Generators. What its all about


 Adam Henry
 1 years ago
 Views:
Transcription
1 Generators What its all about
2 How do we make a generator?
3 Synchronous Operation
4 Rotor Magnetic Field
5 Stator Magnetic Field
6 Forces and Magnetic Fields
7 Force Between Fields
8 Motoring Generators & motors are the same thing Generators motor if they are synchronized and the governor is closed Power flows in from the grid
9 Limits Under steady state conditions the load angle must be less than 90 Exceeding 90 leads to pole slipping Tremendous current and torque pulsations Can lead to catastrophic failures
10 Generator Simplified Equivalent Circuit
11 Phasor Diagram
12 Increasing Steam Flow
13
14 Synchronizing Machine is run up to speed 1800 rpm (4 pole machine) Field is applied Machine is adjust so E g = V t in magnitude and phase Breaker is closed to connect generator to the system
15 Generator Prior to Synchronization
16 Magnetic Core Heating
17 Conditions for Synchronization Phase sequence Voltage magnitude Frequency I a =0 Phase angle E V T
18 I a =0 + + E V T V V V Grid Generato r being paralleled to Grid   Grid
19 Machine slower than system Generator Grid
20 Phase Angle Generator Grid
21 Properly Synchronized Generator Grid
22 Synchronizing Equipment Grid System Generator being paralleled to the grid V System Slow Fast V Generator
23 Armature Reaction N Rotor S N S Stator
24 Closing onto a dead bus Leading PF AVR will reduce excitation Lagging PF Terminal voltage will drop AVR increases excitation Faulted Bus High currents flow No load Nothing happens
25 Finite or Infinite Operation of the generator is apparently different Changes in steam valve position have no effect on speed (infinite) Changes in excitation only affect voltages locally Generator >5% gives finite characteristics
26 AVR
27 Resistive Load I R (Unity pf) R G X G V R V X = 0 E V T R Load V x E g V t I
28 Lagging Load I L (Lagging pf) R G X G V R V X E V T L Load E g V x V t I
29 Capacitive Load I C (Leading pf) R G X G V R V X E V T C Load V t V x E g I
30 Vcurves Load MW (V Curve) 0.85 pf Lagging Load Load MVA 0.95 pf Leading Load (Under Excited) (AVR Bucking) Unity pf Load (Over Excited) (AVR Boosting) Decrease Increase Excitation Current
31 Governor Control I L Turbine V T Steam No Load Setpoint Gov. Valve Speed Governor Shaft Speed Variable Load Droop Setting
32 Speed Droop Electrical word for proportional control Speed Drop NL to FL Droop = 100% Rated Speed Isochronous  proportional + integral
33 Isochronous Freq. % Speed Change % % % Isochronous Governor % 60Hz 0 Constant Frequency % 2% 3% 25% 50% 75% 100% % Rated Load or MW %
34 4% Droop Freq. % Speed Change % +3% E D Governor Speed Droop Hz % +1% 01% C B A Loading UnLoading 25% 50% 75% 100% % Rated Load or MW % % %
35 Effect of Adding Load
36 Generator Synchronized
37 Increasing Load 0.3 Hz{ 0.3 Hz{ MW Frequency (Hz) MW Load Generator G1 (MW) Load Generator G2 (MW)
38 Freq Unequal Speed Droops 61.8 B Hz A Load MW G1 G2
39 Finite Bus }0.6 Hz Hz{ 59.4 Frequency (Hz) Load Generator G1 (MW) Load Generator G2 (MW)
40 Frequency Restoration 0.6 Hz{ }0.6 Hz 59.4 Frequency (Hz) Load Generator G1 (MW) Load Generator G2 (MW)
41 Adjusting Steam Flow Steam Flow Armature Current Active Power Re active Po we r 1.0 Power Factor (Lagging).6 Time
42 Adjusting Excitation Field Current Armature Current Active Power Re active Po we r 1.0 Power Factor (Lagging).6 Time
43 Stability P V T X Transmisson Line V s Large System P = V T V s sin X
44 Power Transfer Curve Power Power Delivered to Load α V 2 V Before Fault P Steam t 0 Area B After Fault t 2 Area A During Fault t Load Angle δ t 3
45 Out of Step Angular + Velocity Pole slipping commences here (90 ) Rapid acceleration during pole slip ( ) Synchronism Speed Normal Operation (3600 position) Generator tries to regain synchronism (a) Time MW Output Normal MW Output Surges in output power Time (b)
46 Generator Heating Q MVAR Reactive Power Lag Motoring U 2 = P 2 + Q 2 (Circle) U MVA Total Power Generating P MW Active Power Lead
47 Limits Q MVAR Reactive Power Lag A U 2 = P 2 + Q 2 (Circle) B 0.85 pf Lag U MVA Total Power < Motoring Generating > P MW Active Power Lead D C 0.95 pf Lead AB Field Heating BC Stator Heating CD Stator Core End Heating
48 Stability Limits Q MVAR Reactive Power U 2 = P 2 + Q 2 (Circle) Lag A B 0.85 pf Lag U MVA Total Power < Motoring Generating > P MW Active Power Lead AB Field Heating BC Stator Heating CD Stator Core End Heating Limit with No AVR Limit with Fast AVR
49 H 2 Pressure
50 Cooling
51 For You To Do
ECE 325 Electric Energy System Components 7 Synchronous Machines. Instructor: Kai Sun Fall 2015
ECE 325 Electric Energy System Components 7 Synchronous Machines Instructor: Kai Sun Fall 2015 1 Content (Materials are from Chapters 1617) Synchronous Generators Synchronous Motors 2 Synchronous Generators
More informationIntroduction to Synchronous. Machines. Kevin Gaughan
Introduction to Synchronous Machines Kevin Gaughan The Synchronous Machine An AC machine (generator or motor) with a stator winding (usually 3 phase) generating a rotating magnetic field and a rotor carrying
More informationLESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES
ET 332b Ac Motors, Generators and Power Systems LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES 1 LEARNING OBJECTIVES After this presentation you will be able to: Interpret alternator phasor diagrams
More informationLesson 17: Synchronous Machines
Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines
More informationSynchronous Machines
Synchronous Machines Synchronous generators or alternators are used to convert mechanical power derived from steam, gas, or hydraulicturbine to ac electric power Synchronous generators are the primary
More informationThe Operation of a Generator on Infinite Busbars
The Operation of a Generator on Infinite Busbars In order to simplify the ideas as much as possible the resistance of the generator will be neglected; in practice this assumption is usually reasonable.
More informationQUESTION BANK ENGINEERS ACADEMY. Power Systems Power System Stability 1
ower ystems ower ystem tability QUETION BANK. A cylindrical rotor generator delivers 0.5 pu power in the steadystate to an infinite bus through a transmission line of reactance 0.5 pu. The generator noload
More informationPower System Stability GENERATOR CONTROL AND PROTECTION
Power System Stability Outline Basis for SteadyState Stability Transient Stability Effect of Excitation System on Stability Small Signal Stability Power System Stabilizers Speed Based Integral of Accelerating
More informationDynamic simulation of a fivebus system
ELEC0047  Power system dynamics, control and stability Dynamic simulation of a fivebus system Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct November 2017 1 / 16 System modelling
More informationChapter 4. Synchronous Generators. Basic Topology
Basic Topology Chapter 4 ynchronous Generators In stator, a threephase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.
More informationEE 451 Power System Stability
EE 451 Power System Stability Power system operates in synchronous mode Power system is subjected to a wide range of disturbances (small and large)  Loads and generation changes  Network changes  Faults
More informationECE 585 Power System Stability
Homework 1, Due on January 29 ECE 585 Power System Stability Consider the power system below. The network frequency is 60 Hz. At the prefault steady state (a) the power generated by the machine is 400
More informationChapter 3 AUTOMATIC VOLTAGE CONTROL
Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide direct current to the field winding of the synchronous generator. The excitation
More informationEE 742 Chapter 3: Power System in the Steady State. Y. Baghzouz
EE 742 Chapter 3: Power System in the Steady State Y. Baghzouz Transmission Line Model Distributed Parameter Model: Terminal Voltage/Current Relations: Characteristic impedance: Propagation constant: π
More informationUniversity of Jordan Faculty of Engineering & Technology Electric Power Engineering Department
University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department EE471: Electrical MachinesII Tutorial # 2: 3ph Induction Motor/Generator Question #1 A 100 hp, 60Hz, threephase
More informationTorques 1.0 Two torques We have written the swing equation where speed is in rad/sec as:
Torques 1.0 Two torques We have written the swing equation where speed is in rad/sec as: 2H Re ( t) T au T mu T eu (1) and when speed is in perunit as 2H u ( t) Tau Tmu Teu (2) We note that in both cases
More informationMassachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent
More informationYou know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1).
Stability 1 1. Introduction We now begin Chapter 14.1 in your text. Our previous work in this course has focused on analysis of currents during faulted conditions in order to design protective systems
More informationElectrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi
Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi AC Machines Operating Principles: Synchronous Motor In synchronous motors, the stator of the motor has a rotating magnetic
More informationAn Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy
An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 00 Contents Transformer. An overview of the device. Principle of operation of a singlephase transformer 3.
More informationKINGS COLLEGE OF ENGINEERING Punalkulam
KINGS COLLEGE OF ENGINEERING Punalkulam 613 303 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING POWER SYSTEM ANALYSIS QUESTION BANK UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A (TWO MARK
More informationThe synchronous machine (SM) in the power system (2) (Where does the electricity come from)?
1 The synchronous machine (SM) in the power system (2) (Where does the electricity come from)? 2 Lecture overview Synchronous machines with more than 2 magnetic poles The relation between the number of
More informationJRE SCHOOL OF Engineering
JRE SCHOOL OF Engineering Class Test1 Examinations September 2014 Subject Name Electromechanical Energy ConversionII Subject Code EEE 501 Roll No. of Student Max Marks 30 Marks Max Duration 1 hour Date
More informationGENERATORS: PART 5. The student must be. 2. Explain how the current in a generator increases as it is loaded.
Electrical Equipment  Course 23D.2 GENERATORS: PART 5 NFNTE BUS OPERATON 1. OBJECTVE The student must be able to: 1. Define an "infinite bus". 2. Explain how the current in a generator increases as it
More informationINSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad  500 043 ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK Course Name : Computer Methods in Power Systems Course Code : A60222
More informationEEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2  TEST
ATTEMPT ALL QUESTIONS (EACH QUESTION 20 Marks, FULL MAKS = 60) Given v 1 = 100 sin(100πt+π/6) (i) Find the MS, period and the frequency of v 1 (ii) If v 2 =75sin(100πtπ/10) find V 1, V 2, 2V 1 V 2 (phasor)
More informationModeling of Hydraulic Turbine and Governor for Dynamic Studies of HPP
Modeling of Hydraulic Turbine and Governor for Dynamic Studies of HPP Nanaware R. A. Department of Electronics, Shivaji University, Kolhapur Sawant S. R. Department of Technology, Shivaji University, Kolhapur
More informationMODULE TITLE : ELECTRICAL SUPPLY AND DISTRIBUTION SYSTEMS
MODULE TITLE : ELECTRICAL SUPPLY AND DISTRIBUTION SYSTEMS TOPIC TITLE : THE OPERATION OF THREEPHASE TRANSFORMERS IN PARALLEL AND GENERATORS ON INFINITE BUSBARS LESSON 2 : OPERATING CHARACTERISTICS OF
More informationB.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester. Electrical and Electronics Engineering. EE 1352 Power System Analysis
B.E. / B.Tech. Degree Examination, April / May 2010 Sixth Semester Electrical and Electronics Engineering EE 1352 Power System Analysis (Regulation 2008) Time: Three hours Answer all questions Part A (10
More informationSCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS. Transient Stability LECTURE NOTES SPRING SEMESTER, 2008
SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS LECTURE NOTES Transient Stability SPRING SEMESTER, 008 October 7, 008 Transient Stability Transient stability refers to the ability of a synchronous
More information3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.
Exam Electrical Machines and Drives (ET4117) 11 November 011 from 14.00 to 17.00. This exam consists of 5 problems on 4 pages. Page 5 can be used to answer problem 4 question b. The number before a question
More informationEE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A
EE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A 1. What are the advantages of an inter connected system? The advantages of an interconnected system are
More informationECEN 460 Exam 1 Fall 2018
ECEN 460 Exam 1 Fall 2018 Name: KEY UIN: Section: Score: Part 1 / 40 Part 2 / 0 Part / 0 Total / 100 This exam is 75 minutes, closedbook, closednotes. A standard calculator and one 8.5 x11 note sheet
More informationElectrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi
Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi AC Machines Operating Principles: Rotating Magnetic Field The key to the functioning of AC machines is the rotating magnetic
More informationChapter 9: Transient Stability
Chapter 9: Transient Stability 9.1 Introduction The first electric power system was a dc system built by Edison in 1882. The subsequent power systems that were constructed in the late 19 th century were
More informationTHE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunications FINALEXAMINATION. Session
Name: Student ID: Signature: THE UNIVERSITY OF NEW SOUTH WALES School of Electrical Engineering & Telecommunications FINALEXAMINATION Session 00 ELEC46 Power System Analysis TIME ALLOWED: 3 hours TOTAL
More informationControl of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University
Control of Wind Turbine Generators James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Review from Day 1 Review Last time, we started with basic concepts from physics such as
More informationChapter 6. Induction Motors. Copyright The McGrawHill Companies, Inc. Permission required for reproduction or display.
Chapter 6 Induction Motors 1 The Development of Induced Torque in an Induction Motor Figure 66 The development of induced torque in an induction motor. (a) The rotating stator field B S induces a voltage
More informationPrince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II)
Chapter # 4 ThreePhase Induction Machines 1 Introduction (General Principles) Generally, conversion of electrical power into mechanical power takes place in the rotating part of an electric motor. In
More informationUNIT I INTRODUCTION Part A Two marks questions
ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DESIGN OF ELECTRICAL MACHINES UNIT I INTRODUCTION 1. Define specific magnetic
More informationPower System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India
Power System Stability and Control Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Contents Chapter 1 Introduction to Power System Stability
More informationGenerators for wind power conversion
Generators for wind power conversion B. G. Fernandes Department of Electrical Engineering Indian Institute of Technology, Bombay Email : bgf@ee.iitb.ac.in Outline of The Talk Introduction Constant speed
More informationELG4125: Power Transmission Lines Steady State Operation
ELG4125: Power Transmission Lines Steady State Operation TwoPort Networks and ABCD Models A transmission line can be represented by a twoport network, that is a network that can be isolated from the
More informationMicrogrid to System Synchronization Based on PreInsertion Impedance Method (Version 1.0) By Peter Zhou University of Alberta Jan 30 th, 2015
Microgrid to System Synchronization Based on PreInsertion Impedance Method (Version 1.0) By Peter Zhou University of Alberta Jan 30 th, 2015 Outline 1. What is Synchronization? 2. Synchronization Concerns?
More informationECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models
ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements Read Chapter
More informationEE Branch GATE Paper 2010
Q.1 Q.25 carry one mark each 1. The value of the quantity P, where, is equal to 0 1 e 1/e 2. Divergence of the threedimensional radial vector field is 3 1/r 3. The period of the signal x(t) = 8 is 0.4
More informationGATE 2010 Electrical Engineering
GATE 2010 Electrical Engineering Q.1 Q.25 carry one mark each 1. The value of the quantity P, where P = xe dx, is equal to (A) 0 (B) 1 (C) e (D) 1/e 2. Divergence of the threedimensional radial vector
More information+ ( )= with initial condition
Department of Electrical Engineering PhD. Admission Test Full Marks: 90 Time 90 minutes Date: 02.2.204 NAME: Appl. No: Write your answer on the question paper ONLY. All questions carry equal marks. PART
More informationPOWER SYSTEM STABILITY
LESSON SUMMARY1: POWER SYSTEM STABILITY 1. Introduction 2. Classification of Power System Stability 3. Dynamic Equation of Synchronous Machine Power system stability involves the study of the dynamics
More informationTransient Stability Analysis with PowerWorld Simulator
Transient Stability Analysis with PowerWorld Simulator T1: Transient Stability Overview, Models and Relationships 2001 South First Street Champaign, Illinois 61820 +1 (217) 384.6330 support@powerworld.com
More informationA Power System Dynamic Simulation Program Using MATLAB/ Simulink
A Power System Dynamic Simulation Program Using MATLAB/ Simulink Linash P. Kunjumuhammed Post doctoral fellow, Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom
More informationSSCJE EE POWER SYSTEMS: GENERATION, TRANSMISSION & DISTRIBUTION SSCJE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL
1 SSCJE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL Power Systems: Generation, Transmission and Distribution Power Systems: Generation, Transmission and Distribution Power Systems:
More informationElectric Machines I Three Phase Induction Motor. Dr. Firas Obeidat
Electric Machines I Three Phase Induction Motor Dr. Firas Obeidat 1 Table of contents 1 General Principles 2 Construction 3 Production of Rotating Field 4 Why Does the Rotor Rotate 5 The Slip and Rotor
More information7. Transient stability
1 7. Transient stability In AC power system, each generator is to keep phase relationship according to the relevant power flow, i.e. for a certain reactance X, the both terminal voltages V1and V2, and
More informationSynchronous Machines
Synchronous Machines Synchronous Machines n 1 Φ f n 1 Φ f I f I f I f damper (runup) winding Stator: similar to induction (asynchronous) machine ( 3 phase windings that forms a rotational circular magnetic
More informationModelling of Primary Frequency Control and Effect Analyses of Governing System Parameters on the Grid Frequency. Zhixin Sun
Modelling of Primary Frequency Control and Effect Analyses of Governing System Parameters on the Grid Frequency Zhixin Sun Outline Introduction Mathematical Model of Primary Frequency Control Dynamic Test
More informationSynchronous Machines
Synchronous machine 1. Construction Generator Exciter View of a twopole round rotor generator and exciter. A Stator with laminated iron core C Slots with phase winding B A B Rotor with dc winding B N S
More informationECE 421/521 Electric Energy Systems Power Systems Analysis I 3 Generators, Transformers and the PerUnit System. Instructor: Kai Sun Fall 2013
ECE 41/51 Electric Energy Systems Power Systems Analysis I 3 Generators, Transformers and the PerUnit System Instructor: Kai Sun Fall 013 1 Outline Synchronous Generators Power Transformers The PerUnit
More informationGeneration, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system.
Threephase Circuits Generation, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system. Where 3 voltages are supplied of equal magnitude,
More informationA. P. Sakis Meliopoulos and George J. Cokkinides Power System Relaying, Theory and Applications. Chapter 8 2 Generator Protection 2
DRAFT and INCOMPLETE Table of Contents from A. P. Sakis Meliopoulos and George J. Cokkinides Power System Relaying, Theory and Applications Chapter 8 Generator Protection 8. Introduction 8. Generator Protection
More informationROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I
ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I Unit I Introduction 1. What are the three basic types
More informationPower System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur
Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture  9 Transmission Line Steady State Operation Welcome to lesson 9, in Power
More informationBrief Steady of Power Factor Improvement
International Journal of Electrical Engineering. ISSN 09742158 Volume 6, Number 5 (2013), pp. 531539 International Research PublicationHouse http://www.irphouse.com Brief Steady of Power Factor Improvement
More informationBASIC PRINCIPLES. Power In SinglePhase AC Circuit
BASIC PRINCIPLES Power In SinglePhase AC Circuit Let instantaneous voltage be v(t)=v m cos(ωt+θ v ) Let instantaneous current be i(t)=i m cos(ωt+θ i ) The instantaneous p(t) delivered to the load is p(t)=v(t)i(t)=v
More informationGATE 2008 Electrical Engineering
GATE 2008 Electrical Engineering Q.1 Q. 20 carry one mark each. 1. The number of chords in the graph of the given circuit will be + _ (A) 3 (B) 4 (C) 5 (D) 6 2. The Thevenin'a equivalent of a circuit operating
More informationTransient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods
International Journal of Electrical and Electronics Research ISSN 3486988 (online) Vol., Issue 3, pp: (5866), Month: July  September 04, Available at: www.researchpublish.com Transient Stability Analysis
More informationLecture (20) DC Machine Examples Start of Synchronous Machines
Lecture (20) DC Machine Examples Start of Synchronous Machines Energy Systems Research Laboratory, FIU All rights reserved. 201 Energy Systems Research Laboratory, FIU All rights reserved. 202 Ra R f
More informationCHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS
47 CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 5.1 INTRODUCTION This chapter describes the simulation model and experimental set up used for the fault analysis. For the simulation set up, the
More informationComparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS
Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS Abhijit N Morab, Abhishek P Jinde, Jayakrishna Narra, Omkar Kokane Guide: Kiran R Patil
More informationPOWER SYSTEM STABILITY AND CONTROL
POWER SYSTEM STABILITY AND CONTROL P. KUNDUR VicePresident, Power Engineering Powertech Labs Inc., Surrey, British Columbia Formerly Manager Analytical Methods and Specialized Studies Department Power
More informationChapter 8: Unsymmetrical Faults
Chapter 8: Unsymmetrical Faults Introduction The sequence circuits and the sequence networks developed in the previous chapter will now be used for finding out fault current during unsymmetrical faults.
More informationRESULTS OF ONGRID OPERATION OF SUPERCONDUCTOR DYNAMIC SYNCHRONOUS CONDENSER
1 RESULTS OF ONGRID OPERATION OF SUPERCONDUCTOR DYNAMIC SYNCHRONOUS CONDENSER Dr. Swarn S. Kalsi, David Madura, and Michael Ross American Superconductor Corporation (USA) Abstract: A hightemperature
More informationد شوقي حامد عرفه ابراهيم
2015 /1/19 اإلجابة النموذجية لمادة نظم التشغيل الكهربية ك 563 د شوقي حامد عرفه ابراهيم يوم االثنين الموافق Benha University Benha Faculty of Engineering Subject: Electrical drives (E563) Time: 3hours Fifth
More informationDoubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]
Doubly salient reluctance machine or, as it is also called, switched reluctance machine [Pyrhönen et al 2008] Pros and contras of a switched reluctance machine Advantages Simple robust rotor with a small
More informationCHAPTER 3 MATHEMATICAL MODELING OF HYDEL AND STEAM POWER SYSTEMS CONSIDERING GT DYNAMICS
28 CHAPTER 3 MATHEMATICAL MODELING OF HYDEL AND STEAM POWER SYSTEMS CONSIDERING GT DYNAMICS 3.1 INTRODUCTION This chapter focuses on the mathematical state space modeling of all configurations involved
More informationTransient Stability Assessment of Synchronous Generator in Power System with HighPenetration Photovoltaics (Part 2)
Journal of Mechanics Engineering and Automation 5 (2015) 401406 doi: 10.17265/21595275/2015.07.003 D DAVID PUBLISHING Transient Stability Assessment of Synchronous Generator in Power System with HighPenetration
More informationEE2351 POWER SYSTEM ANALYSIS UNIT I: INTRODUCTION
EE2351 POWER SYSTEM ANALYSIS UNIT I: INTRODUCTION PART: A 1. Define per unit value of an electrical quantity. Write equation for base impedance with respect to 3phase system. 2. What is bus admittance
More informationElectromagnetic Energy Conversion Exam 98ElecA6 Spring 2002
Front Page Electromagnetic Energy Conversion Exam 98ElecA6 Spring 2002 Notes: Attempt question 1 and FOUR (4) other questions (FVE (5) questions in all). Unless you indicate otherwise, the first five
More informationDynamics of the synchronous machine
ELEC0047  Power system dynamics, control and stability Dynamics of the synchronous machine Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 38 Time constants and
More informationEqual Pitch and Unequal Pitch:
Equal Pitch and Unequal Pitch: EqualPitch MultipleStack Stepper: For each rotor stack, there is a toothed stator segment around it, whose pitch angle is identical to that of the rotor (θs = θr). A stator
More informationOutcome of this lecture
Outcome of this lecture At the en of this lecture you will be able to: List the ifferent parts of a synchronous machine Explain the operation principles of the machine Use the equivalent circuit moel of
More informationEddy Current Heating in Large Salient Pole Generators
Eddy Current Heating in Large Salient Pole Generators C.P.Riley and A.M. Michaelides Vector Fields Ltd., 24 Bankside, Kidlington, Oxford OX5 1JE, UK phone: (+44) 1865 370151, fax: (+44) 1865 370277 email:
More informationEE2351 POWER SYSTEM ANALYSIS
EE351 POWER SYSTEM ANALYSIS A.Ahamed Riazudeen EEE DEPARTMENT 1 UNIT I INTRODUCTION Power system network 3 SINGLE LINE DIAGRAM It is a diagrammatic representation of a power system in which the components
More informationQ. 1 Q. 25 carry one mark each.
Q. 1 Q. 25 carry one mark each. Q.1 Given ff(zz) = gg(zz) + h(zz), where ff, gg, h are complex valued functions of a complex variable zz. Which one of the following statements is TUE? (A) If ff(zz) is
More informationThe Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System
1 The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System M. M. Alomari and B. S. Rodanski University of Technology, Sydney (UTS) P.O. Box 123, Broadway NSW 2007, Australia
More informationElectromagnetic Torque From Event Report Data A Measure of Machine Performance
Electromagnetic Torque From Event Report Data A Measure of Machine Performance Derrick Haas and Dale Finney Schweitzer Engineering Laboratories, Inc. 7 SEL Overview Electromagnetic torque calculation Modeling
More informationPerformance Analysis of SelfExcited Induction Generator Driven At Variable Wind Speeds
International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume1, Issue2, December 2011 Performance Analysis of SelfExcited Induction Generator Driven At Variable Wind Speeds
More informationECE 420. Review of Three Phase Circuits. Copyright by Chanan Singh, Panida Jirutitijaroen, and Hangtian Lei, For educational use onlynot for sale.
ECE 40 Review of Three Phase Circuits Outline Phasor Complex power Power factor Balanced 3Ф circuit Read Appendix A Phasors and in steady state are sinusoidal functions with constant frequency 5 0 15 10
More informationCENTRAL TERMOELÉCTRICA ANDINA UNIDAD Nº 1
PROYECTO PROJECT CENTRAL TERMOELÉCTRICA ANDINA UNIDAD Nº 1 TÍTULO TITLE Technical Data and curves of the Generator Nº DE DOCUMENTO PROYECTO PROJECT DOCUMENT Nº CTA12MA EHPSK0086_Rev00 REV 00 FECHA
More informationReview of Basic Electrical and Magnetic Circuit Concepts EE
Review of Basic Electrical and Magnetic Circuit Concepts EE 442642 Sinusoidal Linear Circuits: Instantaneous voltage, current and power, rms values Average (real) power, reactive power, apparent power,
More informationPerformance Evaluation of DFIG to Changes in Network Frequency
019 CIENCELINE Journal of World s Electrical Engineering and Technology J. World. Elect. Eng. Tech. 8(1): 0106, 019 JWEET Performance Evaluation of DFIG to Changes in Network Frequency Ramin TayebiDerazkolaie
More informationDYNAMIC RESPONSE OF A GROUP OF SYNCHRONOUS GENERATORS FOLLOWING DISTURBANCES IN DISTRIBUTION GRID
Engineering Review Vol. 36 Issue 2 886 206. 8 DYNAMIC RESPONSE OF A GROUP OF SYNCHRONOUS GENERATORS FOLLOWING DISTURBANCES IN DISTRIBUTION GRID Samir Avdaković * Alija Jusić 2 BiH Electrical Utility Company
More informationModule 3 : Sequence Components and Fault Analysis
Module 3 : Sequence Components and Fault Analysis Lecture 12 : Sequence Modeling of Power Apparatus Objectives In this lecture we will discuss Per unit calculation and its advantages. Modeling aspects
More information6.061 / Introduction to Electric Power Systems
MIT OpenCourseWare http://ocw.mit.edu 6.061 / 6.690 Introduction to Electric Power Systems Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
More informationEE 410/510: Electromechanical Systems Chapter 4
EE 410/510: Electromechanical Systems Chapter 4 Chapter 4. Direct Current Electric Machines and Motion Devices Permanent Magnet DC Electric Machines Radial Topology Simulation and Experimental Studies
More information1 Unified Power Flow Controller (UPFC)
Power flow control with UPFC Rusejla Sadikovic Internal report 1 Unified Power Flow Controller (UPFC) The UPFC can provide simultaneous control of all basic power system parameters ( transmission voltage,
More informationANALYSIS OF SUBSYNCHRONOUS RESONANCE EFFECT IN SERIES COMPENSATED LINE WITH BOOSTER TRANSFORMER
ANALYSIS OF SUBSYNCHRONOUS RESONANCE EFFECT IN SERIES COMPENSATED LINE WITH BOOSTER TRANSFORMER G.V.RAJASEKHAR, 2 GVSSNS SARMA,2 Department of Electrical Engineering, Aurora Engineering College, Hyderabad,
More informationEquivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines)
Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines) d axis: L fd L F  M R fd F L 1d L D  M R 1d D R fd R F e fd e F R 1d R D Subscript Notations: ( ) fd ~ field winding quantities
More informationMAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
Important Instructions to examiners: 1) The answers should be examined by key words and not as wordtoword as given in the model answer scheme. 2) The model answer and the answer written by candidate
More informationAnalyzing the Effect of Ambient Temperature and Loads Power Factor on Electric Generator Power Rating
Analyzing the Effect of Ambient Temperature and Loads Power Factor on Electric Generator Power Rating Ahmed Elsebaay, Maged A. Abu Adma, Mahmoud Ramadan Abstract This study presents a technique clarifying
More information