Information Session for the ITER CPTS System

Size: px
Start display at page:

Download "Information Session for the ITER CPTS System"

Transcription

1 Information Session for the ITER CPTS System Fusion for Energy Barcelona, 15 April

2 Introduction to the meeting Information provided is preliminary and subject to Agenda change ahead of formal tendering Will be published (on F4E website) including 10:00 Welcome any additional info provided 10:05 Introduction to Diagnostics and CPTS 10:45 Technical presentation on the CPTS & First Contract (including Questions/Answers) 11:45 Presentations (12 minutes each) Active Space Technologies Added Value Solutions (AVS) Bertin Technologies CSEM Danfysik 13: 10 Finger food 14:00 Plenary discussion (Questions/Answers, including IP) 14:30 Presentations (12 minutes each) IPP-CR KT-Optics Gmbh UKAEA 15:06 Tendering procedure 16:00 End of the session F4E Contacts Before Call for Tender During tender phase Mehdi Daval (F4E Business Intelligence) David Guardia (F4E Procurement) 2

3 Introduction to Diagnostics & CPTS Information Day for the ITER CPTS System Fusion for Energy Barcelona, 15 April

4 Diagnostics measure plasma and first-wall parameters Parameters from diagnostics may be scalar, 1D profiles, 2D profiles/images against time and may be derived from multiple diagnostics generating complementary information Instrumentation of the machine (including its subsystems) is traditionally distinct Examples of JET diagnostic data Frame difference, t=63.12 Equilibrium (flux surfaces) plasmashape evolution Electron density and temperature profiles Constant on flux surfaces 1D profile is adequate First-wall temperature (JET IR camera) 14 MeV neutron profile (JET) Similar: total radiation, SXR, Visible image plasma-wall interaction (JET) 4

5 These parameters are for machine protection, basic control Purpose Measurement* Machine Protection Energy reserves, release, triggers: Plasma current, position, shape, speed, energy, instabilities, error field; halo current; neutron flux & emissivity; radiated power; first wall temperature and visible image; impurity/d/t influx; divertor temperature, runaway electrons Basic Control Equilibrium related basic mode: Loop voltage, toroidal field, position, shape, neutron flux & emissivity, core fuel ratio, neutron fluence, impurity concentration, Z eff, line-averaged electron density, radiated power, first wall temperature and visible image, neutral density between plasma/first wall, divertor ionisation front postion, divertor impurity/dt influx, divertor He density, gas pressure & concentration in main chamber and ducts, operating (H/L) mode * Detailed specifications, e.g. resolution or location requirements, vary by purpose 5

6 advanced control and physics studies Purpose Measurement* Advanced Control Equilibrium related Advanced Mode: Current profile; neutron flux & emissivity; ion temperature profile; core He density; impurity density profiles; electron temperature profile; electron density profile; radiated power; plasma rotation; instabilities; fast-ion losses; divertor heat load Physics studies Fundamental understanding: All of the above often at higher spatial and temporal resolution * Detailed specifications, e.g. resolution or location requirements, vary by purpose 6

7 >50 diagnostics; ~25% from EU Group Diagnostic Party Group Diagnostic Party Continuous ext. Rogowski EU CXRS (on DNB) (core) EU Out-vessel Discrete coils EU H α spectroscopy RF Out-ves. Steady-state sensors EU VUV (main plasma) KO Partial and cont. flux loops EU Impurity influx mon. (div. vis.) JA FOCS IO X-ray crystal spectrometer US Halo-Rogowski coils EU Soft x-ray array (radial) CN In-vessel coils EU Neutral particle analyser RF Radial neutron camera EU MSE (on HNB) US Vertical neutron camera RF CXRS (on DNB) (edge) RF Microfission chambers JA Survey x-ray crystal spectr. IN Neutron flux mon. (ex-vessel) CN H-phase hard x-ray monitor IO *γ-ray spectrometers (radial) IO Beam-emission spectr. (DNB) IN Activation system KO Divertor VUV spectroscopy KO *High-res. neutron spectrom. IO/EU VUV edge imaging KO Divertor NFM RF XRCS edge imaging IN Thomson scattering (core) EU Vis/IR cameras (midplane) EU Thomson scattering (edge) JA Thermocouples (outer target) JA Thomson scat. (div., out) RF Pressure gauges EU Tor. Interfero-/polari-meter US Residual gas analysers US Polarimeter JA IR thermography (div) JA Bolometric *Coll. Thomson scat. (LFS) EU Langmuir probes CN Bolometers EU *Erosion monitor IO Magnetics Neutron Optical Microwave Spectroscopic and NPA Plasma Facing and Operational ECE (main plasma) US/IN *Dust monitor IO Reflectometer (main pl., LFS) US Vis/IR cameras (upper) US Reflectometer (plasma pos.) EU Thermocouples (inner target) JA Reflectometer (main pl., HFS) RF *Tritium monitor IO Interferometer (divertor) Diagnostic Vessel and cryostat services EU/IO Engineering Fluid services IO Port systems Lower ports IO Equatorial ports y Window assemblies IO Upper ports y * Enabled diagnostic (whole or part to be procured later) Each diagnostic typically comprises front-end detectors/exciters, transmission systems, back-end detectors and electronics and software for control and analysis 7

8 Diagnostic front-ends are integrated in ports, on vessel and in divertor Harsh environment & limited space for front-end components 8

9 ITER is a large step from contemporary devices Much more challenging environment Severe access limitations for maintenance, even with remote handling Severe space constraints for design Neutron and γ radiation loading Strong electromechanical and thermal loads New or more challenging measurement requirements Design activity is engineering-driven on ITER by contrast to contemporary machines where diagnostics design has been physics-driven 9

10 The ITER environment is new 10

11 Radiation is a major concern Dose rate of 100µS/h after 10 days for manned access with implications for component maintenance / lifetime materials choices shielding design measurement performance 11

12 CPTS: Principal requirements Meet the schedule Fit in available space Shield neutrons adequately Use allowed materials only (for vacuum, radiation compatibility ) Meet strict fire safety regulations Firm constraints Survive operational loads for ITER lifetime Neutrons Gammas Particle flux Electromechanical Thermal Perform with high reliability & availability Provide for a maintenance regime Provide for a compatible calibration regime Measure temperature and density profiles High spatial and temporal resolution Within specified error bars High rep rate Safety-important components to be supplied by ITER IO Design for given laser and detector specifications What is achievable given firm constraints and tight schedule at reasonable cost? 12

13 Principle of operation Example layout of a time-of-flight TS system PLASMA PORT PLUG CPTS is an active diagnostic (laser beam injected in plasma and scattered light measured) BEAM DUMP LASER IN COLLECTION DETECTOR Multiple disciplines involved including plasma physics, nuclear physics, relativistic effects, atomic and molecular physics, solidstate physics, electromagnetism, optics, detection technology, electronics, advanced analysis techniques Temperature dependence of scattered light Scattering is very weak (~ x10-11 photons scattered) powerful laser pulse needed Scattered signal is Doppler-broadened (relativistic); spectrum contains temperature information Strength of scattered is proportional to density 13

14 Evolution of CPTS TODAY Both conventional (imaging) and LIDAR (time-of-flight) concepts have been put forward Key constraints: - Schedule - Environment - Construction cost Many challenges identified with both approaches (information to be provided) Not clear what performance and reliability / operating life is achievable Two main contracts proposed Contract 1: System-level design + critical R&D and design of key components (conventional or LIDAR; for given laser and detector performance) -- subject of today s meeting Contract 2: Final design & construction 14

15 Alternative concepts to achieve spatial resolution Conventional (imaging) LIDAR (time-of-flight) (UKAEA/CCFE) Laser and viewing geometry showing mirror labyrinth in port plug and intersections of viewing chords and laser few J, few ns Significant issues found in both approaches early assessment needed! Back-scattered light collected in time-of flight approach: few J, 250ps pulse yields profile with 8cm resolution Some challenges Power handling by beam dump and vacuum windows Mirror lifetime Alignment of collection optics High temperature measurement (40keV) Neutron shielding requirements Powerful, high-rep laser Detectors (wavelength coverage, response time ) Path from/to lasers and detectors 15

16 Tentative schedule CONTRACT 1 SLD / R&D & Prep. Design Tendering Interface specification Jan 2017 Design review Jun 2017 SLD R&D / Design Closure Now Jan 2016 Avoid use of background IP PDR mid 2019 FDR Q CONTRACT 2 Final design & build Tendering Final Design Build Avoids exclusion of suppliers of Contract 1 from Contract 2 (no unfair competitive advantage) Sep 2018 Full disclosure of output from CONTRACT 1 to ensure level competition (foreground IP owned by F4E) 2025 Delivery 16

17 Follow us on:

Diagnostics for Burning Plasma Physics Studies: A Status Report.

Diagnostics for Burning Plasma Physics Studies: A Status Report. Diagnostics for Burning Plasma Physics Studies: A Status Report. Kenneth M. Young Princeton Plasma Physics Laboratory UFA Workshop on Burning Plasma Science December 11-13 Austin, TX Aspects of Plasma

More information

2.6 Plasma Diagnostic System

2.6 Plasma Diagnostic System 2.6 Plasma Diagnostic System 2.6.1 Selected Diagnostic Systems and Startup Set 1 2.6.2 Diagnostic Integration 1 2.6.2.1 In-vessel Installations 3 2.6.2.2 Equatorial and Upper Ports 4 2.6.2.3 Divertor Ports

More information

Measurement Requirements and the Diagnostic System on ITER: Modifications Following the Design Review.

Measurement Requirements and the Diagnostic System on ITER: Modifications Following the Design Review. 1 Topic: IT/P6-21 Measurement Requirements and the Diagnostic System on ITER: Modifications Following the Design Review. A E Costley 1), S Allen 2), P Andrew 1), L Bertalot 1), R Barnsley 1), X R Duan

More information

Abstract. PEGASUS Toroidal Experiment University of Wisconsin-Madison

Abstract. PEGASUS Toroidal Experiment University of Wisconsin-Madison Abstract Measurement capabilities for the Pegasus ST are increasing to support the scientific studies of plasma behavior at very-low A. Global parameters are obtained from equilibrium reconstructions constrained

More information

ITER DIAGNOSTIC PORT PLUG DESIGN. N H Balshaw, Y Krivchenkov, G Phillips, S Davis, R Pampin-Garcia

ITER DIAGNOSTIC PORT PLUG DESIGN. N H Balshaw, Y Krivchenkov, G Phillips, S Davis, R Pampin-Garcia N H Balshaw, Y Krivchenkov, G Phillips, S Davis, R Pampin-Garcia UKAEA, Culham Science Centre, Abingdon, Oxon,OX14 3DB, UK, nick.balshaw@jet.uk Many of the ITER diagnostic systems will be mounted in the

More information

Physics of fusion power. Lecture 14: Anomalous transport / ITER

Physics of fusion power. Lecture 14: Anomalous transport / ITER Physics of fusion power Lecture 14: Anomalous transport / ITER Thursday.. Guest lecturer and international celebrity Dr. D. Gericke will give an overview of inertial confinement fusion.. Instabilities

More information

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE 1 EX/P6-18 Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE M. Uchida, T. Maekawa, H. Tanaka, F. Watanabe, Y.

More information

ITER A/M/PMI Data Requirements and Management Strategy

ITER A/M/PMI Data Requirements and Management Strategy ITER A/M/PMI Data Requirements and Management Strategy Steven Lisgo, R. Barnsley, D. Campbell, A. Kukushkin, M. Hosokawa, R. A. Pitts, M. Shimada, J. Snipes, A. Winter ITER Organisation with contributions

More information

Development of fusion technology in Russia

Development of fusion technology in Russia Development of fusion technology in Russia Vyacheslav Pershukov State Atomic Energy Corporation «Rosatom» THE GLOBAL ENERGY LANDSCAPE / Fusion and energy policies in the 7 ITER Members and France: presentations

More information

Introduction to the Diagnosis of Magnetically Confined Thermonuclear Plasma

Introduction to the Diagnosis of Magnetically Confined Thermonuclear Plasma Introduction to the Diagnosis of Magnetically Confined Thermonuclear Plasma Core diagnostics II: Bolometry and Soft X-rays J. Arturo Alonso Laboratorio Nacional de Fusión EURATOM-CIEMAT E6 P2.10 arturo.alonso@ciemat.es

More information

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1

Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 J Fusion Energ (2010) 29:553 557 DOI 10.1007/s10894-010-9327-6 ORIGINAL RESEARCH Formation of High-b ECH Plasma and Inward Particle Diffusion in RT-1 H. Saitoh Z. Yoshida J. Morikawa Y. Yano T. Mizushima

More information

Issues for Neutron Calculations for ITER Fusion Reactor

Issues for Neutron Calculations for ITER Fusion Reactor Introduction Issues for Neutron Calculations for ITER Fusion Reactor Erik Nonbøl and Bent Lauritzen Risø DTU, National Laboratory for Sustainable Energy Roskilde, Denmark Outline 1. Fusion development

More information

Plasma impurity composition in Alcator C-Mod tokamak.

Plasma impurity composition in Alcator C-Mod tokamak. Plasma impurity composition in Alcator C-Mod tokamak. I. O. Bespamyatnov a, W. L. Rowan a, K. T. Liao a, M. Brookman a, M. L. Reinke b, E. S. Marmar b, M. J. Greenwald b a Institute for Fusion Studies,

More information

Measurements of temperature and density in magnetic confinement fusion devices

Measurements of temperature and density in magnetic confinement fusion devices Elsevier Science 1 Journal logo Measurements of temperature and density in magnetic confinement fusion devices Victor S. Udintsev * on behalf of ITER Organisation ITER Organisation, Route de Vinon CS 90

More information

Design of New Optical System for Visible Plasma Radiation Measurements at COMPASS Tokamak

Design of New Optical System for Visible Plasma Radiation Measurements at COMPASS Tokamak WDS'08 Proceedings of Contributed Papers, Part II, 100 104, 2008. ISBN 978-80-7378-066-1 MATFYZPRESS Design of New Optical System for Visible Plasma Radiation Measurements at COMPASS Tokamak D. I. Naydenkova

More information

Impurity transport analysis & preparation of W injection experiments on KSTAR

Impurity transport analysis & preparation of W injection experiments on KSTAR Impurity transport analysis & preparation of W injection experiments on KSTAR J. H. Hong, H. Y. Lee, S. H. Lee, S. Jang, J. Jang, T. Jeon, H. Lee, and W. Choe ( ) S. G. Lee, C. R. Seon, J. Kim, ( ) 마스터부제목스타일편집

More information

Bolometry. H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy)

Bolometry. H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy) Bolometry H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy) Revised May 28, 2002 1. Radiated power Time and space resolved measurements of the total plasma radiation can be done by means

More information

Status of measurement requirements for the ITER divertor

Status of measurement requirements for the ITER divertor Status of measurement requirements for the ITER divertor 1 R. A. Pitts, 2 G. Vayakis, 2 A. Costley with thanks for comments to A. Kukushkin, D. Whyte 1 Centre de Recherches en Physique des Plasmas, Association

More information

Mission Elements of the FNSP and FNSF

Mission Elements of the FNSP and FNSF Mission Elements of the FNSP and FNSF by R.D. Stambaugh PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Presented at FNST Workshop August 3, 2010 In Addition to What Will Be Learned

More information

The Plasma Phase. Chapter 1. An experiment - measure and understand transport processes in a plasma. Chapter 2. An introduction to plasma physics

The Plasma Phase. Chapter 1. An experiment - measure and understand transport processes in a plasma. Chapter 2. An introduction to plasma physics The Plasma Phase Chapter 1. An experiment - measure and understand transport processes in a plasma Three important vugraphs What we have just talked about The diagnostics Chapter 2. An introduction to

More information

Status of Design and R&D for the Korean ITER Diagnostic Systems

Status of Design and R&D for the Korean ITER Diagnostic Systems 1 ITR/P1-04 Status of Design and R&D for the Korean ITER Diagnostic Systems H.G. Lee 1), S. Pak 1), M.S. Cheon 1), C.R. Seon 1), S.H. Choi 1), H.K. Park 2), Y.S. Hwang 3), R. Barnsley 4), L. Bertalot 4),

More information

ARTICLES PLASMA DETACHMENT IN JET MARK I DIVERTOR EXPERIMENTS

ARTICLES PLASMA DETACHMENT IN JET MARK I DIVERTOR EXPERIMENTS ARTICLES PLASMA DETACHMENT IN JET MARK I DIVERTOR EXPERIMENTS A. LOARTE, R.D. MONK, J.R. MARTÍN-SOLÍSa,D.J.CAMPBELL, A.V. CHANKIN b, S. CLEMENT, S.J. DAVIES, J. EHRENBERG, S.K. ERENTS c,h.y.guo, P.J. HARBOUR,

More information

Plasma Radiation. Ø Free electrons Blackbody emission Bremsstrahlung

Plasma Radiation. Ø Free electrons Blackbody emission Bremsstrahlung Plasma Radiation Ø Free electrons Blackbody emission Bremsstrahlung Ø Bound electrons (Z>2) Unresolved, multi-line emission Resolved line emission -- Single Z +n Objective Infer a thermodynamic quantity

More information

Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options

Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options A.M. Garofalo, T. Petrie, J. Smith, V. Chan, R. Stambaugh (General Atomics) J. Canik, A. Sontag, M. Cole (Oak Ridge National Laboratory)

More information

Measurements of rotational transform due to noninductive toroidal current using motional Stark effect spectroscopy in the Large Helical Device

Measurements of rotational transform due to noninductive toroidal current using motional Stark effect spectroscopy in the Large Helical Device REVIEW OF SCIENTIFIC INSTRUMENTS 76, 053505 2005 Measurements of rotational transform due to noninductive toroidal current using motional Stark effect spectroscopy in the Large Helical Device K. Ida, a

More information

Measurements of relativistic emission from runaway electrons in Alcator C-Mod: spectrum, polarization, and spatial structure

Measurements of relativistic emission from runaway electrons in Alcator C-Mod: spectrum, polarization, and spatial structure Measurements of relativistic emission from runaway electrons in Alcator C-Mod: spectrum, polarization, and spatial structure R. Granetz, R. Mumgaard MIT PSFC APS-DPP New Orleans 2014/10/30 Motivation Modeling

More information

Recent results on non-inductive startup of highly overdense ST plasma by electron Bernstein wave on LATE

Recent results on non-inductive startup of highly overdense ST plasma by electron Bernstein wave on LATE Recent results on non-inductive startup of highly overdense ST plasma by electron Bernstein wave on LATE M. Uchida, Y. Nozawa, H. Tanaka, T. Maekawa Graduate School of Energy Science, Kyoto University

More information

Neutronics calculations for the ITER Collective Thomson Scattering Diagnostics

Neutronics calculations for the ITER Collective Thomson Scattering Diagnostics Neutronics calculations for the ITER Collective Thomson Scattering Diagnostics 17 th Meeting on Reactor Physics in the Nordic Countries Göteborg, Sweden May 11-12, 2015 E. Nonbøl 1, E. Klinkby 1, B. Lauritzen

More information

Study of B +1, B +4 and B +5 impurity poloidal rotation in Alcator C-Mod plasmas for 0.75 ρ 1.0.

Study of B +1, B +4 and B +5 impurity poloidal rotation in Alcator C-Mod plasmas for 0.75 ρ 1.0. Study of B +1, B +4 and B +5 impurity poloidal rotation in Alcator C-Mod plasmas for 0.75 ρ 1.0. Igor Bespamyatnov, William Rowan, Ronald Bravenec, and Kenneth Gentle The University of Texas at Austin,

More information

Power Deposition Measurements in Deuterium and Helium Discharges in JET MKIIGB Divertor by IR-Thermography

Power Deposition Measurements in Deuterium and Helium Discharges in JET MKIIGB Divertor by IR-Thermography EFDA JET CP(02)01/03 T Eich, A Herrmann, P Andrew and A Loarte Power Deposition Measurements in Deuterium and Helium Discharges in JET MKIIGB Divertor by IR-Thermography . Power Deposition Measurements

More information

ICF Burn-History Measurements Using 17-MeV Fusion Gamma Rays

ICF Burn-History Measurements Using 17-MeV Fusion Gamma Rays V ICF Burn-History Measurements Using 17-MeV Fusion Gamma Rays R. A. Lerche M.D.Cable, P. G. Dendooven This paper was prepared for submittal to the 12th International Conference on Laser Interaction and

More information

Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-60U

Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-60U 1 EX/P4-25 Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-6U T. Nakano, H. Kubo, N. Asakura, K. Shimizu and S. Higashijima Japan Atomic Energy Agency, Naka,

More information

Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD

Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD Masaki TAKEUCHI, Satoshi OHDACHI and LHD experimental group National Institute for Fusion

More information

Temperature measurement and real-time validation

Temperature measurement and real-time validation Temperature measurement and real-time validation A. Herrmann, B. Sieglin, M. Faitsch, P. de Marné, ASDEX Upgrade team st IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis ITER-

More information

Heat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment.

Heat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment. Heat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment E. Kolemen a, S.L. Allen b, B.D. Bray c, M.E. Fenstermacher b, D.A. Humphreys c, A.W. Hyatt c, C.J. Lasnier b,

More information

Validation of spectral MSE for Alcator C-Mod and for ITER

Validation of spectral MSE for Alcator C-Mod and for ITER Validation of spectral MSE for Alcator C-Mod and for ITER K.T. Liao 1, W.L. Rowan 1, R.T. Mumgaard 2, Bob Granetz 2, Steve Scott 3, Fred Levinton 4, Howard Yuh 4, O. Marchuk 5, Y. Ralchenko 6 1 The University

More information

Toward the Realization of Fusion Energy

Toward the Realization of Fusion Energy Toward the Realization of Fusion Energy Nuclear fusion is the energy source of the sun and stars, in which light atomic nuclei fuse together, releasing a large amount of energy. Fusion power can be generated

More information

Nuclear Fusion Energy Research at AUB Ghassan Antar. Physics Department American University of Beirut

Nuclear Fusion Energy Research at AUB Ghassan Antar. Physics Department American University of Beirut Nuclear Fusion Energy Research at AUB Ghassan Antar Physics Department American University of Beirut Laboratory for Plasma and Fluid Dynamics [LPFD) Students: - R. Hajjar [Physics] - L. Moubarak [Physics]

More information

Nuclear Fusion and ITER

Nuclear Fusion and ITER Nuclear Fusion and ITER C. Alejaldre ITER Deputy Director-General Cursos de Verano UPM Julio 2, 2007 1 ITER the way to fusion power ITER ( the way in Latin) is the essential next step in the development

More information

Plasma Wall Interactions in Tokamak

Plasma Wall Interactions in Tokamak Plasma Wall Interactions in Tokamak Dr. C Grisolia, Association Euratom/CEA sur la fusion, CEA/Cadarache Outline 1. Conditions for Fusion in Tokamaks 2. Consequences of plasma operation on in vessel materials:

More information

X-ray Spectroscopy on Fusion Plasmas

X-ray Spectroscopy on Fusion Plasmas X-ray Spectroscopy on s An ongoing discussion between the two Manfreds Manfred von Hellermann for CXRS Manfred Bitter for x-ray spectroscopy G. Bertschinger for many contributers (Bitter, Kunze, Weinheimer,

More information

Diagnostic Capabilities of Line-Integrated Neutron Pulse Height Spectra Measurements

Diagnostic Capabilities of Line-Integrated Neutron Pulse Height Spectra Measurements Diagnostic Capabilities of Line-Integrated Neutron Pulse Height Spectra Measurements Daniele Marocco Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, C.P. 65, Frascati I-00044, Roma, Italy Preface

More information

Flow dynamics and plasma heating of spheromaks in SSX

Flow dynamics and plasma heating of spheromaks in SSX Flow dynamics and plasma heating of spheromaks in SSX M. R. Brown and C. D. Cothran, D. Cohen, J. Horwitz, and V. Chaplin Department of Physics and Astronomy Center for Magnetic Self Organization Swarthmore

More information

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK

More information

for the French fusion programme

for the French fusion programme The ITER era : the 10 year roadmap for the French fusion programme E. Tsitrone 1 on behalf of IRFM and Tore Supra team 1 : CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France Association EURATOM-CEA TORE

More information

DEMO diagnostics and impact on controllability

DEMO diagnostics and impact on controllability Member of the Helmholtz Association DEMO diagnostics and impact on controllability IAEA DEMO workshop, 17 th -20 th Dec 2013, Vienna (Austria) W. Biel 1, A. Dinklage 2, F. Felici 3, R. König 2, H. Meister

More information

Neutronics calculations for the ITER Collective Thomson Scattering Diagnostics

Neutronics calculations for the ITER Collective Thomson Scattering Diagnostics Downloaded from orbit.dtu.dk on: Sep 04, 2018 Neutronics calculations for the ITER Collective Thomson Scattering Diagnostics Nonbøl, Erik; Klinkby, Esben Bryndt; Lauritzen, Bent; Santos, R. Publication

More information

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source E. Hoffman, W. Stacey, G. Kessler, D. Ulevich, J. Mandrekas, A. Mauer, C. Kirby, D. Stopp, J. Noble

More information

Fusion Development Facility (FDF) Mission and Concept

Fusion Development Facility (FDF) Mission and Concept Fusion Development Facility (FDF) Mission and Concept Presented by R.D. Stambaugh PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION University of California Los Angeles FNST Workshop

More information

Plasma Spectroscopy in ISTTOK

Plasma Spectroscopy in ISTTOK Plasma Spectroscopy in ISTTOK J. Figueiredo 1, R. B. Gomes 1, T. Pereira 1, H. Fernandes 1, A. Sharakovski 2 1 Associação EURATOM/IST, Centro de Fusão Nuclear, IST, 1049-001 Lisboa, Portugal 2 Association

More information

Analyses of Visible Images of the Plasma Periphery Observed with Tangentially Viewing CCD Cameras in the Large Helical Device

Analyses of Visible Images of the Plasma Periphery Observed with Tangentially Viewing CCD Cameras in the Large Helical Device Analyses of Visible Images of the Plasma Periphery Observed with Tangentially Viewing CCD Cameras in the Large Helical Device M. SHOJI, T. WATANABE, S. MASUZAKI, H. YAMADA, A. KOMORI and LHD Experimental

More information

Diagnostics and control of fusion plasmas

Diagnostics and control of fusion plasmas Member of the Helmholtz Association Diagnostics and control of fusion plasmas W. Biel 1,2 1 Institute of Energy- and Climate Research, Forschungszentrum Jülich GmbH, Germany 2 Department of Applied Physics,

More information

in the pinch. This paper describes the computer modeling behind the shielding design of a

in the pinch. This paper describes the computer modeling behind the shielding design of a Modeling a 1-D Bremsstrahlung and Neutron maging Array For Use On Sandia s 2 Machine GA Rochau, MS Derzon, D Fehl, GE Rochau Sandia National Laboratories, Albuquerque, NM, 87 185-1 196 S Lazier, Ktech

More information

EPOS an intense positron beam project at the Research Center Rossendorf

EPOS an intense positron beam project at the Research Center Rossendorf EPOS an intense positron beam project at the Research Center Rossendorf R. Krause-Rehberg 1, G. Brauer 2, S. Sachert 1, V. Bondarenko 1, A. Rogov 2, K. Noack 2 1 Martin-Luther-University Halle 2 Research

More information

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant Implementation of a long leg X-point target divertor in the ARC fusion pilot plant A.Q. Kuang, N.M. Cao, A.J. Creely, C.A. Dennett, J. Hecla, H. Hoffman, M. Major, J. Ruiz Ruiz, R.A. Tinguely, E.A. Tolman

More information

The FTU facilities. Regarding the the control and data acquisition system, last year we carried out the following activities:

The FTU facilities. Regarding the the control and data acquisition system, last year we carried out the following activities: The FTU facilities FTU Machine Summary of the machine operation During 2005, the machine operated at the high level of 91% of successful pulses. The experimental activity started in March and went on till

More information

Diamond Neutral Particle Spectrometer at JET and proposal for ITER

Diamond Neutral Particle Spectrometer at JET and proposal for ITER Diamond Neutral Particle Spectrometer at JET and proposal for ITER Krasilnikov V.A. (vkrasilnikov@triniti.ru) SRC RF TRINITI, Troitsk, Moscow, Russia A compact fast corpuscular spectrometer with a detector

More information

First plasma operation of Wendelstein 7-X

First plasma operation of Wendelstein 7-X First plasma operation of Wendelstein 7-X R. C. Wolf on behalf of the W7-X Team *) robert.wolf@ipp.mpg.de *) see author list Bosch et al. Nucl. Fusion 53 (2013) 126001 The optimized stellarator Wendelstein

More information

Development of Polarization Interferometer Based on Fourier Transform Spectroscopy for Thomson Scattering Diagnostics

Development of Polarization Interferometer Based on Fourier Transform Spectroscopy for Thomson Scattering Diagnostics 16th International Toki Conference Advanced Imaging and Plasma Diagnostics Ceratopia Toki, Gifu, JAPAN December 5-8, 2006 Development of Polarization Interferometer Based on Fourier Transform Spectroscopy

More information

Design concept of near term DEMO reactor with high temperature blanket

Design concept of near term DEMO reactor with high temperature blanket Design concept of near term DEMO reactor with high temperature blanket Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies March 16-18, 2009 Tokyo Univ. Mai Ichinose, Yasushi Yamamoto

More information

Deuterium Balmer/Stark spectroscopy and impurity profiles: first results from mirror-link divertor spectroscopy system on the JET ITER-like wall

Deuterium Balmer/Stark spectroscopy and impurity profiles: first results from mirror-link divertor spectroscopy system on the JET ITER-like wall CCFE-PR(13)35 A.G. Meigs, S. Brezinsek, M. Clever, A. Huber, S. Marsen, C. Nicholas, M.Stamp, K-D Zastrow, and JET EFDA Contributors Deuterium Balmer/Stark spectroscopy and impurity profiles: first results

More information

Studies of H Mode Plasmas Produced Directly by Pellet Injection in DIII D

Studies of H Mode Plasmas Produced Directly by Pellet Injection in DIII D Studies of H Mode Plasmas Produced Directly by Pellet Injection in by P. Gohil in collaboration with L.R. Baylor,* K.H. Burrell, T.C. Jernigan,* G.R. McKee, *Oak Ridge National Laboratory University of

More information

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology

More information

Scaling of divertor heat flux profile widths in DIII-D

Scaling of divertor heat flux profile widths in DIII-D 1 Scaling of divertor heat flux profile widths in DIII-D C.J. Lasnier 1, M.A. Makowski 1, J.A. Boedo 2, N.H. Brooks 3, D.N. Hill 1, A.W. Leonard 3, and J.G. Watkins 4 e-mail:lasnier@llnl.gov 1 Lawrence

More information

Disruption Mitigation on Tore Supra

Disruption Mitigation on Tore Supra 1 EX/1-6Rc Disruption Mitigation on Tore Supra G. Martin, F. Sourd, F. Saint-Laurent, J. Bucalossi, L.G. Eriksson Association Euratom-CEA, DRFC/STEP, CEA/Cadarache F-1318 SAINT PAUL LEZ DURANCE / FRANCE

More information

Effect of the MHD Perturbations on Runaway Beam Formation during Disruptions in the T-10 Tokamak

Effect of the MHD Perturbations on Runaway Beam Formation during Disruptions in the T-10 Tokamak 1 Effect of the MHD Perturbations on Runaway Beam Formation during Disruptions in the T-10 Tokamak P. V. Savrukhin 1), E. V. Popova 1), A. V. Sushkov 1), D. E. Kravtsov 1), S. A. Grashin 1), V. P. Budaev

More information

VACUUM VESSEL LOWER PORT PENETRATIONS & IN VESSEL VIEWING PORT EXTENSION

VACUUM VESSEL LOWER PORT PENETRATIONS & IN VESSEL VIEWING PORT EXTENSION VACUUM VESSEL LOWER PORT PENETRATIONS & IN VESSEL VIEWING PORT EXTENSION 1. Purpose Call for Nomination (C4N) Ref. IO/CFT/18/15702/JPK Summary of Technical Specifications The purpose of the contract is

More information

Technological and Engineering Challenges of Fusion

Technological and Engineering Challenges of Fusion Technological and Engineering Challenges of Fusion David Maisonnier and Jim Hayward EFDA CSU Garching (david.maisonnier@tech.efda.org) 2nd IAEA TM on First Generation of FPP PPCS-KN1 1 Outline The European

More information

A Faster Way to Fusion

A Faster Way to Fusion A Faster Way to Fusion 2017 Tokamak Energy Tokamak Energy Ltd Company Overview April 2018 Our Mission To deliver to mankind a cheap, safe, secure and practically limitless source of clean energy fusion

More information

Current Drive Experiments in the Helicity Injected Torus (HIT II)

Current Drive Experiments in the Helicity Injected Torus (HIT II) Current Drive Experiments in the Helicity Injected Torus (HIT II) A. J. Redd, T. R. Jarboe, P. Gu, W. T. Hamp, V. A. Izzo, B. A. Nelson, R. G. O Neill, R. Raman, J. A. Rogers, P. E. Sieck and R. J. Smith

More information

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant

More information

MITICA: il prototipo dell'iniettore di neutri da 1 MeV-22 MW per ITER

MITICA: il prototipo dell'iniettore di neutri da 1 MeV-22 MW per ITER MITICA: il prototipo dell'iniettore di neutri da 1 MeV-22 MW per ITER P.Sonato 1/29 Acronimi & partners PRIMA Padova Research on Injector Megavolt Accelerated Saranno ospitati due esperimenti SPIDER Source

More information

Nuclear Energy in the Future. The ITER Project. Brad Nelson. Chief Engineer, US ITER. Presentation for NE-50 Symposium on the Future of Nuclear Energy

Nuclear Energy in the Future. The ITER Project. Brad Nelson. Chief Engineer, US ITER. Presentation for NE-50 Symposium on the Future of Nuclear Energy Nuclear Energy in the Future The ITER Project Brad Nelson Chief Engineer, US ITER Presentation for NE-50 Symposium on the Future of Nuclear Energy November 1, 2012 Fusion research is ready for the next

More information

STATUS OF THE HIT-II EXPERIMENTAL PROGRAM

STATUS OF THE HIT-II EXPERIMENTAL PROGRAM STATUS OF THE HIT-II EXPERIMENTAL PROGRAM Roger J. Smith and the HIT-II Team Plasma Dynamics Group University of Washington, Seattle, Washington HIT-II Team Faculty/Staff Support Staff Graduate Students

More information

Some Notes on the Window Frame Method for Assessing the Magnitude and Nature of Plasma-Wall Contact

Some Notes on the Window Frame Method for Assessing the Magnitude and Nature of Plasma-Wall Contact Some Notes on the Window Frame Method for Assessing the Magnitude and Nature of Plasma-Wall Contact Peter Stangeby 4 September 2003 1. Fig. 1 shows an example of a suitable magnetic configuration for application

More information

Calibration of JET Neutron Detectors at 14 MeV neutron energy

Calibration of JET Neutron Detectors at 14 MeV neutron energy Calibration of JET Neutron Detectors at 14 MeV neutron energy Paola Batistoni, ENEA, Frascati (Italy) EUROfusion WPJET3 Project Leader Neutron Group User s Meeting, NPL, UK, 20.10.2015 Contributors CCFE:

More information

Diagnostic Lithium Beam System for COMPASS Tokamak

Diagnostic Lithium Beam System for COMPASS Tokamak WDS'11 Proceedings of Contributed Papers, Part II, 215 220, 2011. ISBN 978-80-7378-185-9 MATFYZPRESS Diagnostic Lithium Beam System for COMPASS Tokamak P. Hacek Charles University Prague, Faculty of Mathematics

More information

Plasma Accelerator for Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS)

Plasma Accelerator for Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS) Plasma Accelerator for Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS) Cooperation Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland Institute

More information

Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup

Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup M.W. Bongard G.M. Bodner, M.G. Burke, R.J. Fonck, J.L. Pachicano, J.M. Perry, C. Pierren, J.A. Reusch, A.T. Rhodes, N.J. Richner, C.

More information

An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA

An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA 4 compression beams MIFEDS coils B z ~ 1 T Preheat beam from P9 1 mm Ring 3 Rings 4 Ring 3 Target support Fill-tube pressure transducer

More information

IdentiFINDER Digital Hand Held Spectrometer & Dose Rate Meter for Portable Applications

IdentiFINDER Digital Hand Held Spectrometer & Dose Rate Meter for Portable Applications fire IdentiFINDER Digital Hand Held Spectrometer & The world s smallest spectrometer and dose rate meter designed for portable applications. safety security identifinder - CH (yellow) CZT and neutron detector

More information

Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod

Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod PFC/JA-94-15 Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod J.A. Goetz, B. Lipschultz, M.A. Graf, C. Kurz, R. Nachtrieb, J.A. Snipes, J.L. Terry Plasma

More information

Chamber Development Plan and Chamber Simulation Experiments

Chamber Development Plan and Chamber Simulation Experiments Chamber Development Plan and Chamber Simulation Experiments Farrokh Najmabadi HAPL Meeting November 12-13, 2001 Livermore, CA Electronic copy: http://aries.ucsd.edu/najmabadi/talks UCSD IFE Web Site: http://aries.ucsd.edu/ife

More information

THE ADVANCED TOKAMAK DIVERTOR

THE ADVANCED TOKAMAK DIVERTOR I Department of Engineering Physics THE ADVANCED TOKAMAK DIVERTOR S.L. Allen and the team 14th PSI QTYUIOP MA D S O N UCLAUCLA UCLA UNIVERSITY OF WISCONSIN THE ADVANCED TOKAMAK DIVERTOR S.L. Allen and

More information

Finnish-Russian Collaboration: Reflectometry Turbulence Measurements & ELMFIRE Validation on FT-2 Tokamak in St.Petersburg.

Finnish-Russian Collaboration: Reflectometry Turbulence Measurements & ELMFIRE Validation on FT-2 Tokamak in St.Petersburg. Finnish-Russian Collaboration: Reflectometry Turbulence Measurements & ELMFIRE Validation on FT-2 Tokamak in St.Petersburg Established in 1918 Fusion research started in 1957 Alexey Gurchenko Tokamaks

More information

UPGRADED CALIBRATIONS OF THE THOMSON SYSTEM AT DIII D

UPGRADED CALIBRATIONS OF THE THOMSON SYSTEM AT DIII D GA A23440 UPGRADED CALIBRATIONS OF THE THOMSON SYSTEM AT DIII D by B. BRAY, C. HSIEH, T.N. CARLSTROM, and C.C. MAKARIOU AUGUST 2000 DISCLAIMER This report was prepared as an account of work sponsored by

More information

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI)

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI) Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI), 2003, A dedicated proton accelerator for 1p-physics at the future GSI Demands facilities for

More information

Wolter Imaging On Z. Chris Bourdon, Manager Z Imaging and Spectroscopy Julia Vogel, LLNL; Ming Wu, SNL ICF Diagnostics Workshop, October 5 th 2015

Wolter Imaging On Z. Chris Bourdon, Manager Z Imaging and Spectroscopy Julia Vogel, LLNL; Ming Wu, SNL ICF Diagnostics Workshop, October 5 th 2015 Photos placed in horizontal position with even amount of white space between photos and header Wolter Imaging On Z Chris Bourdon, Manager Z Imaging and Spectroscopy Julia Vogel, LLNL; Ming Wu, SNL ICF

More information

GA A22722 CENTRAL THOMSON SCATTERING UPGRADE ON DIII D

GA A22722 CENTRAL THOMSON SCATTERING UPGRADE ON DIII D GA A22722 CENTRAL THOMSON SCATTERING UPGRADE ON DIII D by D.G. NILSON, T.N. CARLSTROM, C.L. HSIEH, B.W. STALLARD, and R.E. STOCKDALE NOVEMBER 1997 DISCLAIMER This report was prepared as an account of work

More information

Imaging applications on ITER

Imaging applications on ITER Imaging applications on ITER Robin Barnsley, with ITER and EFDA/JET contributors Queen s University Belfast and EFDA/JET Visiting researcher, ITER International Team, Cadarache, France A Costley, L Bertalot,

More information

Investigation of Water Fragments

Investigation of Water Fragments National Nuclear Research University MEPhI Federal State Autonomous Institution for Higher Education 31 Kashirskoe shosse 115409 Moscow, Russia VAT registration number, 7724068140 REG. No 1037739366477

More information

The details of point source helicity injection as a noninductive startup technique must be characterized:

The details of point source helicity injection as a noninductive startup technique must be characterized: The details of point source helicity injection as a noninductive startup technique must be characterized: Is energy confinement dominated by cross-field transport? Is energy confinement dominated by parallel

More information

Survey Meter OD-01 Address: Phone: Fax: URL:

Survey Meter OD-01 Address: Phone: Fax:   URL: Survey Meter OD-01 Dose meter and dose rate meter for the measurement of the ambient dose and dose rate equivalent H*(10), dh*(10)/dt and the directional dose and dose rate equivalent H'(0.07), dh'(0.07)/dt

More information

Spectroscopic studies of impurities in the LHD plasmas

Spectroscopic studies of impurities in the LHD plasmas Spectroscopic studies of impurities in the LHD plasmas Visitor: Zhenwei Wu (the institute of plasma physics, CAS -ASIPP) Host: Shigeru Morita (the national institute for fusion science -NIFS) Content 1.

More information

STEADY-STATE EXHAUST OF HELIUM ASH IN THE W-SHAPED DIVERTOR OF JT-60U

STEADY-STATE EXHAUST OF HELIUM ASH IN THE W-SHAPED DIVERTOR OF JT-60U Abstract STEADY-STATE EXHAUST OF HELIUM ASH IN THE W-SHAPED DIVERTOR OF JT-6U A. SAKASAI, H. TAKENAGA, N. HOSOGANE, H. KUBO, S. SAKURAI, N. AKINO, T. FUJITA, S. HIGASHIJIMA, H. TAMAI, N. ASAKURA, K. ITAMI,

More information

RADIATION TRANSPORT ANALYSES FOR DESIGN OPTIMISATION OF THE ITER CORE LIDAR DIAGNOSTIC

RADIATION TRANSPORT ANALYSES FOR DESIGN OPTIMISATION OF THE ITER CORE LIDAR DIAGNOSTIC RADIATION TRANSPORT ANALYSES FOR DESIGN OPTIMISATION OF THE ITER CORE LIDAR DIAGNOSTIC R. Pampin 1, M.J. Loughlin, M.J. Walsh 1 (1) EURATOM/UKAEA Fusion Association, Culham Laboratory, Abingdon OX14 3DB,

More information

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets PFC/JA-91-5 Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets E. A. Chaniotakis L. Bromberg D. R. Cohn April 25, 1991 Plasma Fusion Center Massachusetts Institute of Technology

More information

1 EX/P7-35. Spectroscopic Studies on GLAST-III Varying the Inductance and Charging Voltage of Vertical Field Coils

1 EX/P7-35. Spectroscopic Studies on GLAST-III Varying the Inductance and Charging Voltage of Vertical Field Coils 1 EX/P7-35 Spectroscopic Studies on GLAST-III Varying the Inductance and Charging Voltage of Vertical Field Coils Farah Deeba, A.Qayyum, Zahoor Ahmad, S. Ahmad, R. Khan and S. Hussain National Tokamak

More information

The Neutron Diagnostic Experiment for Alcator C-Mod

The Neutron Diagnostic Experiment for Alcator C-Mod PFC/JA-9-16 The Neutron Diagnostic Experiment for Alcator C-Mod C. L. Fiore, R. S. Granetz Plasma Fusion Center Massachusetts Institute of Technology -Cambridge, MA 2139 May, 199 To be published in Review

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information