTROLLER
International Journal on Technical and Physical Problems of Engineering (IJTPE) Published by International Organization on TPE (IOTPE) ISSN 20773528 IJTPE Journal www.iotpe.com ijtpe@iotpe.com June 2010
More informationTransient Stability Analysis with PowerWorld Simulator
Transient Stability Analysis with PowerWorld Simulator T1: Transient Stability Overview, Models and Relationships 2001 South First Street Champaign, Illinois 61820 +1 (217) 384.6330 support@powerworld.com
More information(Refer Slide Time: 00:55) Friends, today we shall continue to study about the modelling of synchronous machine. (Refer Slide Time: 01:09)
(Refer Slide Time: 00:55) Power System Dynamics Prof. M. L. Kothari Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture  09 Modelling of Synchronous Machine (Contd ) Friends,
More informationSimulations and Control of Direct Driven Permanent Magnet Synchronous Generator
Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator Project Work Dmitry Svechkarenko Royal Institute of Technology Department of Electrical Engineering Electrical Machines and
More informationRobust Tuning of Power System Stabilizers Using Coefficient Diagram Method
International Journal of Electrical Engineering. ISSN 09742158 Volume 7, Number 2 (2014), pp. 257270 International Research Publication House http://www.irphouse.com Robust Tuning of Power System Stabilizers
More informationUnderstanding the Inductances
Understanding the Inductances We have identified six different inductances (or reactances) for characterizing machine dynamics. These are: d, q (synchronous), ' d, ' q (transient), '' d,'' q (subtransient)
More informationSTUDY OF SMALL SIGNAL STABILITY WITH STATIC SYNCHRONOUS SERIESCOMPENSATOR FOR AN SMIB SYSTEM
STUDY OF SMLL SIGNL STBILITY WITH STTIC SYNCHRONOUS SERIESCOMPENSTOR FOR N SMIB SYSTEM K.Geetha, Dr.T.R.Jyothsna 2 M.Tech Student, Electrical Engineering, ndhra University, India 2 Professor,Electrical
More informationFUZZY SLIDING MODE CONTROLLER FOR POWER SYSTEM SMIB
FUZZY SLIDING MODE CONTROLLER FOR POWER SYSTEM SMIB KHADDOUJ BEN MEZIANE, FAIZA DIB, 2 ISMAIL BOUMHIDI PhD Student, LESSI Laboratory, Department of Physics, Faculty of Sciences Dhar El Mahraz,Sidi Mohamed
More informationECE 421/521 Electric Energy Systems Power Systems Analysis I 3 Generators, Transformers and the PerUnit System. Instructor: Kai Sun Fall 2013
ECE 41/51 Electric Energy Systems Power Systems Analysis I 3 Generators, Transformers and the PerUnit System Instructor: Kai Sun Fall 013 1 Outline Synchronous Generators Power Transformers The PerUnit
More informationChapter 4. Synchronous Generators. Basic Topology
Basic Topology Chapter 4 ynchronous Generators In stator, a threephase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.
More informationThe Mathematical Model of Power System with Thyristor Controlled Series Capacitor in Long Transmission Line
American Journal of Applied Sciences 9 (5): 654658, 01 ISSN 1546939 01 Science Publications The Mathematical Model of Power System with Thyristor Controlled Series Capacitor in Long Transmission Line
More informationInternational Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR
Scientific Journal of Impact Factor(SJIF): 3.134 eissn(o): 23484470 pissn(p): 23486406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April 2015 SIMULATION
More informationQFT Framework for Robust Tuning of Power System Stabilizers
45EPSS75 QFT Framework for Robust Tuning of Power System Stabilizers Seyyed Mohammad Mahdi Alavi, Roozbeh IzadiZamanabadi Department of Control Engineering, Aalborg University, Denmark Correspondence
More information3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.
Exam Electrical Machines and Drives (ET4117) 11 November 011 from 14.00 to 17.00. This exam consists of 5 problems on 4 pages. Page 5 can be used to answer problem 4 question b. The number before a question
More informationCHAPTER 2 CAPACITANCE REQUIREMENTS OF SIXPHASE SELFEXCITED INDUCTION GENERATORS
9 CHAPTER 2 CAPACITANCE REQUIREMENTS OF SIXPHASE SELFEXCITED INDUCTION GENERATORS 2.. INTRODUCTION Rapidly depleting rate of conventional energy sources, has led the scientists to explore the possibility
More informationSelfTuning Control for Synchronous Machine Stabilization
http://dx.doi.org/.5755/j.eee.2.4.2773 ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 39225, VOL. 2, NO. 4, 25 SelfTuning Control for Synchronous Machine Stabilization Jozef Ritonja Faculty of Electrical Engineering
More informationLabVIEW Based Simulation of Static VAR Compensator for Transient Stability Enhancement in Electric Power Systems
International Journal of Electrical Engineering. ISSN 09742158 Volume 4, Number 1 (2011), pp.143160 International Research Publication House http://www.irphouse.com LabVIEW Based Simulation of Static
More informationECE 325 Electric Energy System Components 7 Synchronous Machines. Instructor: Kai Sun Fall 2015
ECE 325 Electric Energy System Components 7 Synchronous Machines Instructor: Kai Sun Fall 2015 1 Content (Materials are from Chapters 1617) Synchronous Generators Synchronous Motors 2 Synchronous Generators
More informationExamples of Applications of Potential Functions in Problem Solving (Web Appendix to the Paper)
Examples of Applications of otential Functions in roblem Solving (Web Appendix to the aper) Ali MehriziSani and Reza Iravani May 5, 2010 1 Introduction otential functions may be exploited to formulate
More informationChapter 9: Transient Stability
Chapter 9: Transient Stability 9.1 Introduction The first electric power system was a dc system built by Edison in 1882. The subsequent power systems that were constructed in the late 19 th century were
More informationSynchronous Machines
Synchronous Machines Synchronous generators or alternators are used to convert mechanical power derived from steam, gas, or hydraulicturbine to ac electric power Synchronous generators are the primary
More informationThe Mathematical Model of Power System with Static Var Compensator in Long Transmission Line
American Journal of Applied Sciences 9 (6): 846850, 01 ISSN 1546939 01 Science Publications The Mathematical Model of Power System with Static Var Compensator in Long Transmission Line Prechanon Kumkratug
More informationFuzzy Applications in a MultiMachine Power System Stabilizer
Journal of Electrical Engineering & Technology Vol. 5, No. 3, pp. 503~510, 2010 503 D.K.Sambariya and Rajeev Gupta* Abstract  This paper proposes the use of fuzzy applications to a 4machine and 10bus
More informationLESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES
ET 332b Ac Motors, Generators and Power Systems LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES 1 LEARNING OBJECTIVES After this presentation you will be able to: Interpret alternator phasor diagrams
More informationEE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A
EE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A 1. What are the advantages of an inter connected system? The advantages of an interconnected system are
More informationB.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester. Electrical and Electronics Engineering. EE 1352 Power System Analysis
B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester Electrical and Electronics Engineering EE 1352 Power System Analysis (Regulation 2008) Time: Three hours Answer all questions Part A (10
More informationAn Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy
An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 00 Contents Transformer. An overview of the device. Principle of operation of a singlephase transformer 3.
More informationStep Motor Modeling. Step Motor Modeling K. Craig 1
Step Motor Modeling Step Motor Modeling K. Craig 1 Stepper Motor Models Under steady operation at low speeds, we usually do not need to differentiate between VR motors and PM motors (a hybrid motor is
More informationDynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application
797 Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application Ritu Tak 1, Sudhir Y Kumar 2, B.S.Rajpurohit 3 1,2 Electrical Engineering, Mody University of Science & Technology,
More informationCOMPARISON OF DAMPING PERFORMANCE OF CONVENTIONAL AND NEURO FUZZY BASED POWER SYSTEM STABILIZERS APPLIED IN MULTI MACHINE POWER SYSTEMS
Journal of ELECTRICAL ENGINEERING, VOL. 64, NO. 6, 2013, 366 370 COMPARISON OF DAMPING PERFORMANCE OF CONVENTIONAL AND NEURO FUZZY BASED POWER SYSTEM STABILIZERS APPLIED IN MULTI MACHINE POWER SYSTEMS
More informationA STUDY OF THE EIGENVALUE ANALYSIS CAPABILITIES OF POWER SYSTEM DYNAMICS SIMULATION SOFTWARE
A STUDY OF THE EIGENVALUE ANALYSIS CAPABILITIES OF POWER SYSTEM DYNAMICS SIMULATION SOFTWARE J.G. Slootweg 1, J. Persson 2, A.M. van Voorden 1, G.C. Paap 1, W.L. Kling 1 1 Electrical Power Systems Laboratory,
More informationFinal Exam, Second Semester: 2015/2016 Electrical Engineering Department
Philadelphia University Faculty of Engineering Student Name Student No: Serial No Final Exam, Second Semester: 2015/2016 Electrical Engineering Department Course Title: Power II Date: 21 st June 2016 Course
More informationSpontaneous Speed Reversals in Stepper Motors
Spontaneous Speed Reversals in Stepper Motors Marc Bodson University of Utah Electrical & Computer Engineering 50 S Central Campus Dr Rm 3280 Salt Lake City, UT 84112, U.S.A. Jeffrey S. Sato & Stephen
More informationFrequency and Damping Characteristics of Generators in Power Systems
Frequency and Damping Characteristics of Generators in Power Systems Xiaolan Zou Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the
More information7. Transient stability
1 7. Transient stability In AC power system, each generator is to keep phase relationship according to the relevant power flow, i.e. for a certain reactance X, the both terminal voltages V1and V2, and
More informationSynchronous Machines
Synchronous machine 1. Construction Generator Exciter View of a twopole round rotor generator and exciter. A Stator with laminated iron core C Slots with phase winding B A B Rotor with dc winding B N S
More informationParameter Sensitivity Analysis of an Industrial Synchronous Generator
Parameter Sensitivity Analysis of an Industrial Synchronous Generator Attila Fodor, Attila Magyar, Katalin M. Hangos Abstract A previously developed simple dynamic model of an industrial size synchronous
More information6. Oscillatory Stability and RE Design
6. Oscillatory Stability and RE Design In chapter 4 and 5, it was clarified that voltage stability and transient synchronous stability are deeply influenced by power system model (power system load model
More informationLOCPSS Design for Improved Power System Stabilizer
Journal of pplied Dynamic Systems and Control, Vol., No., 8: 7 5 7 LOCPSS Design for Improved Power System Stabilizer Masoud Radmehr *, Mehdi Mohammadjafari, Mahmoud Reza GhadiSahebi bstract power system
More informationSynchronous Machines
Synchronous Machines Synchronous Machines n 1 Φ f n 1 Φ f I f I f I f damper (runup) winding Stator: similar to induction (asynchronous) machine ( 3 phase windings that forms a rotational circular magnetic
More informationReduced Size Rule Set Based Fuzzy Logic Dual Input Power System Stabilizer
772 NATIONAL POWER SYSTEMS CONFERENCE, NPSC 2002 Reduced Size Rule Set Based Fuzzy Logic Dual Input Power System Stabilizer Avdhesh Sharma and MLKothari Abstract The paper deals with design of fuzzy
More informationDynamic Stability Enhancement of Power System Using Fuzzy Logic Based Power System Stabilizer
Dynamic Stability Enhancement of Power System Using Fuzzy Logic Based Power System Stabilizer Kamalesh Chandra Rout Department of Electrical Engineering National Institute of Technology,Rourkela Rourkela769008,
More informationChapter 3 AUTOMATIC VOLTAGE CONTROL
Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide direct current to the field winding of the synchronous generator. The excitation
More informationDesign and Application of Fuzzy PSS for Power Systems Subject to Random Abrupt Variations of the Load
Design and Application of Fuzzy PSS for Power Systems Subject to Random Abrupt Variations of the Load N. S. D. Arrifano, V. A. Oliveira and R. A. Ramos Abstract In this paper, a design method and application
More informationDynamic analysis of Single Machine Infinite Bus system using Single input and Dual input PSS
Dynamic analysis of Single Machine Infinite Bus system using Single input and Dual input PSS P. PAVAN KUMAR M.Tech Student, EEE Department, Gitam University, Visakhapatnam, Andhra Pradesh, India533045,
More informationECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous Machine Modeling
ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous achine odeling Spring 214 Instructor: Kai Sun 1 Outline Synchronous achine odeling Per Unit Representation Simplified
More informationDynamics of the synchronous machine
ELEC0047  Power system ynamics, control an stability Dynamics of the synchronous machine Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct These slies follow those presente in course
More informationEE2351 POWER SYSTEM ANALYSIS UNIT I: INTRODUCTION
EE2351 POWER SYSTEM ANALYSIS UNIT I: INTRODUCTION PART: A 1. Define per unit value of an electrical quantity. Write equation for base impedance with respect to 3phase system. 2. What is bus admittance
More informationDAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS
Journal of Engineering Science and Technology Vol. 1, No. 1 (26) 7688 School of Engineering, Taylor s College DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS JAGADEESH PASUPULETI School of Engineering,
More informationYou know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1).
Stability 1 1. Introduction We now begin Chapter 14.1 in your text. Our previous work in this course has focused on analysis of currents during faulted conditions in order to design protective systems
More informationCHAPTER 5 STEADYSTATE ANALYSIS OF THREEPHASE SELFEXCITED INDUCTION GENERATORS
6 CHAPTER 5 STEADYSTATE ANALYSIS OF THREEPHASE SELFEXCITED INDUCTION GENERATORS 5.. INTRODUCTION The steadystate analysis of sixphase SEIG has been discussed in the previous chapters. In this chapter,
More informationEE 451 Power System Stability
EE 451 Power System Stability Power system operates in synchronous mode Power system is subjected to a wide range of disturbances (small and large)  Loads and generation changes  Network changes  Faults
More informationEE 6501 POWER SYSTEMS UNIT I INTRODUCTION
EE 6501 POWER SYSTEMS UNIT I INTRODUCTION PART A (2 MARKS) 1. What is single line diagram? A Single line diagram is diagrammatic representation of power system in which the components are represented by
More informationThree Phase Circuits
Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/ OUTLINE Previously on ELCN102 Three Phase Circuits Balanced
More informationUniversity of Jordan Faculty of Engineering & Technology Electric Power Engineering Department
University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department EE471: Electrical MachinesII Tutorial # 2: 3ph Induction Motor/Generator Question #1 A 100 hp, 60Hz, threephase
More informationSPEEDGRADIENTBASED CONTROL OF POWER NETWORK: CASE STUDY
CYBERNETICS AND PHYSICS, VOL. 5, NO. 3, 2016, 85 90 SPEEDGRADIENTBASED CONTROL OF POWER NETWORK: CASE STUDY Igor Furtat Control of Complex Systems ITMO University Russia cainenash@mail.ru Nikita Tergoev
More information(a) Torsional springmass system. (b) Spring element.
m v s T s v a (a) T a (b) T a FIGURE 2.1 (a) Torsional springmass system. (b) Spring element. by ky Wall friction, b Mass M k y M y r(t) Force r(t) (a) (b) FIGURE 2.2 (a) Springmassdamper system. (b)
More informationNonlinear Control Design of Series FACTS Devices for Damping Power System Oscillation
American Journal of Applied Sciences 8 (): 48, 0 ISSN 546939 00 Science Publications Nonlinear Control Design of Series FACTS Devices for Damping Power System Oscillation Prechanon Kumkratug Department
More informationEVALUATION OF THE IMPACT OF POWER SECTOR REFORM ON THE NIGERIA POWER SYSTEM TRANSIENT STABILITY
EVALUATION OF THE IMPACT OF POWER SECTOR REFORM ON THE NIGERIA POWER SYSTEM TRANSIENT STABILITY F. I. Izuegbunam * Department of Electrical & Electronic Engineering, Federal University of Technology, Imo
More informationMathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors
Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,
More informationPerformance Of Power System Stabilizerusing Fuzzy Logic Controller
IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) eissn: 22781676,pISSN: 23203331, Volume 9, Issue 3 Ver. I (May Jun. 2014), PP 4249 Performance Of Power System Stabilizerusing Fuzzy
More information