Ignitor Diagnostics. Presented by Francesca Bombarda Ignitor Project ENEA UTS Fusione Frascati (Italy)* *Present address: M.I.T.

Size: px
Start display at page:

Download "Ignitor Diagnostics. Presented by Francesca Bombarda Ignitor Project ENEA UTS Fusione Frascati (Italy)* *Present address: M.I.T."

Transcription

1 Ignitor Diagnostics Presented by Francesca Bombarda Ignitor Project ENEA UTS Fusione Frascati (Italy)* *Present address: M.I.T., Cambridge, MA ITPA Diagnostics, GA San Diego, March 4 h 2002

2 The Ignition Goal! Fusion ignition is a major scientific and technical goal for contemporary physics. The ignition process will be similar for any magnetically confined, predominantly thermal plasma.! Meaningful fusion burn experiments are those where heating methods and control strategies for ignition, burning and shutdown can be established on time scales sufficiently long relative to the plasma intrinsic characteristic times : τ α,sd << τ E, τ burn >> τ E

3 Outline The Ignitor Experiment: " The ignition goal " Ohmic ignition " Machine design, status and site " Auxiliary systems " Possible regimes Diagnostics " Ports " General requirements " Main systems

4 The Ignitor Objectives Use compact, high field limiter configurations to reach burning and ignition conditions at low temperature, high density, and trigger the thermonuclear instability. Investigate plasma heating, transport process and stability of fusion generated alpha-particles Identify methods for control, heating and fueling of high density burning plasmas. Reference Design Parameters R 0 a κ δ 0.4 I p!11 MA B T Bp Ip 5 ab V 0 10 m 3 S 34 m 2 0! ICRH 1.32 m 0.47 m 1.8!13 T!3.5 T! MW

5 The Ignitor Strategy High density n 0 ~ m -3, far from density limit, relatively peaked density profiles Low temperature High poloidal magnetic field Low beta-poloidal and a small q < 1 region provide a defense against ideal MHD and resistive m=1 internal modes Mostly ohmic heating, to avoid confinement degradation

6 Ohmic Ignition Ignition is most effectively achieved soon after the end of the current rise. In this phase, the current density profile is broad and the loop voltage is non uniform across the minor radius. The maximum ohmic heating power density is off the magnetic axis T, 11 MA Scenario Bt (T) Ip (MA) time (sec) Extensive simulations 1,2 were carried out with the TSC, BALDUR and JETTO codes 1 B. Coppi, M. Nassi, L.E. Sugiyama, Physica Scripta 45, 112 (1992) 2 A. Airoldi, G. Cenacchi, Nuclear Fusion 37, 1117 (1997).

7 JETTO Simulations 25 (Airoldi and Cenacchi, Nucl. Fusion 37,1117(1997) MW 15 P OH P α 10 Z [m] MA 2 MA 3 MA 4 MA 5 MA 6 MA kev 10 P rad Q α t [s] T e,i (0) R [m] 5 <T e,i > t (s)

8 10 21 m , 1.2% I P 11 MA B T 13 T T e0, T i0 11.5, 10.5 kev n e0 n α m -3 P α 19.2 MW W pl 11.9 MJ P OH =dw/dt 10.5 MW P rad 6 MW β pol, β q ψ, q 0 3.5, ~ 1.1 τ E, τ sd 0.62, 0.05 s 1.2 Z eff Parameters at ignition p α, p α 0.2, 0.02 β α0 0.3% P. Detragiache, JSOLVER, private com.

9 Confinement and other issues The path to ignition has been extensively analyzed using a variety of transport models. The sensitivity to other assumptions, such as -ion transport, -density and density profile, -impurities -ICRH n τ [m - 3 s] e0 E Ignition condition a) Coppi Model b) B-gB Model c) radial Model d) Coppi + RF heating has also been tested 1,2, kev 1 B. Coppi, M. Nassi and L.E. Sugiyama, Physica Scripta 45, B. Coppi, P. Detragiache, et al., Fusion Technology 25, 353 (1992) 3 A. Airoldi, G. Cenacchi, Nuclear Fusion 41, 687 (2001)

10 The machine is characterized by a complete integration among major components. The parameter Ip Aqψ / R0 Bp was found, on the basis of purely engineering considerations [1] to be the appropriate factor of merit to gauge the quality of toroidal magnetic confinement machines. Bucking and Wedging Passive and Active Compression Cooling to 30 K No Divertor, optimized for OOP forces [1] J. Schultz et al., Advanced Magnets and Implications for BPX, BPS Workshop II, San Diego (May 2001) Machine Design ELECTROMAGNETIC RADIAL PRESS C-CLAMP BRACING RING TOROIDAL FIELD COIL CENTRAL SOLENOID EXTERNAL POLOIDAL COIL

11 First Wall The first wall, covered with molybdenum tiles, acts as an extended limiter. No active cooling. Pumped/vented limiters can be housed in pockets around the horizontal ports. C. FERRO

12 Why not a divertor Divertor machines do not produce cleaner plasmas than limiter, high density devices.. At high density, the low temperature reduces sputtering from the wall and impurities are effectively screened from the main plasma. A new view of the divertor and of the role played by particle recycling from the main chamber and cross-field diffusion have been pointed out by the Alcator C-Mod group [1], challenging the standard picture of the divertor as the sole power and particle sink, in plasma regimes that are similar to those expected in Ignitor. [1]LABOMBARD, et al., Nucl. Fusion 40 (2000) Z eff MW 20 MW 24 MW n e (10 20 m -3 ) G.F. Matthews, et al., J. Nuclear Mat , 450 (1997)

13 Edge density n a = m -3 Edge temperature T e0 ~ ev These values suggest a complex SOL in Ignitor, where radiation, ionization and charge exchange are all important in reducing particle energy and spreading out the power transported across the LCFS by energetic particles Edge Radiative Regime Edge conditions Detachment C.S. PITCHER, EDI code

14 A pellet injector can be used for: fast core fueling; density profile control; time-dependent burn control; controlled injection of T; promoting the formation of ITB s diagnostic purposes. Pellet Injector Pellets may be injected several times during the approach to ignition, with velocities up to 4 Km/s. Schematics of the FTU pellet injector. A. Frattolillo at al., Rev. Sci. Instr. 70, 2355 (1999)

15 ICRH ICRH is envisaged to extend the region of accessible parameter space; have better control on the evolution of the temperature and current density profiles; simulate α-particle heating at the same power level as under relevant ignition conditions in non-reacting plasmas (18 24 MW). M. Riccitelli, G. Vecchi, R. Maggiora, et al, Fus. Eng. and Design 45, 1 (1999) Antenna Design by Politecnico di Torino

16 Non-ohmic regimes Ignitor is, in fact, a flexible machine. The available RF heating allows the explorations of other regimes including, but not limited to: Reversed Shear: small amounts of RF power in the early phase of the current allow reaching ignition Non-ohmic ignition scenarios (~ 5 MW) H-mode (9 MA, 13 T, DN) First exploration of fusion burn condition in tritium-poor plasmas. About 1 MW from D- 3 He reaction can be obtained with ICRH heating (n e0 ~ , T e0 ~ 20 KeV). REVERSED SHEAR B T I p q ψ 4.9 q min f bs 1.5 β N P RF <8 MW H ipb98y Q 12 T 7 MA 1.1 L.E. Sugiyama, MIT-RLE Report PTP95/3 (1995)

17 Physics Comparison ITER Ignitor Magnetic field (T), Plasma current (MA) 5.3, 15 13, 11 Magnetic energy B 2 V/2µ 0 (GJ) Mean Poloidal Field Safety factor q ψ STABILITY β N, β pol 1.82, , 0.2 nn G ( ) Qα Pα Ploss Pα Thermonuclear instability no 0.4 yes IGNITION BURN CONTROL τ E τ α, sd Normal. Collisionality v* Normalized size (a/ρ i,pol ) PROTECTION AGAINST α PARTICLE DRIVEN MODES

18 Diagnostic Systems Contributions from: F. Alladio, R. Bartiromo, P. Batistoni, E. Bittoni, F. Bombarda, G. Bonizzoni, P. Buratti, S. Coda, B. Coppi, P. Detragiache, C. Ferro, E. Giovannozzi, G. Gorini, M. Haegi, J.A. Snipes, J. Källne, H. Kroegler, E. Mazzucato, M. Nassi, S. Rollet, O. Tudisco, M. Zerbini, M. Zucchetti. The scientific objectives of Ignitor are centered on the study of fusion burning plasmas. Diagnostics with special characteristics will be required. Diagnostics will have to withstand large fluxes of neutrons and γ-rays produced in the surrounding materials; on the other hand, fluences are low and radiation damage should not be a concern for most systems. Some will have to be remotely handled. The experience developed so far at JET and TFTR should be fully exploited.

19 Accessibility Ignitor is a high field machine, therefore the number and size of its ports can be regarded as: a) A diagnostician nightmare b) The usual problem c) A great opportunity for developing smart solution There are 12 sectors, each carrying a large horizontal port, and one or two up-down symmetric vertical ports, at different radial locations. 6 of the 12 horizontal ports are allocated to the RF system Most of the plasma can be observed from the side, but only ~1/4 of its radial extent is directly visible from the top or bottom.

20 Port Lay-out Horizontal ports: mm Vertical ports: mm Ø 35 mm

21 Diagnostic Systems Conventional Diagnostics Neutron Diagnostics Spectroscopy Alpha-particle diagnostics Others. Electron cyclotron emission Thomson Scattering Two Color CO 2 Interferometer Faraday Rotation Reflectometry Bolometry Magnetics and MHD coils Neutron Counters and Foil Activation High Resolution Neutron Spectrometer Multicollimator Arrays H α, Visible, VUV, Soft X, Hard X..

22 Tentative Lay-out

23 Neutron Diagnostics P. Batistoni, G. Gorini, J. Källne, S. Rollet, M. Zucchetti!!Neutron Yield (Y n ~ n/sec) Fission Chambers ( 235 U, 238 U) of different efficiencies at several toroidal and poloidal locations in the machine hall (absolute calibration difficult but feasible) T i (n i ) or n i (T i ) vs time Foil Activation System mounted close to the plasma at different location to measure the integrated neutron yield after each shot provides good calibration for the neutron counters; neutron energy spectrum near the source (important for assessing radiation damage and activation if operational from the beginning).

24 Neutron Spectrometry T i, n D n T, fusion spectrum (thermal and suprathermal components) G. Gorini, J. Källne, Il Nuovo Cimento 14D, 1115 (1992).

25 Neutron Camera!! Neutron Emissivity Profile Multicollimator with Magnetic Proton Recoil Detectors (MPR) T i (r) L ~ 7.5 m 11 channels 65% of plasma z ~ 6.5 cm

26 High resolution curved crystal spectrometer T i from λ Doppler of impurity lines λ= 1 4 Å Trace amounts of impurities provide adequate signal levels 2-D detectors for profile measurements 1 1 R. Bartiromo, et al., ISPP-9, 959 (1991)

27 Electron Cyclotron Emission T e from Fundamental harmonic, o-mode: Second harmonic, x-mode: P. Buratti, M. Zerbini R R R 0 + a, n e 0.1 B 2 (10 20 m -3 ) R R R 0 + a, n e 0.2 B 2 (10 20 m -3 ) 114 ν GHz for B 0 = T, ν 2 = 2 ν 1 Lay-out: equatorial light collection line followed by two transmission lines (one for the o-mode and the other for the x-mode) connected to compact, 4- channel Michelson interferometers, absolutely calibrated ( x~3 cm, t~5ms). An equatorial o-mode line connected to a polychromator, to be used for fast MHD activity.

28 Density Measurements O. Tudisco Two Color CO 2 Interferometer 10.6 µm µm, 1 horizontal port (retroflectors) or 2 vertical ones Faraday Rotation rotation always less than one fringe (~3 rad); 2. only one horizontal port required; 3. the rotation angle is insensitive to vibration and the optics can be anchored directly to the vacuum vessel. the toroidal magnetic field must be known with a high accuracy and interpretation problems can arise from ripples and diamagnetic fields. Reflectometry The lower cut-off for the extraordinary mode (156 and 178 GHz at 13 1/2 and 10 T respectively) may be used f 2 L = fpe (0.5 fce) fce

29 Summary The Ignitor physics program relies for the most part on assessed diagnostics systems, with a high degree of reliability. High neutron fluxes pose some challenges, but low fluences limit structural damage on most systems. Neutron diagnostics will be especially useful for the burning plasma phase of the experiment. Alpha-particle diagnostics remain largely to be determined. A set of basic diagnostic systems has been considered. Many more could be included: Feel free to put forward your ideas!

Non-ohmic ignition scenarios in Ignitor

Non-ohmic ignition scenarios in Ignitor Non-ohmic ignition scenarios in Ignitor Augusta Airoldi IFP, EURATOM-ENEA-CNR Association, Milano, Italy Francesca Bombarda, Giovanna Cenacchi Ignitor Group, ENEA, Italy Bruno Coppi MIT, USA DPP1 APS Meeting

More information

Bolometry. H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy)

Bolometry. H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy) Bolometry H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy) Revised May 28, 2002 1. Radiated power Time and space resolved measurements of the total plasma radiation can be done by means

More information

Diagnostics for Burning Plasma Physics Studies: A Status Report.

Diagnostics for Burning Plasma Physics Studies: A Status Report. Diagnostics for Burning Plasma Physics Studies: A Status Report. Kenneth M. Young Princeton Plasma Physics Laboratory UFA Workshop on Burning Plasma Science December 11-13 Austin, TX Aspects of Plasma

More information

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets PFC/JA-91-5 Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets E. A. Chaniotakis L. Bromberg D. R. Cohn April 25, 1991 Plasma Fusion Center Massachusetts Institute of Technology

More information

INTRODUCTION TO MAGNETIC NUCLEAR FUSION

INTRODUCTION TO MAGNETIC NUCLEAR FUSION INTRODUCTION TO MAGNETIC NUCLEAR FUSION S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK With acknowledgments to B.Alper for use of his transparencies

More information

Relevant spatial and time scale in tokamaks. F. Bombarda ENEA-Frascati, FSN-FUSPHY-SAD

Relevant spatial and time scale in tokamaks. F. Bombarda ENEA-Frascati, FSN-FUSPHY-SAD Relevant spatial and time scale in tokamaks F. Bombarda ENEA-Frascati, FSN-FUSPHY-SAD PolFusion - one day discussion Meeting, 23rd of July 2015 Ferrara Ignitor News MoU of April 2010 concerned the construction

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

Physics of fusion power. Lecture 14: Anomalous transport / ITER

Physics of fusion power. Lecture 14: Anomalous transport / ITER Physics of fusion power Lecture 14: Anomalous transport / ITER Thursday.. Guest lecturer and international celebrity Dr. D. Gericke will give an overview of inertial confinement fusion.. Instabilities

More information

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod 1 EX/P4-22 Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.

More information

Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Ignitor 2008 50th Annual Meeting of the Division of Plasma Physics of the American Physical Society Dallas, T, November 17-21, 2008

More information

Impurity transport analysis & preparation of W injection experiments on KSTAR

Impurity transport analysis & preparation of W injection experiments on KSTAR Impurity transport analysis & preparation of W injection experiments on KSTAR J. H. Hong, H. Y. Lee, S. H. Lee, S. Jang, J. Jang, T. Jeon, H. Lee, and W. Choe ( ) S. G. Lee, C. R. Seon, J. Kim, ( ) 마스터부제목스타일편집

More information

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant

More information

Introduction to the Diagnosis of Magnetically Confined Thermonuclear Plasma

Introduction to the Diagnosis of Magnetically Confined Thermonuclear Plasma Introduction to the Diagnosis of Magnetically Confined Thermonuclear Plasma Core diagnostics II: Bolometry and Soft X-rays J. Arturo Alonso Laboratorio Nacional de Fusión EURATOM-CIEMAT E6 P2.10 arturo.alonso@ciemat.es

More information

Mission and Design of the Fusion Ignition Research Experiment (FIRE)

Mission and Design of the Fusion Ignition Research Experiment (FIRE) Mission and Design of the Fusion Ignition Research Experiment (FIRE) D. M. Meade 1), S. C. Jardin 1), J. A. Schmidt 1), R. J. Thome 2), N. R. Sauthoff 1), P. Heitzenroeder 1), B. E. Nelson 3), M. A. Ulrickson

More information

Chapter 12. Magnetic Fusion Toroidal Machines: Principles, results, perspective

Chapter 12. Magnetic Fusion Toroidal Machines: Principles, results, perspective Chapter 12 Magnetic Fusion Toroidal Machines: Principles, results, perspective S. Atzeni May 10, 2010; rev.: May 16, 2012 English version: May 17, 2017 1 Magnetic confinement fusion plasmas low density

More information

Non-Solenoidal Plasma Startup in

Non-Solenoidal Plasma Startup in Non-Solenoidal Plasma Startup in the A.C. Sontag for the Pegasus Research Team A.C. Sontag, 5th APS-DPP, Nov. 2, 28 1 Point-Source DC Helicity Injection Provides Viable Non-Solenoidal Startup Technique

More information

Information Session for the ITER CPTS System

Information Session for the ITER CPTS System Information Session for the ITER CPTS System Fusion for Energy Barcelona, 15 April 2015 1 Introduction to the meeting Information provided is preliminary and subject to Agenda change ahead of formal tendering

More information

ITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK

ITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK ITER operation Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 14 th March 2014 Ben Dudson Magnetic Confinement Fusion (1 of 18) ITER Some key statistics for ITER are:

More information

Exhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France

Exhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France Exhaust scenarios Alberto Loarte Plasma Operation Directorate ITER Organization Route de Vinon sur Verdon, 13067 St Paul lez Durance, France Acknowledgements: Members of ITER Organization (especially R.

More information

FAST 1 : a Physics and Technology Experiment on the Fusion Road Map

FAST 1 : a Physics and Technology Experiment on the Fusion Road Map Fusion Advanced Studies Torus FAST 1 : a Physics and Technology Experiment on the Fusion Road Map Presented by A. A. Tuccillo on behalf of ENEA-Euratom Association Univ. of Rome Tor Vergata Univ. of Catania

More information

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OVERVIEW OF THE ALCATOR C-MOD PROGRAM IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OUTLINE C-Mod is compact, high field, high density, high power

More information

Connections between Particle Transport and Turbulence Structures in the Edge and SOL of Alcator C-Mod

Connections between Particle Transport and Turbulence Structures in the Edge and SOL of Alcator C-Mod Connections between Particle Transport and Turbulence Structures in the Edge and SOL of Alcator C-Mod I. Cziegler J.L. Terry, B. LaBombard, J.W. Hughes MIT - Plasma Science and Fusion Center th 19 Plasma

More information

D- 3 He HA tokamak device for experiments and power generations

D- 3 He HA tokamak device for experiments and power generations D- He HA tokamak device for experiments and power generations US-Japan Fusion Power Plant Studies Contents University of Tokyo, Japan January -, 5 O.Mitarai (Kyushu Tokai University).Motivation.Formalism,

More information

Cross-Field Plasma Transport and Main Chamber Recycling in Diverted Plasmas on Alcator C-Mod

Cross-Field Plasma Transport and Main Chamber Recycling in Diverted Plasmas on Alcator C-Mod Cross-Field Plasma Transport and Main Chamber Recycling in Diverted Plasmas on Alcator C-Mod B. LaBombard, M. Umansky, R.L. Boivin, J.A. Goetz, J. Hughes, B. Lipschultz, D. Mossessian, C.S. Pitcher, J.L.Terry,

More information

Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics October Introduction to Fusion Leading to ITER

Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics October Introduction to Fusion Leading to ITER 2267-1 Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics 3-14 October 2011 Introduction to Fusion Leading to ITER SNIPES Joseph Allan Directorate for Plasma Operation Plasma Operations

More information

DT Fusion Ignition of LHD-Type Helical Reactor by Joule Heating Associated with Magnetic Axis Shift )

DT Fusion Ignition of LHD-Type Helical Reactor by Joule Heating Associated with Magnetic Axis Shift ) DT Fusion Ignition of LHD-Type Helical Reactor by Joule Heating Associated with Magnetic Axis Shift ) Tsuguhiro WATANABE National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan (Received

More information

Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod

Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod PFC/JA-96-42 Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod A.E. Hubbard, J.A. Goetz, I.H. Hutchinson, Y. In, J. Irby, B. LaBombard, P.J. O'Shea, J.A. Snipes, P.C. Stek, Y. Takase, S.M.

More information

Observation of Neo-Classical Ion Pinch in the Electric Tokamak*

Observation of Neo-Classical Ion Pinch in the Electric Tokamak* 1 EX/P6-29 Observation of Neo-Classical Ion Pinch in the Electric Tokamak* R. J. Taylor, T. A. Carter, J.-L. Gauvreau, P.-A. Gourdain, A. Grossman, D. J. LaFonteese, D. C. Pace, L. W. Schmitz, A. E. White,

More information

Neutron and gamma ray measurements. for fusion experiments and spallation sources

Neutron and gamma ray measurements. for fusion experiments and spallation sources Neutron and gamma ray measurements for fusion experiments and spallation sources Carlo Cazzaniga prof.ssa Claudia Riccardi 1 External supervisor: dr. Marco Tardocchi Supervisor: 1) Istituto di Fisica del

More information

Understanding physics issues of relevance to ITER

Understanding physics issues of relevance to ITER Understanding physics issues of relevance to ITER presented by P. Mantica IFP-CNR, Euratom/ENEA-CNR Association, Milano, Italy on behalf of contributors to the EFDA-JET Work Programme Brief summary of

More information

ITER A/M/PMI Data Requirements and Management Strategy

ITER A/M/PMI Data Requirements and Management Strategy ITER A/M/PMI Data Requirements and Management Strategy Steven Lisgo, R. Barnsley, D. Campbell, A. Kukushkin, M. Hosokawa, R. A. Pitts, M. Shimada, J. Snipes, A. Winter ITER Organisation with contributions

More information

C-Mod Core Transport Program. Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center

C-Mod Core Transport Program. Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center C-Mod Core Transport Program Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center Practical Motivations for Transport Research Overall plasma behavior must be robustly

More information

Integrated Transport Modeling of High-Field Tokamak Burning Plasma Devices

Integrated Transport Modeling of High-Field Tokamak Burning Plasma Devices Integrated Transport Modeling of High-Field Tokamak Burning Plasma Devices Arnold H. Kritz, T.Onjun,C.Nguyen,P.Zhu,G.Bateman Lehigh University Physics Department 16 Memorial Drive East, Bethlehem, PA 1815

More information

Self-consistent modeling of ITER with BALDUR integrated predictive modeling code

Self-consistent modeling of ITER with BALDUR integrated predictive modeling code Self-consistent modeling of ITER with BALDUR integrated predictive modeling code Thawatchai Onjun Sirindhorn International Institute of Technology, Thammasat University, Klong Luang, Pathumthani, 12121,

More information

1. Motivation power exhaust in JT-60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT-60SA. 4. Results. 5.

1. Motivation power exhaust in JT-60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT-60SA. 4. Results. 5. 1. Motivation power exhaust in JT-60SA tokamak 2. Tool COREDIV code 3. Operational scenarios of JT-60SA 4. Results 5. Conclusions K. Gałązka Efficient power exhaust in JT-60SA by COREDIV Page 2 The Institute

More information

THE ADVANCED TOKAMAK DIVERTOR

THE ADVANCED TOKAMAK DIVERTOR I Department of Engineering Physics THE ADVANCED TOKAMAK DIVERTOR S.L. Allen and the team 14th PSI QTYUIOP MA D S O N UCLAUCLA UCLA UNIVERSITY OF WISCONSIN THE ADVANCED TOKAMAK DIVERTOR S.L. Allen and

More information

EXC/P2-02. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod

EXC/P2-02. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod EXC/P2-02 Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod J. R. Wilson 1, C. E. Kessel 1, S. Wolfe 2, I. Hutchinson 2, P. Bonoli 2, C. Fiore 2, A. Hubbard 2, J. Hughes 2, Y. Lin 2, Y.

More information

Plasma and Fusion Research: Regular Articles Volume 10, (2015)

Plasma and Fusion Research: Regular Articles Volume 10, (2015) Possibility of Quasi-Steady-State Operation of Low-Temperature LHD-Type Deuterium-Deuterium (DD) Reactor Using Impurity Hole Phenomena DD Reactor Controlled by Solid Boron Pellets ) Tsuguhiro WATANABE

More information

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 Concept Overview Implementation on PEGASUS Results Current

More information

Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano 2. Istituto di Fisica del Plasma, CNR, Milano

Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano 2. Istituto di Fisica del Plasma, CNR, Milano Misure di ioni veloci mediante la spettroscopia di neutroni e raggi gamma nei plasmi termonucleari ad alte prestazioni: risultati recenti e prospettive future M. Nocente 1,2, G. Gorini 1,2 and M. Tardocchi

More information

Plasma Start-Up Results with EC Assisted Breakdown on FTU

Plasma Start-Up Results with EC Assisted Breakdown on FTU 1 EXW/P2-03 Plasma Start-Up Results with EC Assisted Breakdown on FTU G. Granucci 1), G. Ramponi 1), G. Calabrò 2), F. Crisanti 2), G. Ramogida 2), W. Bin 1), A. Botrugno 2), P.Buratti 2), O. D Arcangelo1,

More information

Advances in the Ignitor Program. Advances in the Ignitor Program

Advances in the Ignitor Program. Advances in the Ignitor Program Advances in the Ignitor Program FT/P1-3 Advances in the Ignitor Program B. Coppi 1), A. Airoldi 2), F. Alladio 3), A. Bianchi 4), F. Bombarda 3), A. Capriccioli 3), G. Cenacchi 3), A. Coletti 3), R. Coletti

More information

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 Non-solenoidal startup using point-source DC helicity injectors

More information

Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system

Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system J.M. Ané 1, V. Grandgirard, F. Albajar 1, J.Johner 1 1Euratom-CEA Association, Cadarache, France Euratom-EPFL

More information

INTRODUCTION TO BURNING PLASMA PHYSICS

INTRODUCTION TO BURNING PLASMA PHYSICS INTRODUCTION TO BURNING PLASMA PHYSICS Gerald A. Navratil Columbia University American Physical Society - Division of Plasma Physics 2001 Annual Meeting, Long Beach, CA 1 November 2001 THANKS TO MANY PEOPLE

More information

Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod

Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod PFC/JA-94-15 Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod J.A. Goetz, B. Lipschultz, M.A. Graf, C. Kurz, R. Nachtrieb, J.A. Snipes, J.L. Terry Plasma

More information

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant Implementation of a long leg X-point target divertor in the ARC fusion pilot plant A.Q. Kuang, N.M. Cao, A.J. Creely, C.A. Dennett, J. Hecla, H. Hoffman, M. Major, J. Ruiz Ruiz, R.A. Tinguely, E.A. Tolman

More information

Physics of the detached radiative divertor regime in DIII-D

Physics of the detached radiative divertor regime in DIII-D Plasma Phys. Control. Fusion 41 (1999) A345 A355. Printed in the UK PII: S741-3335(99)97299-8 Physics of the detached radiative divertor regime in DIII-D M E Fenstermacher, J Boedo, R C Isler, A W Leonard,

More information

CONSIGLIO NAZIONALE DELLE RICERCHE

CONSIGLIO NAZIONALE DELLE RICERCHE CONSIGLIO NAZIONALE DELLE RICERCHE Notes on the Ignitor performance Augusta Airoldi and Giovanna Cenacchi* FP 99/19 Dec 1999 *Centro Ricerche Energia ENEA, Via Don Fiammelli, Bologna Italy ISTITUTO DI

More information

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Max-Planck-Institut für Plasmaphysik Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Robert Wolf robert.wolf@ipp.mpg.de www.ipp.mpg.de Contents Magnetic confinement The stellarator

More information

Response of thin foil Faraday Cup lost alpha particle detector in intense neutron and gamma ray radiation fields

Response of thin foil Faraday Cup lost alpha particle detector in intense neutron and gamma ray radiation fields Response of thin foil Faraday Cup lost alpha particle detector in intense neutron and gamma ray radiation fields F.E. Cecil 1, V. Kiptily 2, D. Darrow 3, A. Horton 2, K. Fullard 2, K. Lawson 2, G. Matthews

More information

Enhanced Energy Confinement Discharges with L-mode-like Edge Particle Transport*

Enhanced Energy Confinement Discharges with L-mode-like Edge Particle Transport* Enhanced Energy Confinement Discharges with L-mode-like Edge Particle Transport* E. Marmar, B. Lipschultz, A. Dominguez, M. Greenwald, N. Howard, A. Hubbard, J. Hughes, B. LaBombard, R. McDermott, M. Reinke,

More information

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE 1 EX/P6-18 Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE M. Uchida, T. Maekawa, H. Tanaka, F. Watanabe, Y.

More information

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation P.T. Bonoli, A. E. Hubbard, J. Ko, R. Parker, A.E. Schmidt, G. Wallace, J. C. Wright, and the Alcator C-Mod

More information

Neutronic Activation Analysis for ITER Fusion Reactor

Neutronic Activation Analysis for ITER Fusion Reactor Neutronic Activation Analysis for ITER Fusion Reactor Barbara Caiffi 100 Congresso Nazionale SIF 1 Outlook Nuclear Fusion International Thermonuclear Experimental Reactor (ITER) Neutronics Computational

More information

H-mode performance and pedestal studies with enhanced particle control on Alcator C-Mod

H-mode performance and pedestal studies with enhanced particle control on Alcator C-Mod H-mode performance and pedestal studies with enhanced particle control on Alcator C-Mod J.W. Hughes, B. LaBombard, M. Greenwald, A. Hubbard, B. Lipschultz, K. Marr, R. McDermott, M. Reinke, J.L. Terry

More information

Highlights from (3D) Modeling of Tokamak Disruptions

Highlights from (3D) Modeling of Tokamak Disruptions Highlights from (3D) Modeling of Tokamak Disruptions Presented by V.A. Izzo With major contributions from S.E. Kruger, H.R. Strauss, R. Paccagnella, MHD Control Workshop 2010 Madison, WI ..onset of rapidly

More information

Diagnostic Capabilities of Line-Integrated Neutron Pulse Height Spectra Measurements

Diagnostic Capabilities of Line-Integrated Neutron Pulse Height Spectra Measurements Diagnostic Capabilities of Line-Integrated Neutron Pulse Height Spectra Measurements Daniele Marocco Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, C.P. 65, Frascati I-00044, Roma, Italy Preface

More information

Progress in characterization of the H-mode pedestal

Progress in characterization of the H-mode pedestal Journal of Physics: Conference Series Progress in characterization of the H-mode pedestal To cite this article: A W Leonard 2008 J. Phys.: Conf. Ser. 123 012001 View the article online for updates and

More information

Toward the Realization of Fusion Energy

Toward the Realization of Fusion Energy Toward the Realization of Fusion Energy Nuclear fusion is the energy source of the sun and stars, in which light atomic nuclei fuse together, releasing a large amount of energy. Fusion power can be generated

More information

Density Profile Control with Current Ramping in a Transport. Institute for Fusion Studies, The University of Texas at Austin, Austin, TX P.

Density Profile Control with Current Ramping in a Transport. Institute for Fusion Studies, The University of Texas at Austin, Austin, TX P. Density Profile Control with Current Ramping in a Transport Simulation of Ignitor B. Hu and W. Horton Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 P. Zhu Department

More information

Reduction of Turbulence and Transport in the Alcator C-Mod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection

Reduction of Turbulence and Transport in the Alcator C-Mod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection Reduction of Turbulence and Transport in the Alcator C-Mod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection M. Porkolab, P. C. Ennever, S. G. Baek, E. M. Edlund, J. Hughes, J. E.

More information

Alcator C-Mod. Particle Transport in the Scrape-off Layer and Relationship to Discharge Density Limit in Alcator C-Mod

Alcator C-Mod. Particle Transport in the Scrape-off Layer and Relationship to Discharge Density Limit in Alcator C-Mod Alcator C-Mod Particle Transport in the Scrape-off Layer and Relationship to Discharge Density Limit in Alcator C-Mod B. LaBombard, R.L. Boivin, M. Greenwald, J. Hughes, B. Lipschultz, D. Mossessian, C.S.

More information

Heat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment.

Heat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment. Heat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment E. Kolemen a, S.L. Allen b, B.D. Bray c, M.E. Fenstermacher b, D.A. Humphreys c, A.W. Hyatt c, C.J. Lasnier b,

More information

Control of Sawtooth Oscillation Dynamics using Externally Applied Stellarator Transform. Jeffrey Herfindal

Control of Sawtooth Oscillation Dynamics using Externally Applied Stellarator Transform. Jeffrey Herfindal Control of Sawtooth Oscillation Dynamics using Externally Applied Stellarator Transform Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A. Roberds,

More information

1 EX/P7-35. Spectroscopic Studies on GLAST-III Varying the Inductance and Charging Voltage of Vertical Field Coils

1 EX/P7-35. Spectroscopic Studies on GLAST-III Varying the Inductance and Charging Voltage of Vertical Field Coils 1 EX/P7-35 Spectroscopic Studies on GLAST-III Varying the Inductance and Charging Voltage of Vertical Field Coils Farah Deeba, A.Qayyum, Zahoor Ahmad, S. Ahmad, R. Khan and S. Hussain National Tokamak

More information

J.C. Sprott. Plasma Studies. University of Wisconsin

J.C. Sprott. Plasma Studies. University of Wisconsin SOFT BETA LIMITS IN TOKAMAKS AND OCTUPOLES J.C. Sprott PLP 877 June 1982 Plasma Studies University of Wisconsin These PLP Reports are informal and preliminary and as such may contain errors not yet eliminated.

More information

Experimental Investigations of Magnetic Reconnection. J Egedal. MIT, PSFC, Cambridge, MA

Experimental Investigations of Magnetic Reconnection. J Egedal. MIT, PSFC, Cambridge, MA Experimental Investigations of Magnetic Reconnection J Egedal MIT, PSFC, Cambridge, MA Coronal Mass Ejections Movie from NASA s Solar Dynamics Observatory (SDO) Space Weather The Solar Wind affects the

More information

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.

More information

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011 Tokamak Divertor System Concept and the Design for ITER Chris Stoafer April 14, 2011 Presentation Overview Divertor concept and purpose Divertor physics General design considerations Overview of ITER divertor

More information

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 J Fusion Energ (2010) 29:553 557 DOI 10.1007/s10894-010-9327-6 ORIGINAL RESEARCH Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 H. Saitoh Z. Yoshida J. Morikawa Y. Yano T. Mizushima

More information

A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR

A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR A.N. Mauer, W.M. Stacey, J. Mandrekas and E.A. Hoffman Fusion Research Center Georgia Institute of Technology Atlanta, GA 30332 1. INTRODUCTION

More information

3D analysis of impurity transport and radiation for ITER limiter start-up configurations

3D analysis of impurity transport and radiation for ITER limiter start-up configurations 3D analysis of impurity transport and radiation for ITER limiter start-up configurations P2-74 X. Zha a*, F. Sardei a, Y. Feng a, M. Kobayashi b, A. Loarte c, G. Federici c a Max-Planck-Institut für Plasmaphysik,

More information

Operational Phase Space of the Edge Plasma in Alcator C-Mod

Operational Phase Space of the Edge Plasma in Alcator C-Mod Operational Phase Space of the Edge Plasma in B. LaBombard, T. Biewer, M. Greenwald, J.W. Hughes B. Lipschultz, N. Smick, J.L. Terry, Team Contributed talk RO.00008 Presented at the 47th Annual Meeting

More information

(Inductive tokamak plasma initial start-up)

(Inductive tokamak plasma initial start-up) (Inductive tokamak plasma initial start-up) 24. 6. 7. (tapl1.kaist.ac.kr) Outline Conventional inductive tokamak plasma start-up Inductive outer PF coil-only plasma start-up Inductive plasma start-up in

More information

ITB Transport Studies in Alcator C-Mod. Catherine Fiore MIT Plasma Science and Fusion Center Transport Task Force March 26th Boulder, Co

ITB Transport Studies in Alcator C-Mod. Catherine Fiore MIT Plasma Science and Fusion Center Transport Task Force March 26th Boulder, Co Transport Studies in Alcator C-Mod Catherine Fiore MIT Plasma Science and Fusion Center Transport Task Force March 26th Boulder, Co With Contributions from: I. Bespamyatnov, P. T. Bonoli*, D. Ernst*, M.

More information

STEADY-STATE EXHAUST OF HELIUM ASH IN THE W-SHAPED DIVERTOR OF JT-60U

STEADY-STATE EXHAUST OF HELIUM ASH IN THE W-SHAPED DIVERTOR OF JT-60U Abstract STEADY-STATE EXHAUST OF HELIUM ASH IN THE W-SHAPED DIVERTOR OF JT-6U A. SAKASAI, H. TAKENAGA, N. HOSOGANE, H. KUBO, S. SAKURAI, N. AKINO, T. FUJITA, S. HIGASHIJIMA, H. TAMAI, N. ASAKURA, K. ITAMI,

More information

Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-60U

Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-60U 1 EX/P4-25 Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-6U T. Nakano, H. Kubo, N. Asakura, K. Shimizu and S. Higashijima Japan Atomic Energy Agency, Naka,

More information

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK

More information

Evaluation of Anomalous Fast-Ion Losses in Alcator C-Mod

Evaluation of Anomalous Fast-Ion Losses in Alcator C-Mod Evaluation of Anomalous Fast-Ion Losses in Alcator C-Mod S. D. Scott Princeton Plasma Physics Laboratory In collaboration with R. Granetz, D. Beals, M. Greenwald MIT PLASMA Science and Fusion Center W.

More information

Diamond Neutral Particle Spectrometer at JET and proposal for ITER

Diamond Neutral Particle Spectrometer at JET and proposal for ITER Diamond Neutral Particle Spectrometer at JET and proposal for ITER Krasilnikov V.A. (vkrasilnikov@triniti.ru) SRC RF TRINITI, Troitsk, Moscow, Russia A compact fast corpuscular spectrometer with a detector

More information

Advanced fuel fusion reactors: towards a zero-waste option

Advanced fuel fusion reactors: towards a zero-waste option Advanced fuel fusion reactors: towards a zero-waste option The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher

More information

Overview of Recent Results from Alcator C-Mod including Applications to ITER Scenarios

Overview of Recent Results from Alcator C-Mod including Applications to ITER Scenarios Overview of Recent Results from Alcator C-Mod including Applications to ITER Scenarios E. S. Marmar and the Alcator C-Mod Team MIT Plasma Science and Fusion Center, Cambridge MA 02139 USA E-mail contact

More information

Design concept of near term DEMO reactor with high temperature blanket

Design concept of near term DEMO reactor with high temperature blanket Design concept of near term DEMO reactor with high temperature blanket Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies March 16-18, 2009 Tokyo Univ. Mai Ichinose, Yasushi Yamamoto

More information

Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment

Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment E. T. Hinson J. L. Barr, M. W. Bongard, M. G. Burke, R. J. Fonck, J. M. Perry, A. J. Redd,

More information

Study of B +1, B +4 and B +5 impurity poloidal rotation in Alcator C-Mod plasmas for 0.75 ρ 1.0.

Study of B +1, B +4 and B +5 impurity poloidal rotation in Alcator C-Mod plasmas for 0.75 ρ 1.0. Study of B +1, B +4 and B +5 impurity poloidal rotation in Alcator C-Mod plasmas for 0.75 ρ 1.0. Igor Bespamyatnov, William Rowan, Ronald Bravenec, and Kenneth Gentle The University of Texas at Austin,

More information

A Project for High Fluence 14 MeV Neutron Source

A Project for High Fluence 14 MeV Neutron Source A Project for High Fluence 14 MeV Neutron Source Mario Pillon 1, Maurizio Angelone 1, Aldo Pizzuto 1, Antonino Pietropaolo 1 1 Associazione ENEA-EURATOM Sulla Fusione, ENEA C.R. Frascati, via E. Fermi,

More information

Mission Elements of the FNSP and FNSF

Mission Elements of the FNSP and FNSF Mission Elements of the FNSP and FNSF by R.D. Stambaugh PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Presented at FNST Workshop August 3, 2010 In Addition to What Will Be Learned

More information

Divertor Heat Flux Reduction and Detachment in NSTX

Divertor Heat Flux Reduction and Detachment in NSTX 1 EX/P4-28 Divertor Heat Flux Reduction and Detachment in NSTX V. A. Soukhanovskii 1), R. Maingi 2), R. Raman 3), R. E. Bell 4), C. Bush 2), R. Kaita 4), H. W. Kugel 4), C. J. Lasnier 1), B. P. LeBlanc

More information

Influence of ECR Heating on NBI-driven Alfvén Eigenmodes in the TJ-II Stellarator

Influence of ECR Heating on NBI-driven Alfvén Eigenmodes in the TJ-II Stellarator EX/P- Influence of ECR Heating on NBI-driven Alfvén Eigenmodes in the TJ-II Stellarator Á. Cappa, F. Castejón, T. Estrada, J.M. Fontdecaba, M. Liniers and E. Ascasíbar Laboratorio Nacional de Fusión CIEMAT,

More information

Heating and Confinement Study of Globus-M Low Aspect Ratio Plasma

Heating and Confinement Study of Globus-M Low Aspect Ratio Plasma EX/P5- Heating and Confinement Study of Globus-M Low Aspect Ratio Plasma N.V. Sakharov ), V.V. Dyachenko ), B.B. Ayushin ), A.V. Bogomolov ), F.V. Chernyshev ), V.K. Gusev ), S.A. Khitrov ), N.A. Khromov

More information

Flow measurements in the Scrape-Off Layer of Alcator C-Mod using Impurity Plumes

Flow measurements in the Scrape-Off Layer of Alcator C-Mod using Impurity Plumes Flow measurements in the Scrape-Off Layer of Alcator C-Mod using Impurity Plumes S. Gangadhara,. Laombard M.I.T. Plasma Science and Fusion Center, 175 Albany St., Cambridge, MA 2139 USA Abstract Accurate

More information

Tokamak operation at low q and scaling toward a fusion machine. R. Paccagnella^

Tokamak operation at low q and scaling toward a fusion machine. R. Paccagnella^ Tokamak operation at low q and scaling toward a fusion machine R. Paccagnella^ Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova, Italy ^ and Istituto Gas Ionizzati del Consiglio Nazionale

More information

Plasma Radiation. Ø Free electrons Blackbody emission Bremsstrahlung

Plasma Radiation. Ø Free electrons Blackbody emission Bremsstrahlung Plasma Radiation Ø Free electrons Blackbody emission Bremsstrahlung Ø Bound electrons (Z>2) Unresolved, multi-line emission Resolved line emission -- Single Z +n Objective Infer a thermodynamic quantity

More information

Modelling of JT-60U Detached Divertor Plasma using SONIC code

Modelling of JT-60U Detached Divertor Plasma using SONIC code J. Plasma Fusion Res. SERIES, Vol. 9 (2010) Modelling of JT-60U Detached Divertor Plasma using SONIC code Kazuo HOSHINO, Katsuhiro SHIMIZU, Tomonori TAKIZUKA, Nobuyuki ASAKURA and Tomohide NAKANO Japan

More information

PREDICTIVE MODELING OF PLASMA HALO EVOLUTION IN POST-THERMAL QUENCH DISRUPTING PLASMAS

PREDICTIVE MODELING OF PLASMA HALO EVOLUTION IN POST-THERMAL QUENCH DISRUPTING PLASMAS GA A25488 PREDICTIVE MODELING OF PLASMA HALO EVOLUTION IN POST-THERMAL QUENCH DISRUPTING PLASMAS by D.A. HUMPHREYS, D.G. WHYTE, M. BAKHTIARI, R.D. DERANIAN, E.M. HOLLMANN, A.W. HYATT, T.C. JERNIGAN, A.G.

More information

ICRF Mode Conversion Flow Drive on Alcator C-Mod and Projections to Other Tokamaks

ICRF Mode Conversion Flow Drive on Alcator C-Mod and Projections to Other Tokamaks ICRF Mode Conversion Flow Drive on Alcator C-Mod and Projections to Other Tokamaks Y. Lin, J.E. Rice, S.J. Wukitch, M.J. Greenwald, A.E. Hubbard, A. Ince- Cushman, L. Lin, E.S. Marmar, M. Porkolab, M.L.

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device

Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device P. T. Bonoli, Y. Lin. S. Shiraiwa, G. M. Wallace, J. C. Wright, and S. J. Wukitch MIT PSFC, Cambridge, MA 02139 59th Annual Meeting

More information

GA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES

GA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES GA A311 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES by C.C. PETTY, M.R. WADE, J.E. KINSEY, R.J. GROEBNER, T.C. LUCE, and G.M. STAEBLER AUGUST 1999 This report

More information