Numerical simulation and macroscopic model formulation for diffusion magnetic resonance imaging in the brain

Size: px
Start display at page:

Download "Numerical simulation and macroscopic model formulation for diffusion magnetic resonance imaging in the brain"

Transcription

1 Numerical simulation and macroscopic model formulation for diffusion magnetic resonance imaging in the brain Jing-Rebecca Li Equipe DEFI, CMAP, Ecole Polytechnique Institut national de recherche en informatique et en automatique (INRIA) Saclay, France L' HABILITATION À DIRIGL' HABILITATION À DIRIGER DES RECHEHERCHES French-Vietnam Master in Applied Mathematics, Sept 23,

2 DeFI Houssem Haddar Simona Schiavi (PhD) Gabrielle Fournet (PhD) Dang Van Nguyen (PhD) Julien Coatleven (Post-doc) Fabien Caubet (Post-doc) Denis Le Bihan Cyril Poupon Luisa Ciobanu Khieu Van Nguyen (PhD) Hang Tuan Nguyen (PhD) Master 2 interns Vu Duc Thach Son (April-August 2017), Hoang An Tran (April-August 2016), Hoang Trong An Tran (April-August 2015), Thi Minh Phuong Nguyen (April-August 2014), Khieu Van Nguyen (April Aug 2013), Tri Tinh Nguyen (March July 2011), Thong Nguyen (March July 2011), Cesar Retamal Bravo (March July 2007), Sonia Fliss (Sept Mar. 2005). French-Vietnam Master in Applied Mathematics, Sept 23,

3 Outline 1. Brain micro-structure is complex 2. MRI using diffusion encoding to see micro-structure 3. DMRI signal due to tissue (neurons+other cells) a) Full-scale numerical simulation b) Macroscopic model formulation via homogenization c) Experimental validation in simpler organism French-Vietnam Master in Applied Mathematics, Sept 23,

4 MRI useful for studying Gray: cortical surface. Teal: fmri activations Red: arteries in red Bright green: tumor Yellow: white matter fiber Diffusion Tensor and Functional MRI Fusion with Anatomical MRI for Image-Guided Neurosurgery. Sixth International Conference on Medical Image Computing and Computer-Assisted Intervention - MICCAI'03. French-Vietnam Master in Applied Mathematics, Sept 23,

5 Large-scale electron microscopy of serial thin sections, mouse primary visual cortex. Pink: blood vessels Yellow: nucleoli, oligodendrocyte nuclei, and myelin Aqua: cell bodies and dendrites. Bock et al. Nature 471, (2011) Scale bars: a, b, 100 mm; c e, 10mm; f, 1 mm. French-Vietnam Master in Applied Mathematics, Sept 23,

6 Magnetic resonance imaging (MRI) Non-invasive, in-vivo MRI signal: water proton magnetization over a volume called a voxel. MRI To give image contrast, magnetization is weighted by some quantity of the local tissue environment. Contrast: (tissue structure) 1. Spin (water) density Spatial resolution: One voxel = O(1 mm) Much bigger than micro-structure 2. Relaxation (T1,T2,T2*) 3. Water displacement (diffusion) in each voxel French-Vietnam Master in Applied Mathematics, Sept 23,

7 o Standard MRI: T2 relaxation (T2 contrast) at different spatial positions of brain o In diffusion MRI (recently developed) magnetization is weighted by water displacement due to Brownian motion over 10s of ms (called measured diffusion time).??? o Water displacement depends on local cell environment, hindered by cell membranes. o Right: T2 contrast does not show dendrite beading hours after stroke, diffusion weighted image (DWI) does. French-Vietnam Master in Applied Mathematics, Sept 23,

8 DMRI measures incoherent water motion during diffusion time between 10-40ms. Root mean squared displacement: 6-13 mm Voxel : 2mm x 2mm x 2 mm (human, clinical scanner) 100mm x 100mm x 100mm (small animal, high field scanner) French-Vietnam Master in Applied Mathematics, Sept 23,

9 Goal: quantify dmri contrast in terms of tissue micro-structure This problem difficult because: 1. Dendrites (trees) and extra-cellular (EC) space (complement of densely packed dendrites) are anisotropic, numerically lower dimensional (dendrites 1 dim, EC 2 dim). 2. Multiple scales (5 orders of magnitude difference). Extra-cellular space thickness 10-30nm Dendrite radius mm Soma diameter 1-10mm DMRI voxel 2mm 3. Cell membranes are permeable to water. Cells must be coupled together. French-Vietnam Master in Applied Mathematics, Sept 23,

10 Simple (original) model of dmri Brain: 70 percent water Brownian motion of water molecules u x t, x (, 0 ) e x x 0 4 Dt (4 Dt) d 2 2 Mean-squared displacement Can be obtained by dmri MSD u( x, t, x 0) 2 2 x x 0 dx ddt D = 2 x 10-3 mm²/s if no cell membranes Experimentally measured = 1x10-3 mm²/s French-Vietnam Master in Applied Mathematics, Sept 23,

11 How diffusion MRI assigns contrast to displacement Water 1 H (hydrogen nuclei), spin ½ Precession Larmor frequency: γb x, t dt t Proton: g/2 = MHz / Tesla B x, t = f t g x TE D Diffusion time f(t) g d Gradient duration RF180 d g Echo Pulsed gradient spin echo (PGSE) sequence (Stejskal-Tanner-1965) French-Vietnam Master in Applied Mathematics, Sept 23,

12 t = 0: M δ = M 0 e iγδg x 0 t = Δ + δ, M Δ+δ = M 0 e iγδg x Δ+δ x 0 French-Vietnam Master in Applied Mathematics, Sept 23,

13 u x, t x 0 x x0 2 = e 4Dt 3 2 4πDt Experimental parameters S b = u x, Δ + δ x 0 e iγδg x Δ+δ x 0 dxdx 0 x V x 0 V g D, d can be varied = e D γ2 δ 2 g 2 Δ δ 3 b g, Δ, δ γ 2 δ 2 g 2 Δ δ 3, ADC d log (S b ): db apparent diffusion coefficient Fitted at every voxel MSD = ADC*(2D) Brain gray matter: ADC around10-3 mm²/s Root MSD: 6-13 mm French-Vietnam Master in Applied Mathematics, Sept 23,

14 5 Diffusion is not Gaussian in biological tissues (In each voxel) Human visual cortex (Le Bihan et al. PNAS 2006). S ( ADC ) b S 0 e Log plot not a straight line. Simple model is wrong ln(signal) Free diffusion: ln(s/s0) = -bd b value S S 0 Physicists try a different simple model f fast e D fast b f slow e f fast = 65.9%, f slow = 34.1% D fast = mm²/s, D slow = mm²/s D slow b. French-Vietnam Master in Applied Mathematics, Sept 23,

15 DMRI signal due to tissue (neurons+other cells) A. Direct simulation of reference model (Bloch-Torrey PDE) o Finite elements + RKC time stepping (PhD Dang Van Nguyen) B. Asymptotic models using homogenization C. Experimental validation in simpler organism: Aplysia French-Vietnam Master in Applied Mathematics, Sept 23,

16 Reference model: Bloch-Torrey PDE M j x, t g = i γf t g x M j x, t g + D M j x, t g, x Ω j. t PDE with interface condition between cells and the extra-cellular space D M j x, t g n j x = D M k x, t g n k (x), x Γ jk, D M j x, t g n j x = κ M j x, t, g M k x, t g, x Γ jk, M j g, t = M j x, t g dx. x Ω j S g, T end = M j (g, t) exp ( ADC b experi ) j M: magnetization g: magnetic field gradient T end : diffusion time From signal, want to quantify cell geometry and membrane permeability. Ω i, D κ ie Ω e, D French-Vietnam Master in Applied Mathematics, Sept 23,

17 1. Numerical simulation of diffusion MRI signals using an adaptive timestepping method, J.-R. Li, D. Calhoun, C. Poupon, D. Le Bihan. Physics in Medicine and Biology, A finite elements method to solve the Bloch-Torrey equation applied to diffusion magnetic resonance imaging, D.V. Nguyen, J.R. Li, D. Grebenkov, D. Le Bihan, Journal of Computational Physics, M x, t g French-Vietnam Master in Applied Mathematics, Sept 23,

18 To do: Define/segment -- mesh solve Bloch-Torrey PDE on realistic brain tissue geometry French-Vietnam Master in Applied Mathematics, Sept 23,

19 Asymptotic models of dmri using periodic homogenization 1. Coupled ODE model Works for large diffusion displacement and wide range of gradient amplitudes. (Post-doc Coatleven, PhD Hang Tuan Nguyen) 2. Simpler PDE model for wide range of diffusion displacement and low gradient amplitudes (ADC). (Ph.D. Schiavi) Both are limited to low membrane permeability French-Vietnam Master in Applied Mathematics, Sept 23,

20 Choose space and time scales σ = σ e in Y e σ c in Y c intrinsic diffusion coefficient L = εl 0 κ = εκ 0 Valid when Spatial scale membrane s permeability coefficient diffusion displacement long compared to cell features. low membrane permeability. We fix a non-dimensional parameter ε which goes to 0 French-Vietnam Master in Applied Mathematics, Sept 23,

21 Define two space scales: coarse and fine scales And expand magnetization in terms of y = x ε M = i i=1 ε i ε i M ie x, y, t in Ω e M ic (x, y, t) in Ω c Match powers (0,1,2) of using the PDE, get relationships between coefficient functions French-Vietnam Master in Applied Mathematics, Sept 23,

22 M ODE e (g, t) t M ODE i (g, t) t Formulated macroscopic model for the compartment magnetizations for arbitrary pulse shape: is an ODE model = c(t)γ 2 D e g 2 e 1 M ODE (g, t) τ e M e 1 ODE (g, t) + τ i M i ODE (g, t) = c t γ 2 D i g 2 i 1 M ODE (g, t) τ i M i 1 ODE (g, t) + τ e M e ODE (g, t) t c(t) = f s ds κ Ωi = τi Ω i, τ e = Ωi Ω e τi f(t) S ODE b = M ODE j g, t, j D Diffusion time d Gradient duration g d RF180 TE g Echo French-Vietnam Master in Applied Mathematics, Sept 23,

23 Simulation box 7.5 mm x 14 mm x 7.5 mm Membrane permeability k= 1e-5 m/s δ = 40ms, Δ = 40ms French-Vietnam Master in Applied Mathematics, Sept 23,

24 Diffusion displacement not long w.r.t. cell features σ = σ e in Y e σ c in Y c L = εl 0 intrinsic diffusion coefficient Spatial scale κ = εκ 0 t = ε 2 t 0 q = q 0 ε 2 membrane s permeability coefficient Time scale gradient strength French-Vietnam Master in Applied Mathematics, Sept 23,

25 Homogenized model for Deff D eff σ il 1 e i e l δ 2 Δ δ 3 Δ+δ 0 ADC new D eff u g u g F t p il (t) p il t 1 Y Y x i ω l (x, t) t F t = f s ds 0 TE D Diffusion time d Gradient duration d F(t) d RF180 Echo French-Vietnam Master in Applied Mathematics, Sept 23,

26 Homogenized model for Deff t ω l div σ ω l = 0 in Y 0, T σ ω l (, t) ν = F(t)σe l ν on Γ 0, T ω l, 0 = 0 in Y ω l is Y periodic Homogeneous diffusion equation with constant coefficient and Neumann boundary condition on the interface Need to analyze 1 p il t Y x i Y ω l (, t) French-Vietnam Master in Applied Mathematics, Sept 23,

27 t ω 1 div σ ω 1 = 0 in Y 0, δ σ ω 1 ν = tσe 1 ν g, t on Γ 0, δ ω 1, 0 = 0 in Y t ω 1, t = SL, t = G x y, t τ μ y, τ ds y dτ σ 2 μ x0, t + σk μ x 0, t = g(x 0, t) K μ (x 0, t) First Pulse: t 0, δ, single layer potential 0 t Γ 0 Γ G x 0 y, t τ μ y, τ ds n y dτ x 0 Fundamental solution G x, t = (4πσt) d 2e x 2 4σt p 11 t 1 Y Y x ω l (, t) 4 3 π σ SA x VOL t3 2 SA x VOL 1 Y n x 2 Γ French-Vietnam Master in Applied Mathematics, Sept 23,

28 t ω 1 div σ c ω 1 = 0 in Y c δ, Δ σ ω 1 ν = δσe 1 ν on Γ δ, Δ ω 1, δ = SL, δ in Y Between pulses: t [δ, Δ], eigenfunction expansion ω 1, t ω 1 +δx t ω 1 div σ ω 1 = 0 in Y δ, Δ σ ω 1 ν = 0 on Γ δ, Δ ω 1, δ = SL, δ δx in Y ω 1, t = δx + c n φ n e λ nσ(t δ) n=1 French-Vietnam Master in Applied Mathematics, Sept 23,

29 Between pulses: t [δ, Δ] eigenfunction expansion ω 1, t = δx + (b n + δa n )φ n e λ nσ(t δ) n=1 b n SL, δ φ n Y a n Y x φ n ( ) h in 1 Y φ n x a n are the first moment of the eigenfunctions. p 11 t = 1 Y Y x ω 1 (, t) δ + n=1 δa n + b n h in e λ nσ(t δ) French-Vietnam Master in Applied Mathematics, Sept 23,

30 Second Pulse: t [Δ, Δ + δ] single layer potential t ω 1 div σ ω 1 = 0 in Y Δ, Δ + δ σ ω 1 ν = Δ + δ t σe 1 ν on Γ Δ, Δ + δ ω 1, Δ = ω 1, Δ in Y t ω 1 div σ ω 1 = 0 in Y 0, δ σ c ω c 1 ν = tσ c e 1 ν on Γ 0, δ ω 1 c, 0 = 0 in Y c ω 1, t = ω 1 (, Δ) SL, t Δ p 11 t = δ + δa n + b n h in e λ nσ(δ δ) n=1 4 3 π σ SA x VOL t3 2 French-Vietnam Master in Applied Mathematics, Sept 23,

31 D eff 11 σ 1 b n SL, δ φ n Y SA x VOL 1 Y δ I F t p il t 0 Δ II F t p il t δ III = δ3 2 + δ2 2 n=1 Homogenized model for Deff n x 2 Γ = French-Vietnam Master in Applied Mathematics, Sept 23, δ 2 Δ δ π σ SA x VOL δ7 2 δa n + b n h in (e λ nσ Δ δ ) + I + II + III = δ 2 1 Δ δ + δ (δa n + b n )h in λ n σ (1 e λnσ(δ δ) ) n=1 h in 1 Y φ n x a n are the first moment of the eigenfunctions. 4 3 π σ SA x VOL 2 5 δ δ7 2

32 Numerical results French-Vietnam Master in Applied Mathematics, Sept 23,

33 To do: Model is not so simple like ODE, must work to simplify it to make it numerically efficient for parameter estimation. Use mix of layer potentials and eigenfunctions Account for multiple scales and anisotropic shape of neurons. French-Vietnam Master in Applied Mathematics, Sept 23,

34 Estimating cell size and membrane permeability using reference PDE model in neuron network of the Aplysia (sea slug). (Ph.D. Khieu Van Nguyen) Cells are really big. French-Vietnam Master in Applied Mathematics, Sept 23,

35 o Segment high resolution T2 image of buccal ganglia. o Use literature values of feathers that cannot be seen in T2 image o Simulate Bloch-Torrey PDE o Obtain diffusion images Carlo Musio et al. Zoomorphology. 1990;110:17-26 French-Vietnam Master in Applied Mathematics, Sept 23,

36 Thank you for your attention! French-Vietnam Master in Applied Mathematics, Sept 23,

Numerical simulation and macroscopic model formulation for diffusion magnetic resonance imaging in the brain

Numerical simulation and macroscopic model formulation for diffusion magnetic resonance imaging in the brain Numerical simulation and macroscopic model formulation for diffusion magnetic resonance imaging in the brain Jing-Rebecca Li Equipe DEFI, CMAP, Ecole Polytechnique Institut national de recherche en informatique

More information

Understanding brain micro-structure using diffusion magnetic resonance imaging (dmri)

Understanding brain micro-structure using diffusion magnetic resonance imaging (dmri) Understanding brain micro-structure using diffusion magnetic resonance imaging (dmri) Jing-Rebecca Li Equipe DEFI, CMAP, Ecole Polytechnique Institut national de recherche en informatique et en automatique

More information

Mathematics for brain imaging

Mathematics for brain imaging Mathematics for brain imaging Jing-Rebecca Li Chargée de recherche Equipe DEFI (Détermination de Formes et Identification) INRIA Saclay, France Centre de Mathématiques Appliquées, Ecole Polytechnique L'

More information

Parameter estimation using macroscopic diffusion MRI signal models

Parameter estimation using macroscopic diffusion MRI signal models Parameter estimation using macroscopic diffusion MRI signal models Hang Tuan Nguyen 3, Denis Grebenkov 2, Dang Van Nguyen 1,3, Cyril Poupon 3, Denis Le Bihan 3, Jing-Rebecca Li 1,3 1 INRIA Saclay-Equipe

More information

Diffusion Tensor Imaging (DTI): An overview of key concepts

Diffusion Tensor Imaging (DTI): An overview of key concepts Diffusion Tensor Imaging (DTI): An overview of key concepts (Supplemental material for presentation) Prepared by: Nadia Barakat BMB 601 Chris Conklin Thursday, April 8 th 2010 Diffusion Concept [1,2]:

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

Contrast Mechanisms in MRI. Michael Jay Schillaci

Contrast Mechanisms in MRI. Michael Jay Schillaci Contrast Mechanisms in MRI Michael Jay Schillaci Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting,

More information

Magnetic resonance imaging MRI

Magnetic resonance imaging MRI Magnetic resonance imaging MRI Introduction What is MRI MRI is an imaging technique used primarily in medical settings that uses a strong magnetic field and radio waves to produce very clear and detailed

More information

Basic MRI physics and Functional MRI

Basic MRI physics and Functional MRI Basic MRI physics and Functional MRI Gregory R. Lee, Ph.D Assistant Professor, Department of Radiology June 24, 2013 Pediatric Neuroimaging Research Consortium Objectives Neuroimaging Overview MR Physics

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Diffusion Tensor Imaging I: The basics. Jennifer Campbell

Diffusion Tensor Imaging I: The basics. Jennifer Campbell Diffusion Tensor Imaging I: The basics Jennifer Campbell Diffusion Tensor Imaging I: The basics Jennifer Campbell Diffusion Imaging MRI: many different sources of contrast T1W T2W PDW Perfusion BOLD DW

More information

Part II: Magnetic Resonance Imaging (MRI)

Part II: Magnetic Resonance Imaging (MRI) Part II: Magnetic Resonance Imaging (MRI) Contents Magnetic Field Gradients Selective Excitation Spatially Resolved Reception k-space Gradient Echo Sequence Spin Echo Sequence Magnetic Resonance Imaging

More information

Advanced Topics and Diffusion MRI

Advanced Topics and Diffusion MRI Advanced Topics and Diffusion MRI Slides originally by Karla Miller, FMRIB Centre Modified by Mark Chiew (mark.chiew@ndcn.ox.ac.uk) Slides available at: http://users.fmrib.ox.ac.uk/~mchiew/teaching/ MRI

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu MRI advantages Superior soft-tissue contrast Depends on among

More information

Outline of the talk How to describe restricted diffusion? How to monitor restricted diffusion? Laplacian eigenfunctions in NMR Other applications Loca

Outline of the talk How to describe restricted diffusion? How to monitor restricted diffusion? Laplacian eigenfunctions in NMR Other applications Loca Laplacian Eigenfunctions in NMR Denis S. Grebenkov Laboratoire de Physique de la Matière Condensée CNRS Ecole Polytechnique, Palaiseau, France IPAM Workshop «Laplacian Eigenvalues and Eigenfunctions» February

More information

Introduction to MRI Acquisition

Introduction to MRI Acquisition Introduction to MRI Acquisition James Meakin FMRIB Physics Group FSL Course, Bristol, September 2012 1 What are we trying to achieve? 2 What are we trying to achieve? Informed decision making: Protocols

More information

From the microstructure to diffusion MRI, and back

From the microstructure to diffusion MRI, and back From the microstructure to diffusion MRI, and back Denis S. Grebenkov May 5, 2015 Contents 1 Introduction 2 2 Mathematical background 3 2.1 Bloch-Torrey equation...................... 3 2.2 Boundary conditions.......................

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

Downloaded 02/05/15 to Redistribution subject to SIAM license or copyright; see

Downloaded 02/05/15 to Redistribution subject to SIAM license or copyright; see SIAM J. APPL. MATH. Vol. 74, No., pp. 516 546 c 14 Society for Industrial and Applied Mathematics Downloaded /5/15 to 18.93.16.74. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

More information

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Enseignant-chercheur Equipe IMAGES - Télécom ParisTech pietro.gori@telecom-paristech.fr September 20, 2017 P. Gori BIOMED 20/09/2017 1 / 76

More information

NMR Imaging in porous media

NMR Imaging in porous media NMR Imaging in porous media What does NMR give us. Chemical structure. Molecular structure. Interactions between atoms and molecules. Incoherent dynamics (fluctuation, rotation, diffusion). Coherent flow

More information

Medical Imaging Physics Spring Quarter Week 9-1

Medical Imaging Physics Spring Quarter Week 9-1 Medical Imaging Physics Spring Quarter Week 9-1 NMR and MRI Davor Balzar balzar@du.edu www.du.edu/~balzar Intro MRI Outline NMR & MRI Guest lecturer fmri Thursday, May 22 Visit to CUHSC It s not mandatory

More information

Physics of MR Image Acquisition

Physics of MR Image Acquisition Physics of MR Image Acquisition HST-583, Fall 2002 Review: -MRI: Overview - MRI: Spatial Encoding MRI Contrast: Basic sequences - Gradient Echo - Spin Echo - Inversion Recovery : Functional Magnetic Resonance

More information

Analytical and numerical study of the apparent diffusion coefficient in diffusion MRI at long diffusion times and low b- values

Analytical and numerical study of the apparent diffusion coefficient in diffusion MRI at long diffusion times and low b- values Analytical and numerical study of the apparent diffusion coefficient in diffusion MRI at long diffusion times and low b- values J.R. Li 1,2*, D. Le Bihan 2, T.Q. Nguyen 1, D. Grebenkov 3, C. Poupon 2,

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 10 pages Written test, 12 December 2012 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: None. Pocket calculator not allowed "Weighting":

More information

BNG/ECE 487 FINAL (W16)

BNG/ECE 487 FINAL (W16) BNG/ECE 487 FINAL (W16) NAME: 4 Problems for 100 pts This exam is closed-everything (no notes, books, etc.). Calculators are permitted. Possibly useful formulas and tables are provided on this page. Fourier

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Simon Lacoste-Julien Electromagnetic Theory Project 198-562B Department of Physics McGill University April 21 2003 Abstract This paper gives an elementary introduction

More information

DIFFUSION MAGNETIC RESONANCE IMAGING

DIFFUSION MAGNETIC RESONANCE IMAGING DIFFUSION MAGNETIC RESONANCE IMAGING from spectroscopy to imaging apparent diffusion coefficient ADC-Map anisotropy diffusion tensor (imaging) DIFFUSION NMR - FROM SPECTROSCOPY TO IMAGING Combining Diffusion

More information

The physics US and MRI. Prof. Peter Bogner

The physics US and MRI. Prof. Peter Bogner The physics US and MRI Prof. Peter Bogner Sound waves mechanical disturbance, a pressure wave moves along longitudinal wave compression rarefaction zones c = nl, (c: velocity, n: frequency, l: wavelength

More information

PhD THESIS. prepared at INRIA Sophia Antipolis

PhD THESIS. prepared at INRIA Sophia Antipolis PhD THESIS prepared at INRIA Sophia Antipolis and presented at the University of Nice-Sophia Antipolis Graduate School of Information and Communication Sciences A dissertation submitted in partial satisfaction

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

MRI Physics I: Spins, Excitation, Relaxation

MRI Physics I: Spins, Excitation, Relaxation MRI Physics I: Spins, Excitation, Relaxation Douglas C. Noll Biomedical Engineering University of Michigan Michigan Functional MRI Laboratory Outline Introduction to Nuclear Magnetic Resonance Imaging

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging G16.4426 Medical Imaging Physics of Magnetic Resonance Imaging Riccardo Lattanzi, Ph.D. Assistant Professor Department of Radiology, NYU School of Medicine Department of Electrical and Computer Engineering,

More information

Diffusion Weighted MRI. Zanqi Liang & Hendrik Poernama

Diffusion Weighted MRI. Zanqi Liang & Hendrik Poernama Diffusion Weighted MRI Zanqi Liang & Hendrik Poernama 1 Outline MRI Quick Review What is Diffusion MRI? Detecting Diffusion Stroke and Tumor Detection Presenting Diffusion Anisotropy and Diffusion Tensor

More information

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) Magnetic Resonance Imaging Introduction The Components The Technology (MRI) Physics behind MR Most slides taken from http:// www.slideworld.org/ viewslides.aspx/magnetic- Resonance-Imaging- %28MRI%29-MR-Imaging-

More information

III, Diffusion, and Susceptibility. August 25, Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania

III, Diffusion, and Susceptibility. August 25, Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania III,, and Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania August 25, 2010 Copyright Page All material in this lecture, except as noted within the text,

More information

Diffusion-Weighted MRI may be used to measure the apparent diffusion coefficient of water in tissue.

Diffusion-Weighted MRI may be used to measure the apparent diffusion coefficient of water in tissue. Specialty Area: MR Physics for Physicists Speaker: Jennifer A. McNab, Ph.D. Assistant Professor, Radiology, Stanford University () Highlights The Bloch-Torrey equation is a generalization of the Bloch

More information

Ordinary Least Squares and its applications

Ordinary Least Squares and its applications Ordinary Least Squares and its applications Dr. Mauro Zucchelli University Of Verona December 5, 2016 Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 1 / 48 Contents 1

More information

NMR/MRI examination (8N080 / 3F240)

NMR/MRI examination (8N080 / 3F240) NMR/MRI examination (8N080 / 3F240) Remarks: 1. This test consists of 3 problems with at total of 26 sub-questions. 2. Questions are in English. You are allowed to answer them in English or Dutch. 3. Please

More information

Lecture #7 In Vivo Water

Lecture #7 In Vivo Water Lecture #7 In Vivo Water Topics Hydration layers Tissue relaxation times Magic angle effects Magnetization Transfer Contrast (MTC) CEST Handouts and Reading assignments Mathur-De Vre, R., The NMR studies

More information

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner The physics of medical imaging US, CT, MRI Prof. Peter Bogner Clinical radiology curriculum blocks of lectures and clinical practice (7x2) Physics of medical imaging Neuroradiology Head and neck I. Head

More information

MRI in Practice. Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK. John Talbot MSc, DCRR

MRI in Practice. Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK. John Talbot MSc, DCRR MRI in Practice Third edition Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK and Carolyn Kaut RothRT(R) (MR) (CT) (M) (CV) Fellow SMRT (Section for Magnetic

More information

IEICE TRANS. INF. & SYST., VOL.E96 D, NO.6 JUNE

IEICE TRANS. INF. & SYST., VOL.E96 D, NO.6 JUNE 1387 PAPER An Explanation of Signal Changes in DW-fMRI: Monte Carlo Simulation Study of Restricted Diffusion of Water Molecules Using 3D and Two-Compartment Cortical Cell Models Shizue NAGAHARA, a), Student

More information

Diffusion imaging of the brain: technical considerations and practical applications

Diffusion imaging of the brain: technical considerations and practical applications Diffusion imaging of the brain: technical considerations and practical applications David G. Norris FC Donders Centre for Cognitive Neuroimaging Nijmegen Sustaining the physiologist in measuring the atomic

More information

Diffusion Magnetic Resonance Imaging Part 1: Theory & Methods

Diffusion Magnetic Resonance Imaging Part 1: Theory & Methods Diffusion Magnetic Resonance Imaging Part 1: Theory & Methods Benjamin M. Ellingson, Ph.D. Assistant Professor of Radiology, Biomedical Physics and Bioengineering Dept. of Radiological Sciences UCLA Neuro-Oncology

More information

Field trip: Tuesday, Feb 5th

Field trip: Tuesday, Feb 5th Pulse Sequences Field trip: Tuesday, Feb 5th Hardware tour of VUIIIS Philips 3T Meet here at regular class time (11.15) Complete MRI screening form! Chuck Nockowski Philips Service Engineer Reminder: Project/Presentation

More information

Magnetic Resonance Imaging

Magnetic Resonance Imaging http://www.qldxray.com.au/filelibrary/mri_cardiovascular_system_ca_0005.jpg Magnetic Resonance Imaging 1 Overview 1. The magnetic properties of nuclei, and how they behave in strong magnetic fields. 2.

More information

Basics of Diffusion Tensor Imaging and DtiStudio

Basics of Diffusion Tensor Imaging and DtiStudio Basics of Diffusion Tensor Imaging and DtiStudio DTI Basics 1 DTI reveals White matter anatomy Gray matter White matter DTI uses water diffusion as a probe for white matter anatomy Isotropic diffusion

More information

Magnetic Resonance Imaging. Qun Zhao Bioimaging Research Center University of Georgia

Magnetic Resonance Imaging. Qun Zhao Bioimaging Research Center University of Georgia Magnetic Resonance Imaging Qun Zhao Bioimaging Research Center University of Georgia The Nobel Prize in Physiology or Medicine 2003 "for their discoveries concerning magnetic resonance imaging" Paul C.

More information

Developing a Method for Distortion Correction in High b-value Diffusion-Weighted Magnetic Resonance Imaging HENRIK HANSSON

Developing a Method for Distortion Correction in High b-value Diffusion-Weighted Magnetic Resonance Imaging HENRIK HANSSON Developing a Method for Distortion Correction in High b-value Diffusion-Weighted Magnetic Resonance Imaging Master s thesis in Complex Adaptive Systems HENRIK HANSSON Department of Applied Physics Division

More information

Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging. Magnetization and Susceptibility

Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging. Magnetization and Susceptibility Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging 1, Chunlei Liu, Ph.D. 1 Brain Imaging and Analysis Center Department of Radiology Duke University, Durham, NC, USA 1 Magnetization

More information

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging BMB 601 MRI Ari Borthakur, PhD Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging University of Pennsylvania School of Medicine A brief history

More information

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons Fundamental MRI Principles Module 2 N S 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons positively charged neutrons no significant charge electrons negatively charged Protons

More information

Sketch of the MRI Device

Sketch of the MRI Device Outline for Today 1. 2. 3. Introduction to MRI Quantum NMR and MRI in 0D Magnetization, m(x,t), in a Voxel Proton T1 Spin Relaxation in a Voxel Proton Density MRI in 1D MRI Case Study, and Caveat Sketch

More information

A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Diffusion Tensor MRI (DTI) Background and Relevant Physics.

A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Diffusion Tensor MRI (DTI) Background and Relevant Physics. A Neurosurgeon s Perspectives of Diffusion Tensor Imaging(DTI) Kalai Arasu Muthusamy, D.Phil(Oxon) Senior Lecturer & Consultant Neurosurgeon. Division of Neurosurgery. University Malaya Medical Centre.

More information

Master of Science Thesis. Using q-space Diffusion MRI for Structural Studies of a Biological Phantom at a 3T Clinical Scanner

Master of Science Thesis. Using q-space Diffusion MRI for Structural Studies of a Biological Phantom at a 3T Clinical Scanner Master of Science Thesis Using q-space Diffusion MRI for Structural Studies of a Biological Phantom at a 3T Clinical Scanner Anna Rydhög Supervisor: Sara Brockstedt, Jimmy Lätt Medical Radiation Physics

More information

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast Chunlei Liu, PhD Department of Electrical Engineering & Computer Sciences and Helen Wills Neuroscience Institute University

More information

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 MRI Lecture 1 Topics The concept of spin Precession of magnetic spin Relaxation Bloch Equation 1 Spin Intrinsic angular momentum of

More information

Diffusion Imaging II. By: Osama Abdullah

Diffusion Imaging II. By: Osama Abdullah iffusion Imaging II By: Osama Abdullah Review Introduction. What is diffusion? iffusion and signal attenuation. iffusion imaging. How to capture diffusion? iffusion sensitizing gradients. Spin Echo. Gradient

More information

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar.

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar. 1 Doppler echocardiography & Magnetic Resonance Imaging History: - Langevin developed sonar. - 1940s development of pulse-echo. - 1950s development of mode A and B. - 1957 development of continuous wave

More information

Outlines: (June 11, 1996) Instructor:

Outlines: (June 11, 1996) Instructor: Magnetic Resonance Imaging (June 11, 1996) Instructor: Tai-huang Huang Institute of Biomedical Sciences Academia Sinica Tel. (02) 2652-3036; Fax. (02) 2788-7641 E. mail: bmthh@ibms.sinica.edu.tw Reference:

More information

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs)

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs) Yonas T. Weldeselassie (Ph.D. Candidate) Medical Image Computing and Analysis Lab, CS, SFU DT-MR Imaging Introduction

More information

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1 Chapter 1 Production of Net Magnetization Magnetic resonance (MR) is a measurement technique used to examine atoms and molecules. It is based on the interaction between an applied magnetic field and a

More information

Tissue Characteristics Module Three

Tissue Characteristics Module Three Tissue Characteristics Module Three 1 Equilibrium State Equilibrium State At equilibrium, the hydrogen vector is oriented in a direction parallel to the main magnetic field. Hydrogen atoms within the vector

More information

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013 EE5E/BIOE65 Spring 013 Principles of MRI Miki Lustig This is the last homework in class. Enjoy it. Assignment 9 Solutions Due April 9th, 013 1) In class when we presented the spin-echo saturation recovery

More information

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

Optimizing Phases of CPMG Pulse Sequence and Applying Exact Solution to Measure Relaxation Time

Optimizing Phases of CPMG Pulse Sequence and Applying Exact Solution to Measure Relaxation Time Optimizing Phases of CPMG Pulse Sequence and Applying Exact Solution to Measure Relaxation Time Alex Bain 1, Christopher Anand 2, Zhenghua Nie 3 1 Department of Chemistry & Chemical Biology 2 Department

More information

Diffusion Tensor Imaging I. Jennifer Campbell

Diffusion Tensor Imaging I. Jennifer Campbell Diffusion Tensor Imaging I Jennifer Campbell Diffusion Imaging Molecular diffusion The diffusion tensor Diffusion weighting in MRI Alternatives to the tensor Overview of applications Diffusion Imaging

More information

Towards Quantitative Measurements of Tissue Microstructure using Temporal Diffusion Spectroscopy. Hua Li

Towards Quantitative Measurements of Tissue Microstructure using Temporal Diffusion Spectroscopy. Hua Li Towards Quantitative Measurements of Tissue Microstructure using Temporal Diffusion Spectroscopy By Hua Li Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial

More information

Active Imaging with Dual Spin-Echo Diffusion MRI

Active Imaging with Dual Spin-Echo Diffusion MRI Active Imaging with Dual Spin-Echo Diffusion MRI Jonathan D. Clayden 1, Zoltan Nagy 2, Matt G. Hall 3,4, Chris A. Clark 1, and Daniel C. Alexander 3,4 1 Institute of Child Health 2 Wellcome Trust Centre

More information

Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields

Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields Çağatay Demiralp and David H. Laidlaw Brown University Providence, RI, USA Abstract. We give a proof of concept

More information

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Jeffrey A. Fessler EECS Department The University of Michigan NSS-MIC: Fundamentals of Medical Imaging Oct. 20, 2003 NMR-0 Background Basic physics 4 magnetic fields

More information

MRI in Review: Simple Steps to Cutting Edge Part I

MRI in Review: Simple Steps to Cutting Edge Part I MRI in Review: Simple Steps to Cutting Edge Part I DWI is now 2 years old... Mike Moseley Radiology Stanford DWI, b = 1413 T2wt, 28/16 ASN 21 San Francisco + Disclosures: Funding NINDS, NCRR, NCI 45 minutes

More information

Basis of MRI Contrast

Basis of MRI Contrast Basis of MRI Contrast MARK A. HORSFIELD Department of Cardiovascular Sciences University of Leicester Leicester LE1 5WW UK Tel: +44-116-2585080 Fax: +44-870-7053111 e-mail: mah5@le.ac.uk 1 1.1 The Magnetic

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Introduction to the Course and the Techniques. Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology

Introduction to the Course and the Techniques. Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology Introduction to the Course and the Techniques Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology (jralger@ucla.edu) CTSI Neuroimaging April 2013 Rationale for the Course

More information

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Spin Echo Imaging Hahn Spin Echo

More information

Physical fundamentals of magnetic resonance imaging

Physical fundamentals of magnetic resonance imaging Physical fundamentals of magnetic resonance imaging Stepan Sereda University of Bonn 1 / 26 Why? Figure 1 : Full body MRI scan (Source: [4]) 2 / 26 Overview Spin angular momentum Rotating frame and interaction

More information

Physics and Brain Imaging

Physics and Brain Imaging Physics and Brain Imaging Nuclear Magnetic Resonance (NMR) Magnetic Resonance Imaging (MRI) Functional MRI (fmri) Talk at Quarknet FSU Summer Workshop, July 24, 2017 Per Arne Rikvold Leonardo da Vinci

More information

Principles of Nuclear Magnetic Resonance Microscopy

Principles of Nuclear Magnetic Resonance Microscopy Principles of Nuclear Magnetic Resonance Microscopy Paul T. Callaghan Department of Physics and Biophysics Massey University New Zealand CLARENDON PRESS OXFORD CONTENTS 1 PRINCIPLES OF IMAGING 1 1.1 Introduction

More information

醫用磁振學 MRM 擴散張量影像 擴散張量影像原理. 本週課程內容 MR Diffusion 擴散張量造影原理 擴散張量造影應用 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系

醫用磁振學 MRM 擴散張量影像 擴散張量影像原理. 本週課程內容   MR Diffusion 擴散張量造影原理 擴散張量造影應用 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系 本週課程內容 http://www.ym.edu.tw/~cflu 擴散張量造影原理 擴散張量造影應用 醫用磁振學 MRM 擴散張量影像 盧家鋒助理教授國立陽明大學生物醫學影像暨放射科學系 alvin4016@ym.edu.tw MRI The Basics (3rd edition) Chapter 22: Echo Planar Imaging MRI in Practice, (4th edition)

More information

Low Field MRI of Laser Polarized Noble Gases. Yuan Zheng, 4 th year seminar, Feb, 2013

Low Field MRI of Laser Polarized Noble Gases. Yuan Zheng, 4 th year seminar, Feb, 2013 Low Field MRI of Laser Polarized Noble Gases Yuan Zheng, 4 th year seminar, Feb, 2013 Outline Introduction to conventional MRI Low field MRI of Laser Polarized (LP) noble gases Spin Exchange Optical Pumping

More information

The time-dependent diffusivity in the abdominal ganglion of Aplysia californica, comparing experiments and simulations

The time-dependent diffusivity in the abdominal ganglion of Aplysia californica, comparing experiments and simulations The time-dependent diffusivity in the abdominal ganglion of Aplysia californica, comparing experiments and simulations Khieu Van Nguyen a,b, Denis Le Bihan a, Luisa Ciobanu a,, Jing-Rebecca Li c, a Neurospin,

More information

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x )

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x ) Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2013 MRI Lecture 5 GE Medical Systems 2003 Gibbs Artifact Apodization rect(k ) Hanning Window h(k )=1/2(1+cos(2πk ) 256256 image 256128

More information

Velocity Images. Phase Contrast Technique. G. Reiter 1,2, U. Reiter 1, R. Rienmüller 1

Velocity Images. Phase Contrast Technique. G. Reiter 1,2, U. Reiter 1, R. Rienmüller 1 Velocity Images - the MR Phase Contrast Technique G. Reiter 1,2, U. Reiter 1, R. Rienmüller 1 SSIP 2004 12 th Summer School in Image Processing, Graz, Austria 1 Interdisciplinary Cardiac Imaging Center,

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Ecole Polytechnique Département de Chimie CHI 551 Dr. Grégory Nocton Bureau 01 30 11 A Tel: 44 02 Ecole polytechnique / CNRS Laboratoire de Chimie Moléculaire E-mail:

More information

Control of Spin Systems

Control of Spin Systems Control of Spin Systems The Nuclear Spin Sensor Many Atomic Nuclei have intrinsic angular momentum called spin. The spin gives the nucleus a magnetic moment (like a small bar magnet). Magnetic moments

More information

Chapter 14:Physics of Magnetic Resonance

Chapter 14:Physics of Magnetic Resonance Chapter 14:Physics of Magnetic Resonance Slide set of 141 slides based on the chapter authored by Hee Kwon Song of the publication (ISBN 978-92-0-131010-1): Diagnostic Radiology Physics: A Handbook for

More information

Predictive Diagnosis of Alzheimer s Disease using Diffusion MRI

Predictive Diagnosis of Alzheimer s Disease using Diffusion MRI Predictive Diagnosis of Alzheimer s Disease using Diffusion MRI by Syeda Maryam A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied

More information

New developments in Magnetic Resonance Spectrocopy and Diffusion MRI. Els Fieremans Steven Delputte Mahir Ozdemir

New developments in Magnetic Resonance Spectrocopy and Diffusion MRI. Els Fieremans Steven Delputte Mahir Ozdemir New developments in Magnetic Resonance Spectrocopy and Diffusion MRI Els Fieremans Steven Delputte Mahir Ozdemir Overview Magnetic Resonance Spectroscopy (MRS) Basic physics of MRS Quantitative MRS Pitfalls

More information

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2015 MRI Lecture 4 k (t) = γ 2π k y (t) = γ 2π K-space At each point in time, the received signal is the Fourier transform of the object

More information

Anisotropy of HARDI Diffusion Profiles Based on the L 2 -Norm

Anisotropy of HARDI Diffusion Profiles Based on the L 2 -Norm Anisotropy of HARDI Diffusion Profiles Based on the L 2 -Norm Philipp Landgraf 1, Dorit Merhof 1, Mirco Richter 1 1 Institute of Computer Science, Visual Computing Group, University of Konstanz philipp.landgraf@uni-konstanz.de

More information

Membranes, water and diffusion: Potential for brain imaging

Membranes, water and diffusion: Potential for brain imaging Membranes, water and diffusion: Potential for brain imaging Denis Le Bihan NeuroSpin Director,, CEA-Saclay, France Kyoto University, Japan Institut de France, Academy of Sciences Functional neuroimaging

More information

An Analytical Model of Water Diffusion and Exchange in White Matter from Diffusion MRI and Its Application in Measuring Axon Radii

An Analytical Model of Water Diffusion and Exchange in White Matter from Diffusion MRI and Its Application in Measuring Axon Radii An Analytical Model of Water Diffusion and Exchange in White Matter from Diffusion MRI and Its Application in Measuring Axon Radii Wenjin Zhou, Student Member, IEEE, and David H. Laidlaw, Senior Member,

More information

Biomedical Imaging Magnetic Resonance Imaging

Biomedical Imaging Magnetic Resonance Imaging Biomedical Imaging Magnetic Resonance Imaging Charles A. DiMarzio & Eric Kercher EECE 4649 Northeastern University May 2018 Background and History Measurement of Nuclear Spins Widely used in physics/chemistry

More information

Spin. Nuclear Spin Rules

Spin. Nuclear Spin Rules Spin Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2012 MRI Lecture 1 Intrinsic angular momentum of elementary particles -- electrons, protons, neutrons. Spin is quantized. Key concept

More information

How is it different from conventional MRI? What is MR Spectroscopy? How is it different from conventional MRI? MR Active Nuclei

How is it different from conventional MRI? What is MR Spectroscopy? How is it different from conventional MRI? MR Active Nuclei What is MR Spectroscopy? MR-Spectroscopy (MRS) is a technique to measure the (relative) concentration of certain chemical or biochemical molecules in a target volume. MR-Spectroscopy is an in vivo (in

More information