D/A-Converters. Jian-Jia Chen (slides are based on Peter Marwedel) Informatik 12 TU Dortmund Germany

Size: px
Start display at page:

Download "D/A-Converters. Jian-Jia Chen (slides are based on Peter Marwedel) Informatik 12 TU Dortmund Germany"

Transcription

1 12 D/A-Converters Jian-Jia Chen (slides are based on Peter Marwedel) Informatik 12 Germany Springer, 年 11 月 12 日 These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

2 Embedded System Hardware Embedded system hardware is frequently used in a loop ( hardware in a loop ): F cyber-physical systems Photos: P. Marwedel,

3 Kirchhoff s junction rule Kirchhoff s Current Law, Kirchhoff s first rule Kirchhoff s Current Law: At any point in an electrical circuit, the sum of currents flowing towards that point is equal to the sum of currents flowing away from that point. (Principle of conservation of Example: electric charge) i 1 + i 2 + i 4 = i 3 Formally, for any node in a circuit: i = 0 k k i 1 +i 2 -i 3 +i 4 =0 Count current flowing away from node as negative. [Jewett and Serway, 2007]

4 Kirchhoff's loop rule Kirchhoff s Voltage Law, Kirchhoff's second rule The principle of conservation of energy implies that: The sum of the potential differences (voltages) across all elements around any closed circuit must be zero Example: [Jewett and Serway, 2007]. Formally, for any loop in a circuit: Vk = 0 k Count voltages traversed against arrow direction as negative V 1 -V 2 -V 3 +V 4 =0 V 3 =R 3 I 3 if current counted in the same direction as V 3 V 3 =-R 3 I 3 if current counted in the opposite direction as V

5 Operational Amplifiers (Op-Amps) Operational amplifiers (op-amps) are devices amplifying the voltage difference between two input terminals by a large gain factor g V - V + - Supply voltage op-amp + V out V out =(V + - V - ) g ground Op-amp in a DIL package For an ideal op-amp: g (In practice: g may be around ) Photo: P. Marwedel,

6 Digital-to-Analog (D/A) Converters Various types, can be quite simple, e.g.: I = x V V V 3 ref ref ref ref ref i 3 + x2 + x1 + x0 = xi 2 R 2 R 4 R 8 R 8 R i= 0 V V

7 Current I proportional to the number represented by x Loop rule: F In general: Junction rule: F I = x x0 I0 8 R + V Vref = 0 V I I I i 0 Vref = x0 8 R Vref xi 3 i 2 R = = i I i V V 3 ref ref ref ref ref i 3 + x2 + x1 + x0 = xi 2 R 2 R 4 R 8 R 8 R i= 0 V V I ~ nat (x), where nat(x): natural number represented by x;

8 Output voltage proportional to the number represented by x Loop rule*: y + R1 I' = 0 Junction rule : F I = I' y + R1 I = 0 * From the previous slide I = V 3 ref 8 R i= 0 x i 2 i Hence: y = V ref R 3 1 i 1 xi 2 = Vref nat( x) 8 R i= 0 8 R R Op-amp turns current I ~ nat (x) into a voltage ~ nat (x)

9 Output generated from signal e 3 (t) * Assuming zero-order hold * Possible to reconstruct input signal?

10 12 Sampling Theorem Springer, 2010 These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

11 Possible to reconstruct input signal? Assuming Nyquist criterion met Let {t s }, s =..., 1,0,1,2,... be times at which we sample g(t) Assume a constant sampling rate of 1/p s ( s: p s = t s+1 t s ). According sampling theory, we can approximate the input signal as follows: Weighting factor for influence of y(t s ) at time t Called sinc function [Oppenheim, Schafer, 2009] Graphics: P. Marwedel,

12 Weighting factor for influence of y(t s ) at time t No influence at t s+n Graphics: P. Marwedel,

13 Contributions from the various sampling instances Graphics: P. Marwedel,

14 (Attempted) reconstruction of input signal * * Assuming 0- order hold Graphics: P. Marwedel,

15 How precisely are we reconstructing the input? Sampling theory: Reconstruction using sinc () is precise However, it may be impossible to really compute z(t) as indicated

16 How to compute the sinc( ) function? Filter theory: The required interpolation is performed by an ideal low-pass filter (sinc is the Fourier transform of the low-pass filter transfer function) z( t) y( t) f s /2 Filter removes high frequencies present in y(t) f s Graphics: P. Marwedel,

17 Limitations Actual filters do not compute sinc( ) In practice, filters are used as an approximation. Computing good filters is an art itself! All samples must be known to reconstruct e(t) or g(t). F Waiting indefinitely before we can generate output! In practice, only a finite set of samples is available. Actual signals are never perfectly bandwidth limited. Quantization noise cannot be removed

18 12 Actuators/Display Springer, 2010 These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

19 Embedded System Hardware Embedded system hardware is frequently used in a loop ( hardware in a loop ): F cyber-physical systems Graphics: P. Marwedel,

20 Output Output devices of embedded systems include Displays: Display technology is extremely important. Major research and development efforts Electro-mechanical devices: these influence the environment through motors and other electromechanical equipment. Frequently require analog output. Photos: P. Marwedel, 2011/2-35 -

21 Actuators Huge variety of actuators and output devices, impossible to present all of them. Motor as an example

22 Actuators (2) Courtesy and : E. Obermeier, MAT, TU Berlin

23 Secure Hardware Security needed for communication & storage Demand for special equipment for cryptographic keys To resist side-channel attacks like measurements of the supply current or Electromagnetic radiation. Special mechanisms for physical protection (shielding, sensor detecting tampering with the modules). Logical security, using cryptographic methods needed. Smart cards: special case of secure hardware Have to run with a very small amount of energy. In general, we have to distinguish between different levels of security and knowledge of adversaries Photo: P. Marwedel,

24 Summary Hardware in a loop Sensors Discretization Information processing Importance of energy efficiency, Special purpose HW very expensive, Energy efficiency of processors, Code size efficiency, Run-time efficiency Reconfigurable Hardware Communication D/A converters Sampling theorem Actuators (briefly) Secure hardware (briefly)

Aperiodic Task Scheduling

Aperiodic Task Scheduling Aperiodic Task Scheduling Jian-Jia Chen (slides are based on Peter Marwedel) TU Dortmund, Informatik 12 Germany Springer, 2010 2017 年 11 月 29 日 These slides use Microsoft clip arts. Microsoft copyright

More information

Evaluation and Validation

Evaluation and Validation Evaluation and Validation Jian-Jia Chen (Slides are based on Peter Marwedel) TU Dortmund, Informatik 12 Germany Springer, 2010 2016 年 01 月 05 日 These slides use Microsoft clip arts. Microsoft copyright

More information

Measurement and Instrumentation. Sampling, Digital Devices, and Data Acquisition

Measurement and Instrumentation. Sampling, Digital Devices, and Data Acquisition 2141-375 Measurement and Instrumentation Sampling, Digital Devices, and Data Acquisition Basic Data Acquisition System Analog Form Analog Form Digital Form Display Physical varialble Sensor Signal conditioning

More information

CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS

CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS CURRENT SOURCES EXAMPLE 1 Find the source voltage Vs and the current I1 for the circuit shown below EXAMPLE 2 Find the source voltage Vs and the current I1 for the circuit shown below SOURCE CONVERSIONS

More information

Analog to Digital Converters (ADCs)

Analog to Digital Converters (ADCs) Analog to Digital Converters (ADCs) Note: Figures are copyrighted Proakis & Manolakis, Digital Signal Processing, 4 th Edition, Pearson Publishers. Embedded System Design A Unified HW Approach, Vahid/Givargis,

More information

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving

More information

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown. Solved Problems Electric Circuits & Components 1-1 Write the KVL equation for the circuit shown. 1-2 Write the KCL equation for the principal node shown. 1-2A In the DC circuit given in Fig. 1, find (i)

More information

Physics 102: Lecture 06 Kirchhoff s Laws

Physics 102: Lecture 06 Kirchhoff s Laws Physics 102: Lecture 06 Kirchhoff s Laws Physics 102: Lecture 6, Slide 1 Today Last Lecture Last Time Resistors in series: R eq = R 1 R 2 R 3 Current through each is same; Voltage drop is IR i Resistors

More information

Syllabus and Course Overview!

Syllabus and Course Overview! Electronics Lab! Syllabus and Course Overview! oltage Current and Ohm s Law! Kirchoff s Laws! The oltage Divider! Syllabus and Course Overview! n http://www.stlawu.edu/academics/programs/physics! oltage,

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 18 18.1 Introduction: Op-amps in Negative Feedback In the last note, we saw that can use an op-amp as a comparator. However,

More information

PHYSICS 171. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).

PHYSICS 171. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). PHYSICS 171 Experiment 3 Kirchhoff's Laws Equipment: Supplies: Digital Multimeter, Power Supply (0-20 V.). Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). A. Kirchhoff's Loop Law Suppose that

More information

D is the voltage difference = (V + - V - ).

D is the voltage difference = (V + - V - ). 1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually

More information

Survey of Hardware Random Number Generators (RNGs) Dr. Robert W. Baldwin Plus Five Consulting, Inc.

Survey of Hardware Random Number Generators (RNGs) Dr. Robert W. Baldwin Plus Five Consulting, Inc. Survey of Hardware Random Number Generators (RNGs) Dr. Robert W. Baldwin Plus Five Consulting, Inc. Outline True vs. Pseudo Randomness Radiation Noise RNG Removing Bit-Bias Thermal Resistive Noise RNG

More information

General procedure for formulation of robot dynamics STEP 1 STEP 3. Module 9 : Robot Dynamics & controls

General procedure for formulation of robot dynamics STEP 1 STEP 3. Module 9 : Robot Dynamics & controls Module 9 : Robot Dynamics & controls Lecture 32 : General procedure for dynamics equation forming and introduction to control Objectives In this course you will learn the following Lagrangian Formulation

More information

Data Converter Fundamentals

Data Converter Fundamentals Data Converter Fundamentals David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 33 Introduction Two main types of converters Nyquist-Rate Converters Generate output

More information

Electricity and Magnetism DC Circuits Using Kirchhoff s Laws

Electricity and Magnetism DC Circuits Using Kirchhoff s Laws Electricity and Magnetism DC Circuits Using Kirchhoff s Laws Lana Sheridan De Anza College Feb 9, 08 Last time power Kirchhoff s laws Overview more Kirchhoff examples Example with Two Batteries Find the

More information

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational

More information

Generalized Kirchhoff-Law-Johnson- Noise (KLJN) secure key exchange system using arbitrary resistors

Generalized Kirchhoff-Law-Johnson- Noise (KLJN) secure key exchange system using arbitrary resistors Generalized Kirchhoff-Law-Johnson- Noise (KLJN secure key exchange system using arbitrary resistors Gergely adai*, obert Mingesz and Zoltan Gingl Department of Technical Informatics, University of Szeged,

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

Module 3 : Sampling and Reconstruction Lecture 22 : Sampling and Reconstruction of Band-Limited Signals

Module 3 : Sampling and Reconstruction Lecture 22 : Sampling and Reconstruction of Band-Limited Signals Module 3 : Sampling and Reconstruction Lecture 22 : Sampling and Reconstruction of Band-Limited Signals Objectives Scope of this lecture: If a Continuous Time (C.T.) signal is to be uniquely represented

More information

Index. Index. More information. in this web service Cambridge University Press

Index. Index. More information.  in this web service Cambridge University Press A-type elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 A-type variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,

More information

ENGG 1203 Tutorial_05. Use of Multimeter. Lab 5 : SYSTEM. Office hours : Chow Yei Ching, CB-LG205 Thu, Fri; 15:30-17:30

ENGG 1203 Tutorial_05. Use of Multimeter. Lab 5 : SYSTEM. Office hours : Chow Yei Ching, CB-LG205 Thu, Fri; 15:30-17:30 ENGG 1203 Tutorial_05 Office hours : Chow Yei Ching, CB-LG205 Thu, Fri; 15:30-17:30 HW : -25%/day at least after 4 days, sample answer posted for study Lab 5 : Use of Multimeter The value showing is maximum

More information

Analog to Digital Conversion

Analog to Digital Conversion Analog to Digital Conversion ATmega Block Diagram Analog to Digital Converter Sample and Hold SA Converter Internal Bandgap eference 2 tj Analog to Digital Conversion Most of the real world is analog temperature,

More information

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V.

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V. When you have completed this exercise, you will be able to operate a zener-clamped op amp comparator circuit using dc and ac voltages. You will verify your results with an oscilloscope. U1 is zero based

More information

Homework 6 Solutions and Rubric

Homework 6 Solutions and Rubric Homework 6 Solutions and Rubric EE 140/40A 1. K-W Tube Amplifier b) Load Resistor e) Common-cathode a) Input Diff Pair f) Cathode-Follower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure

More information

INTRODUCTION TO ELECTRONICS

INTRODUCTION TO ELECTRONICS INTRODUCTION TO ELECTRONICS Basic Quantities Voltage (symbol V) is the measure of electrical potential difference. It is measured in units of Volts, abbreviated V. The example below shows several ways

More information

Engineering Fundamentals and Problem Solving, 6e

Engineering Fundamentals and Problem Solving, 6e Engineering Fundamentals and Problem Solving, 6e Chapter 17 Electrical Circuits Chapter Objectives Compute the equivalent resistance of resistors in series and in parallel Apply Ohm s law to a resistive

More information

AP Physics C - E & M

AP Physics C - E & M AP Physics C - E & M Current and Circuits 2017-07-12 www.njctl.org Electric Current Resistance and Resistivity Electromotive Force (EMF) Energy and Power Resistors in Series and in Parallel Kirchoff's

More information

DC CIRCUIT ANALYSIS. Loop Equations

DC CIRCUIT ANALYSIS. Loop Equations All of the rules governing DC circuits that have been discussed so far can now be applied to analyze complex DC circuits. To apply these rules effectively, loop equations, node equations, and equivalent

More information

E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13

E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13 RevisionLecture 1: E1.1 Analysis of Circuits (2014-4530) Revision Lecture 1 1 / 13 Format Question 1 (40%): eight short parts covering the whole syllabus. Questions 2 and 3: single topic questions (answer

More information

You should be able to demonstrate and show your understanding of:

You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 3: Physics in Action You should be able to demonstrate and show your understanding of: 3.1: Communication 3.1.1: Imaging and Signalling The formation of a real image by a thin

More information

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September Sistemas de Aquisição de Dados Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September The Data Converter Interface Analog Media and Transducers Signal Conditioning Signal Conditioning

More information

P. Bruschi - Notes on Mixed Signal Design

P. Bruschi - Notes on Mixed Signal Design Chapter 1. Concepts and definitions about Data Acquisition Systems Electronic systems An electronic systems is a complex electronic networ, which interacts with the physical world through sensors (input

More information

E2.2 Analogue Electronics

E2.2 Analogue Electronics E2.2 Analogue Electronics Instructor : Christos Papavassiliou Office, email : EE 915, c.papavas@imperial.ac.uk Lectures : Monday 2pm, room 408 (weeks 2-11) Thursday 3pm, room 509 (weeks 4-11) Problem,

More information

ENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM

ENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM CHAPTER 1 BY RADU MURESAN Page 1 ENGG4420 LECTURE 7 September 21 10 2:29 PM MODELS OF ELECTRIC CIRCUITS Electric circuits contain sources of electric voltage and current and other electronic elements such

More information

ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING ELECTRICAL ENGINEERING Subject Code: EE Course Structure Sections/Units Section A Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Section B Section C Section D Section E Section F Section G Section H

More information

EE100Su08 Lecture #9 (July 16 th 2008)

EE100Su08 Lecture #9 (July 16 th 2008) EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart

More information

Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Circuit Analysis (EC 2) Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,

More information

MECHATRONICS ENGINEERING TECHNOLOGY. Modeling a Servo Motor System

MECHATRONICS ENGINEERING TECHNOLOGY. Modeling a Servo Motor System Modeling a Servo Motor System Definitions Motor: A device that receives a continuous (Analog) signal and operates continuously in time. Digital Controller: Discretizes the amplitude of the signal and also

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

ELECTRONIC SENSORS PREAMBLE. This note gives a brief introduction to sensors. The focus is. on sensor mechanisms. It describes in general terms how

ELECTRONIC SENSORS PREAMBLE. This note gives a brief introduction to sensors. The focus is. on sensor mechanisms. It describes in general terms how ELECTRONIC SENSORS PREAMBLE This note gives a brief introduction to sensors. The focus is on sensor mechanisms. It describes in general terms how sensors work. It covers strain gage sensors in detail.

More information

(Refer Slide Time: 00:01:30 min)

(Refer Slide Time: 00:01:30 min) Control Engineering Prof. M. Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 3 Introduction to Control Problem (Contd.) Well friends, I have been giving you various

More information

Notes on Electricity (Circuits)

Notes on Electricity (Circuits) A circuit is defined to be a collection of energy-givers (batteries) and energy-takers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current

More information

Signals and Systems Chapter 2

Signals and Systems Chapter 2 Signals and Systems Chapter 2 Continuous-Time Systems Prof. Yasser Mostafa Kadah Overview of Chapter 2 Systems and their classification Linear time-invariant systems System Concept Mathematical transformation

More information

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws ES250: Electrical Science HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws Introduction Engineers use electric circuits to solve problems that are important to modern society, such as: 1.

More information

5mm photodiode PD333-3C/H0/L2

5mm photodiode PD333-3C/H0/L2 Features Fast response time High photo sensitivity Small junction capacitance Pb free The product itself will remain within RoHS compliant version Compliance with EU REACH Description is a high speed and

More information

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm-1 Exam (Solution)

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm-1 Exam (Solution) Georgia Institute of Technology School of Electrical and Computer Engineering Midterm-1 Exam (Solution) ECE-6414 Spring 2012 Friday, Feb. 17, 2012 Duration: 50min First name Solutions Last name Solutions

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory drake@anl.gov

More information

CHARGES IN AN ELECTRIC FIELD

CHARGES IN AN ELECTRIC FIELD CONTENT POTENTIAL ENERGY AND WORK HSC Physics Module 4 Electricity and Magnetism Electric Field Potential energy, Work and Equipotential Lines CHARGES IN AN ELECTRIC FIELD A charge in an electric field

More information

Analytical Chemistry II

Analytical Chemistry II Analytical Chemistry II L4: Signal processing (selected slides) Computers in analytical chemistry Data acquisition Printing final results Data processing Data storage Graphical display https://www.creativecontrast.com/formal-revolution-of-computer.html

More information

Chapter 7. Chapter 7

Chapter 7. Chapter 7 Chapter 7 Combination circuits Most practical circuits have combinations of series and parallel components. You can frequently simplify analysis by combining series and parallel components. An important

More information

IE1206 Embedded Electronics

IE1206 Embedded Electronics IE1206 Embedded Electronics Le1 Le3 Le4 Le2 Ex1 Ex2 PIC-block Documentation, Seriecom Pulse sensors I, U, R, P, series and parallel KC1 LAB1 Pulse sensors, Menu program Start of programing task Kirchhoffs

More information

Lecture 5: Using electronics to make measurements

Lecture 5: Using electronics to make measurements Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly

More information

Lecture: Sampling. Automatic Control 2. Sampling. Prof. Alberto Bemporad. University of Trento. Academic year

Lecture: Sampling. Automatic Control 2. Sampling. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Sampling Prof. Alberto Bemporad University of rento Academic year 2010-2011 Prof. Alberto Bemporad (University of rento) Automatic Control 2 Academic year 2010-2011 1 / 31 ime-discretization

More information

Lecture 1. Electrical Transport

Lecture 1. Electrical Transport Lecture 1. Electrical Transport 1.1 Introduction * Objectives * Requirements & Grading Policy * Other information 1.2 Basic Circuit Concepts * Electrical l quantities current, voltage & power, sign conventions

More information

Recommended Courses by ECE Topic Area Graduate Students

Recommended Courses by ECE Topic Area Graduate Students Recommended s by ECE Topic Area Graduate Students The course recommendations below do not represent full plans of study. The courses listed under each heading represent appropriate courses to take if you

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 11

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 11 EECS 16A Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 11 11.1 Context Our ultimate goal is to design systems that solve people s problems. To do so, it s critical to understand

More information

Keywords: sensor compensation, integrated circuit, ic, compensation algorithm, piezoresistive, prt, pressure sensors, temperature

Keywords: sensor compensation, integrated circuit, ic, compensation algorithm, piezoresistive, prt, pressure sensors, temperature Maxim > Design Support > Technical Documents > Tutorials > ASICs > APP 2024 Maxim > Design Support > Technical Documents > Tutorials > Sensors > APP 2024 Keywords: sensor compensation, integrated circuit,

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use

More information

Analog Signals and Systems and their properties

Analog Signals and Systems and their properties Analog Signals and Systems and their properties Main Course Objective: Recall course objectives Understand the fundamentals of systems/signals interaction (know how systems can transform or filter signals)

More information

ELG4112. Electromechanical Systems and Mechatronics

ELG4112. Electromechanical Systems and Mechatronics ELG4112 Electromechanical Systems and Mechatronics 1 Introduction Based on Electromechanical Systems, Electric Machines, and Applied Mechatronics Electromechanical systems integrate the following: Electromechanical

More information

Real-time Systems: Scheduling Periodic Tasks

Real-time Systems: Scheduling Periodic Tasks Real-time Systems: Scheduling Periodic Tasks Advanced Operating Systems Lecture 15 This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To view a copy of

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENIFIC PHYSICS Stefan-Boltzmann Lamp 1008523 Instruction manual 11/12 NF/ALF 1. Safety instructions he Stefan-Boltzmann lamp conforms to the safety stipulations for electrical measuring, control

More information

IE1206 Embedded Electronics Le2

IE1206 Embedded Electronics Le2 Le1 Le3 Le4 Le6 Le8 IE1206 Embedded Electronics Le2 Ex1 Ex2 Ex4 Ex5 PIC-block Documentation, Seriecom Pulse sensors I, U, R, P, serial and parallel KC1 LAB1 Pulse sensors, Menu program Kirchhoffs laws

More information

Analysis of a single-loop circuit using the KVL method

Analysis of a single-loop circuit using the KVL method Analysis of a single-loop circuit using the KVL method Figure 1 is our circuit to analyze. We shall attempt to determine the current through each element, the voltage across each element, and the power

More information

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents. Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in

More information

Discussion Question 6A

Discussion Question 6A Discussion Question 6 P212, Week 6 Two Methods for Circuit nalysis Method 1: Progressive collapsing of circuit elements In last week s discussion, we learned how to analyse circuits involving batteries

More information

EXPERIMENT NO. 4. Thermal Radiation: the Stefan-Boltzmann Law

EXPERIMENT NO. 4. Thermal Radiation: the Stefan-Boltzmann Law 1 EXPERIMENT NO. 4 Thermal Radiation: the Stefan-Boltzmann Law References: Physics for Scientists and Engineers, Serway and Jewett. Sections 40.1 An Introduction to Thermal Physics, Schroeder, Section

More information

Contrôle de position ultra-rapide d un objet nanométrique

Contrôle de position ultra-rapide d un objet nanométrique Contrôle de position ultra-rapide d un objet nanométrique présenté par Alina VODA alina.voda@gipsa-lab.grenoble-inp.fr sur la base de la thèse de Irfan AHMAD, co-encadrée avec Gildas BESANCON plate-forme

More information

5mm Silicon PIN Photodiode, T-1 3/4 EAPDLP05RDDA1

5mm Silicon PIN Photodiode, T-1 3/4 EAPDLP05RDDA1 Features Fast response time High photo sensitivity Small junction capacitance Pb free This product itself will remain within RoHS compliant version. Description is a high speed and high sensitive PIN photodiode

More information

WHITE PAPER: SLOA011 Author: Jim Karki Digital Signal Processing Solutions April 1998

WHITE PAPER: SLOA011 Author: Jim Karki Digital Signal Processing Solutions April 1998 OPerational AMPlifier lifiers Source: Understanding Operational Amplifier Specifications Source: Understanding Operational Amplifier Specifications WHITE PAPE: SLOA0 Author: Jim Karki Digital Signal Processing

More information

Lecture 4: Feedback and Op-Amps

Lecture 4: Feedback and Op-Amps Lecture 4: Feedback and Op-Amps Last time, we discussed using transistors in small-signal amplifiers If we want a large signal, we d need to chain several of these small amplifiers together There s a problem,

More information

Engineering Fundamentals Exam. Study Guide For Electrical Engineering Exam

Engineering Fundamentals Exam. Study Guide For Electrical Engineering Exam Engineering Fundamentals Exam Study Guide For Electrical Engineering Exam COPYRIGHT NOTICE Copyrights 2014 National Center for Assessment in Higher Education (QIYAS) and Saudi Council of Engineers (SCE)

More information

Lecture 340 Characterization of DACs and Current Scaling DACs (5/1/10) Page 340-1

Lecture 340 Characterization of DACs and Current Scaling DACs (5/1/10) Page 340-1 Lecture 34 Characterization of DACs and Current Scaling DACs (5//) Page 34 LECTURE 34 CHARACTERZATON OF DACS AND CURRENT SCALNG DACS LECTURE ORGANZATON Outline ntroduction Static characterization of DACs

More information

Test System Requirements For Wafer Level MRAM Test

Test System Requirements For Wafer Level MRAM Test Test System Requirements For Wafer Level MRAM Test Raphael Robertazzi IBM/Infineon MRAM Development Alliance With Acknowledgement To Cascade Microtech Inc. And Temptronics Inc. 6/07/04 SWTW-2004 Page [1]

More information

Experiment 4: Resistances in Circuits

Experiment 4: Resistances in Circuits Name: Partners: Date: Experiment 4: Resistances in Circuits EQUIPMENT NEEDED: Circuits Experiment Board Multimeter Resistors Purpose The purpose of this lab is to begin experimenting with the variables

More information

Electricity and Energy Learning Intentions and Success Criteria

Electricity and Energy Learning Intentions and Success Criteria Electricity and Energy s and Revision from S1 and S2 s I am aware of different forms of energy and can name some I can state the energy changes which take place in everyday pieces of equipment I am aware

More information

or Op Amps for short

or Op Amps for short or Op Amps for short Objective of Lecture Describe how an ideal operational amplifier (op amp) behaves. Define voltage gain, current gain, transresistance gain, and transconductance gain. Explain the operation

More information

Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters

Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters Lecture 7, ATIK Continuous-time filters 2 Discrete-time filters What did we do last time? Switched capacitor circuits with nonideal effects in mind What should we look out for? What is the impact on system

More information

Lecture 5: Using electronics to make measurements

Lecture 5: Using electronics to make measurements Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly

More information

ELECTRONICS IA 2017 SCHEME

ELECTRONICS IA 2017 SCHEME ELECTRONICS IA 2017 SCHEME CONTENTS 1 [ 5 marks ]...4 2...5 a. [ 2 marks ]...5 b. [ 2 marks ]...5 c. [ 5 marks ]...5 d. [ 2 marks ]...5 3...6 a. [ 3 marks ]...6 b. [ 3 marks ]...6 4 [ 7 marks ]...7 5...8

More information

Nyquist-Rate D/A Converters. D/A Converter Basics.

Nyquist-Rate D/A Converters. D/A Converter Basics. Nyquist-Rate D/A Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 20 D/A Converter Basics. B in D/A is a digital signal (or word), B in b i B in = 2 1

More information

Maintenance/ Discontinued

Maintenance/ Discontinued Cs for CD/CD-RM Player AN886SB 4ch. Linear Driver C for CD/CD-RM verview The AN886SB is a 4ch. driver using the power operational amplifier method. t employs the surface mounting type package superior

More information

(A) (B) (D) (C) 1.5. Amplitude (volts) 1.5. Amplitude (volts) Time (seconds) Time (seconds)

(A) (B) (D) (C) 1.5. Amplitude (volts) 1.5. Amplitude (volts) Time (seconds) Time (seconds) Reminder: Lab #1 : Limitations of A/D conversion Lab #2 : Thermocouple, static and dynamic calibration Lab #3 : Conversion of work into heat Lab #4 : Pressure transducer, static and dynamic calibration

More information

ECE Branch GATE Paper The order of the differential equation + + = is (A) 1 (B) 2

ECE Branch GATE Paper The order of the differential equation + + = is (A) 1 (B) 2 Question 1 Question 20 carry one mark each. 1. The order of the differential equation + + = is (A) 1 (B) 2 (C) 3 (D) 4 2. The Fourier series of a real periodic function has only P. Cosine terms if it is

More information

5-BIT PROGRAMMABLE VOLTAGE REFERENCE P R O D U C T I O N D ATA S H E E T

5-BIT PROGRAMMABLE VOLTAGE REFERENCE P R O D U C T I O N D ATA S H E E T LIN DOC #: 10 T HE I N F I N I T E P O W E R OF I N N O V A TION DESCRIPTION KEY FEATURES The is a complete precision reference and voltage monitor circuit for the Intel Pentium Pro Processor and other

More information

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1 E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863-866. Reader, Chapter 8 Noninverting Amp http://www.electronics-tutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronics-tutorials.ws/opamp/opamp_2.html

More information

ETSF15 Analog/Digital. Stefan Höst

ETSF15 Analog/Digital. Stefan Höst ETSF15 Analog/Digital Stefan Höst Physical layer Analog vs digital Sampling, quantisation, reconstruction Modulation Represent digital data in a continuous world Disturbances Noise and distortion Synchronization

More information

Electricity & Magnetism

Electricity & Magnetism Electricity & Magnetism D.C. Circuits Marline Kurishingal Note : This chapter includes only D.C. In AS syllabus A.C is not included. Recap... Electrical Circuit Symbols : Draw and interpret circuit diagrams

More information

6.002x CIRCUITS AND ELECTRONICS. Introduction and Lumped Circuit Abstraction

6.002x CIRCUITS AND ELECTRONICS. Introduction and Lumped Circuit Abstraction 6.002x CIRCUITS AND ELECTRONICS Introduction and Lumped Circuit Abstraction 1 6.002x is Exciting! What s behind this? 2 and this Chip photo of Intel s 22nm multicore processor codenamed Ivy Bridge Photograph

More information

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination. Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 17, 2001 Closed Book and Notes 1. Be sure to fill in your

More information

3C3 Analogue Circuits

3C3 Analogue Circuits Department of Electronic & Electrical Engineering Trinity College Dublin, 2014 3C3 Analogue Circuits Prof J K Vij jvij@tcd.ie Lecture 1: Introduction/ Semiconductors & Doping 1 Course Outline (subject

More information

UNIVERSITY OF MASSACHUSETTS LOWELL DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING SYLLABUS FOR THE DOCTORAL QUALIFYING EXAM

UNIVERSITY OF MASSACHUSETTS LOWELL DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING SYLLABUS FOR THE DOCTORAL QUALIFYING EXAM UNIVERSITY OF MASSACHUSETTS LOWELL DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING SYLLABUS FOR THE DOCTORAL QUALIFYING EXAM Ph.D/D.Eng. Electrical Engineering Option These are the general topics for the

More information

Notes on Electricity (Circuits)

Notes on Electricity (Circuits) A circuit is defined to be a collection of energy-givers (active elements) and energy-takers (passive elements) that form a closed path (or complete path) through which electrical current can flow. The

More information

Today in Physics 217: circuits

Today in Physics 217: circuits Today in Physics 217: circuits! Review of DC circuits: Kirchhoff s rules! Solving equations from Kirchhoff s rules for simple DC circuits 2 December 2002 Physics 217, Fall 2002 1 Lumped circuit elements:

More information

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review. Schedule Date Day lass No. 0 Nov Mon 0 Exam Review Nov Tue Title hapters HW Due date Nov Wed Boolean Algebra 3. 3.3 ab Due date AB 7 Exam EXAM 3 Nov Thu 4 Nov Fri Recitation 5 Nov Sat 6 Nov Sun 7 Nov Mon

More information

Functional Materials. Optical and Magnetic Applications. Electrical, Dielectric, Electromagnetic, Deborah D. L Chung.

Functional Materials. Optical and Magnetic Applications. Electrical, Dielectric, Electromagnetic, Deborah D. L Chung. SINGAPORE Functional Materials Electrical, Dielectric, Electromagnetic, Optical and Magnetic Applications Deborah D. L Chung State University of New York at Buffalo, USAy^, NEW JERSEY LONDON ^ World Scientific

More information

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS Objectives: Introduction Notes for course EE1.1 Circuit Analysis 4-5 Re-examination of 1-port sub-circuits Admittance parameters for -port circuits TOPIC 1 -PORT CIRCUITS Gain and port impedance from -port

More information

UNIT 1. SIGNALS AND SYSTEM

UNIT 1. SIGNALS AND SYSTEM Page no: 1 UNIT 1. SIGNALS AND SYSTEM INTRODUCTION A SIGNAL is defined as any physical quantity that changes with time, distance, speed, position, pressure, temperature or some other quantity. A SIGNAL

More information

PH 222-2C Fall Circuits. Lectures Chapter 27 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Circuits. Lectures Chapter 27 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 Circuits Lectures 11-12 Chapter 27 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 27 Circuits In this chapter we will cover the following topics: -Electromotive

More information