Plasma impurity composition in Alcator C-Mod tokamak.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Plasma impurity composition in Alcator C-Mod tokamak."

Transcription

1 Plasma impurity composition in Alcator C-Mod tokamak. I. O. Bespamyatnov a, W. L. Rowan a, K. T. Liao a, M. Brookman a, M. L. Reinke b, E. S. Marmar b, M. J. Greenwald b a Institute for Fusion Studies, The University of Texas, Austin, TX b MIT Plasma Science and Fusion Center, Cambridge, MA

2 Abstract Accurate characterization of the impurities in the tokamak plasma is an important and complex task. Impurities may lead to fuel dilution and enhanced radiative losses from plasma. Moreover, density of impurities relate to the effective ion charge Z eff, which greatly influences main-ion and electron transport. The task of quantifying the impurities in Alcator C-Mod tokamak is even more critical for few reasons. C-Mod s plasma contains a vast variety and amount of intrinsic or seeded impurities during regular operations. The most typical ones are: B, Ar, Mo, W, Ca, Ne, N, He. Some of the impurities are seeded for the diagnostic purposes, some for other reasons. Z eff of well confined C- Mod plasma may reach values more than 5. C-Mod s impurities dilute the main ions, influence confinement and particle and thermal transport. In order to properly characterize these impurity effects, density of each impurity should be accurately quantified. Impurities are typically diagnosed spectroscopically. Measurement of the absolute density requires proper radiometric diagnostic calibration, which is a difficult and sometimes impossible task. Some of the calibrations may be acquired from contrasting the specific impurity measurement with independent measurement of Z eff and neutron rate. Some of the diagnostics may be cross-calibrated. Here we attempt to perform a constrained analysis of the impurity content for a variety of the C-Mod plasma discharges. The goal here is to develop a technique to combine results from C-Mod impurity diagnostics into a joint analysis. The reliable estimate of impurity content and Z eff for most of the C-Mod plasma discharges is sought as the result. Few examples of the impurity composition analysis are discussed in detail. *Work supported by USDOE Awards DE-FG03-96ER54373 and DE-FC02-99-ER54512

3 Plasma composition Alcator C-Mod contains variety of intrinsic and seeded impurities (and main ions): 1. Mo and W from tiles 2. B- boronization 3. D, H, He main ions 4. Ar, He seeded for diagnostic purposes 5. Ne, N 2 puff decreases the Mo levels 6. Ca laser blow-off injection (transport studies) It is critical to know the relative composition of the plasma (Z eff, f imp, <Z> ion ) 1. High impurity content will lead to fuel dilution and enhanced radiative losses from a the plasma. 2. Z eff is a important parameter for plasma transport modeling 3. Z eff and f ion are needed for calculation of the neutral beam attenuation. 4. Z eff and <Z> ion profiles are also needed, not only <Z eff > nimp ne = nionzion = nh + DZH, D ( = 1) + nimpzimp fimp = n n Z Z = = 1 + f Z ( Z 1) 2 ion ion eff imp imp imp nionzion Z ion e fimpzimp ( Zimp 1) = 1+ fimpzimp

4 Visible bremsstrahlung Bremsstrahlung radiation broadband emission from electron-ion collision. Frequently used for Z eff measurement and calibrations of spectral diagnostics. Two measurements at C-Mod. 1. Z ave - single chord measurement of the chord-average Z eff. Chord location: F-port, midplane, R tan = 0.675m (λ=536nm) Uses: Interferometer measured average ne (nl 04 ) and GPC core temperature Te(0). Advantages: Fast data-analysis Disadvantage. No Z eff profile, Molecular pseudo-continuum + possible impurity lines 2. DALSA visible continuum imaging diagnostic*. Chord location: K-port, midplane, coverage (full LFS profile) (λ=536nm) Uses: TS ne and Te measurements. Abel inversion. Advantages: Full Z eff profile. Disadvantage. Molecular pseudo-continuum, mirror reflectivity changes in time. ε λ nz e eff g ff W = exp π Te λ Teλ cm A sr * *E.S. Marmar et al, RSI, 72,1,(2001)

5 Z eff from neoclassical conductivity Z eff (neo) External and bootstrap plasma currents are calculated based on neoclassical theory and compared to measured plasma current and loop voltage: (σ neo (Z eff ) and j BS (Z eff ) are from*) Z eff is being iterated until calculated and measured currents agree. 1. Standard approach (current profile is unknown): Vloop ( measured ) Itot ( measured) = Iext + I BS ( neo) = σ neoda jbs ( neo) da 2π R + 0 Assumptions: Electric field E is at equilibrium and the constant across the profile. Z eff profile is flat 2. Extended approach: V ( measured ) j ( EFIT ) = j + j = E σ + j = σ + j loop tot ext BS ( neo) neo BS ( neo) neo BS ( neo) 2π R0 Assumptions: Electric field E is at equilibrium and the constant across the profile. EFIT J tot is well known (options: Kinetic EFIT+ MSE constraint) Advantages: full Z eff profile, less ambiguity in local convergence *O. Sauter et al, POP, 6,7 (1999)

6 Z eff from neoclassical conductivity Examples on Z eff (neo) profiles (extended approach) Based on two EFIT runs (Standard EFIT and MSE-constrained EFIT with SIR correction) EFIT runs by S. Shiraiwa and M. Greenwald Calculated Z eff profile is very sensitive to current profile shape.

7 Comparison of Z ave and Z eff(neo) Comparison of Z ave and chord averaged Z eff (neo) (extended approach) (left) Comparison of brightness (measured by Z ave ) and (calculated using TS and Z eff (neo) )(right) Zbright ( brightness) = ε λdl ε λ nz e eff g ff W = exp π Te λ Teλ cm A sr

8 Impurity measurements at C-Mod There are many diagnostics which can provide some information on specific impurities. 1. CXRS can measure density profiles of a particular light impurities (like B 5+ and He 2+ ). 2. HIREX-Sr (if calibrated) can provide density profiles of some excitation states of seeded high-z impurities like Ar and Ca. 3. XEUS and VUV (not calibrated) average densities of many different impurities. Can serve as a measure of relative density change of an impurity in time * 4. H/D ratio Measurements of the integrated radiation. (Consistency check or calibration for a dominant impurity) 1. XTOMO- 3D structure and dynamics of SXR radiation in Alcator C-Mod. 2. Bolometers- Power loss from the plasma 3. AXUV - 3D structure and dynamics of XUV radiation in Alcator C-Mod. 4. Measurement of the neutron flux *M.L.Reinke et al, RSI 81, (2010)

9 Boron and He density profiles measured by CXRS Two CXRS systems. 1. Core-CXRS. Poloidal and toroidal array: Ion: B or He Location: F-port Resolution: 1 cm and 20 msec. Coverage: ρ Ψ =[0-1.0] 2. Edge-CXRS. A set of gas puff and beam CXRS systems Ion: boron Location. B, K and F-port. Resolution: 1.2mm, 5 msec. Coverage: ρ Ψ =[ ] Both systems provide 2D(r, t) profiles. Examples for Core-CXRS system B 5+ as trace impurity He 2+ as main ion

10 Historical calibration of the HIREX-Sr Selected Ohmic shot with strong Ar puff ( ) Measured (non-calibrated) emissivity of Ar 16+ (Ly α ) and Ar 17+ (Z) lines compared to calculated emissivity. Emission rate coefficients are from FAC-based modeling (THACO). Calibration coefficients are calculated by comparing Ar densities to Z eff contributions. rec exc ion exc Ar Ar Ar Ar εly = CLy ne n 18+ σly n 17+ σly n 16+ σly ne n 17+ σ α α + + α α α Lyα rec exc ion exc Ar Ar Ar Ar εz = CZ ne n 17+ σz n 16+ σz n 15+ σz ne n σz f Ar n Ly 17+ Ar α 17+ = 2 n C n σ exc e Ly e Ly α ε α f Ar n ε n C n 16+ Ar 16+ = 2 Z exc e Z e σ Z 1 ( slope) = C α Ly 7 1 ( slope) = C Z 7

11 Neutron rate for consistency check Total fusion yield is measured by two neutron detectors: Fusion yield can also be calculate based on: 1. n e (from TS) 2. T i (from consolidated TFIT (HIREX+CXRS) 3. Z eff from neoclassical conductivity (flat) 4. n D (from calculated impurity composition(z eff, <Z> ion ) 5. Cross-sections from Bosch et al, NF 32, 611 (1992) Comparison of the measured and calculated yields may serve as a cross-check for impurity composition* Z Z n n R ( ) ion eff D= e /1+ H/ D Z 1 ion C.L.Fiore et al, RSI, 63,10 (1992) Measure of dilution *M.L.Reinke NSE fall seminar 9/14/2011

12 Impurity composition (Three H-modes) Shot Three H-modes (marked in red). Clear H to L transition. B T =4.8T. The high confinement, or H-mode regime, is characterized by edge transport barriers in both energy and particle channels. Argon was injected for HIREX-Sr. DNB was injected for CXRS. Boron is intrinsic.

13 Impurity composition (Three H-modes) Calculated Ar and B densities (from Hirex-Sr and CXRS) contribute to average plasma Z eff (neo). a b c The remainder on Z eff is a considered to be a contribution from Mo (a) A calculated contribution from Mo correlates with Mo line emission measured by McPherson (VUV). (b) The calculated impurity fractions for Ar, B and Mo. (c)

14 Impurity composition (Three H-modes) A measured and calculated neutron rates are compared on the graph. T i profiles: T e profile corrected by central HIREX-Sr T i (0) are used for calculation of the neutron yield. Results from two calculations are plotted. Z Z ion eff 1. n <Z> ion calculated from f imp. (blue) D= ne /1 ( + RH/ D) Z 1 ion 2. <Z> ion =5 (pure boron) (purple) Both calculations well agrees with measurement. Although, purple line is a bit below. Less agreement in the Ohmic phase

15 Impurity composition (Long steady H-modes) Shot Long steady EDA H-mode (marked in red). B T =4.4T. The high confinement, or H-mode regime, is characterized by edge transport barriers in both energy and particle channels. Argon was injected for HIREX-Sr. DNB was injected for CXRS. Boron is intrinsic.

16 Impurity composition (Long steady H-mode) Calculated Ar and B densities (from Hirex-Sr and CXRS) contribute to average plasma Z eff (neo). a b c The remainder on Z eff is a considered to be a contribution from Mo (a) A calculated contribution from Mo correlates with Mo line emission measured by McPherson (VUV). (b) The calculated impurity fractions for Ar, B and Mo. (c)

17 Impurity composition (Long steady H-mode) A measured and calculated neutron rates are compared on the graph. T i profiles: Te profiles corrected by central HIREX-Sr T i (0) are used for calculation of the neutron yield. Results from two calculations are plotted. Z Z ion eff 1. n <Z> ion calculated from f imp. (blue) D= ne ( 1 RH/ D) Z 1 ion 2. <Z> ion =5 (pure boron) (purple) Both calculations well agrees with measurement. Although, purple line is a bit below. Less agreement in the Ohmic phase.

18 Impurity composition (I-mode) Shot Long steady I-mode (marked in red). A new discovered I-mode regime is characterized by edge thermal transport barrier without a significant reduction in particle transport. Argon was injected for HIREX-Sr. DNB was injected for CXRS. Boron is intrinsic.

19 Impurity composition (I-mode) Calculated Ar and B densities (from Hirex-Sr and CXRS) contribute to average plasma Z eff (neo). a b c The remainder on Z eff is a considered to be a contribution from Mo (a) A calculated contribution from Mo correlates with Mo line emission measured by McPherson (VUV). (b) The calculated impurity fractions for Ar, B and Mo. (c)

20 Impurity composition (I-mode) A measured and calculated neutron rates are compared on the graph. T i profiles measured by HIREX-Sr are used for calculation of neutron yield. Results from two calculations are plotted. 1. <Z> ion calculated from f imp. (blue) Z Z ion eff n = n 1 R 2. <Z> ion =5 (pure boron) (purple) Z 1 ( ) D e H/ D ion Good example, where calculated impurity composition (blue) agrees with measurement, but <Z> ion =5 (purple) does not. If Z eff constitutes only from boron, then calculated neutron yield is twice smaller than measured. Less agreement during the second half of the I-mode. (possibly that T i is underestimated or some additional very high Z contributor to plasma (W?)

21 Summary and conclusions 1. A historical calibration analysis of the HIREX-SR was performed. In the result the Ar 17+ and Ar 16+ density profiles were be extracted from HIREX emissivity profiles of Ly-α and Z lines. 2. These Ar densities and CXRS measured B 5+ densities were used to analyze their contributions to Z eff. Average Z eff (neo) was calculated from measured I p and V loop and assuming that plasma conductivity is neoclassical. 3. Z eff (neo) was compared to Z ave, calculated from measured visible bremsstrahlung. 4. Three shots (Two H-mode and one I-mode) were analyzed. 5. For each shot the Ar and Mo densities and their contributions to Z eff were identified. 6. The remaining Z eff contributions were associated with Mo. The calculated Mo contributions well correlate with brightnesses of the Mo XXXII (127.81) line. 7. The results of the plasma impurity composition analysis were cross-checked by the comparison of the measured neutron yield and calculated neutron yield using measured T i, Z eff and calculated <Z> ion. Boron is not the main contributor to Z eff (for H-mode and I-mode). It seems Mo is the main contributor. Ar is also an important contributor for typical levels of Ar puff needed for HIREX-Sr analysis.

22 Proposed consolidated analysis and plans Create a new plasma composition widget The code collects data from different impurity spectroscopy diagnostics. All data will be split among several categories like: 1. Calibrated absolute 2D (r,t) profile of density of a specific impurity (or state). 2. Full calibrated 1D (t) average density of a specific impurity (or state). 3. Non-calibrated 2D (r,t) profile of density of a specific impurity (or state). 4. Non calibrated 1D (t) average density of a specific impurity (or state). User selects which data to use and selects the list of impurities for composition analysis. Neutron yield (as well as P rad, Axuv) serves as constrains for composition. Z eff : 2D and 1D profiles serve as another constraint. Some calibrations of non-calibrated diagnostics may be acquired as historical calibrations for dominant impurity. Plans for the near future. Apply the analysis for shots with Ne puffs. Apply the analysis for shots with He as minority and He as the main ion. (He measured by CXRS Try to use Z eff profiles (DALSA, Z eff(neo) ) to get a spatial resolved impurity composition.

Validation of spectral MSE for Alcator C-Mod and for ITER

Validation of spectral MSE for Alcator C-Mod and for ITER Validation of spectral MSE for Alcator C-Mod and for ITER K.T. Liao 1, W.L. Rowan 1, R.T. Mumgaard 2, Bob Granetz 2, Steve Scott 3, Fred Levinton 4, Howard Yuh 4, O. Marchuk 5, Y. Ralchenko 6 1 The University

More information

Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod

Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod PFC/JA-94-15 Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod J.A. Goetz, B. Lipschultz, M.A. Graf, C. Kurz, R. Nachtrieb, J.A. Snipes, J.L. Terry Plasma

More information

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER M.L. Reinke 1, A. Loarte 2, M. Chilenski 3, N. Howard 3, F. Köchl 4, A. Polevoi 2, A. Hubbard 3, J.W. Hughes

More information

Fast Ion Measurement in the Alcator C-Mod plasma: How, Why, and Who Cares*

Fast Ion Measurement in the Alcator C-Mod plasma: How, Why, and Who Cares* Fast Ion Measurement in the Alcator C-Mod plasma: How, Why, and Who Cares* W. L. Rowan, a I. O. Bespamyatnov, a A. Bader, b R. S. Granetz, b and Ken Liao a a Fusion Research Center, The University of Texas

More information

EX/C3-5Rb Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

EX/C3-5Rb Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier EX/C-Rb Relationship between particle and heat transport in JT-U plasmas with internal transport barrier H. Takenaga ), S. Higashijima ), N. Oyama ), L. G. Bruskin ), Y. Koide ), S. Ide ), H. Shirai ),

More information

DNB Program. W.L. Rowan, D. Beals, R.V. Bravenec, M.B. Sampsell, D.M. Patterson Fusion Research Center, University of Texas at Austin

DNB Program. W.L. Rowan, D. Beals, R.V. Bravenec, M.B. Sampsell, D.M. Patterson Fusion Research Center, University of Texas at Austin DNB Program W.L. Rowan, D. Beals, R.V. Bravenec, M.B. Sampsell, D.M. Patterson Fusion Research Center, University of Texas at Austin G. Schilling, G. Kramer, R. Feder Princeton Plasma Physics Laboratory

More information

Physics of the detached radiative divertor regime in DIII-D

Physics of the detached radiative divertor regime in DIII-D Plasma Phys. Control. Fusion 41 (1999) A345 A355. Printed in the UK PII: S741-3335(99)97299-8 Physics of the detached radiative divertor regime in DIII-D M E Fenstermacher, J Boedo, R C Isler, A W Leonard,

More information

Effect of secondary beam neutrals on MSE: theory

Effect of secondary beam neutrals on MSE: theory Effect of secondary beam neutrals on MSE: theory S. Scott (PPPL) J. Ko, I. Hutchinson (PSFC/MIT) H. Yuh (Nova Photonics) Poster NP8.87 49 th Annual Meeting, DPP-APS Orlando, FL November 27 Abstract A standard

More information

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod 1 EX/P4-22 Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.

More information

Calibration of and Measurements from the C-Mod MSE Diagnostic

Calibration of and Measurements from the C-Mod MSE Diagnostic Calibration of and Measurements from the C-Mod MSE Diagnostic Howard Y. Yuh, MIT Steve D. Scott, PPPL R. Granetz, E.S.Marmar, S.M.Wolfe, D.Beals,MIT W.Rowan, R.Bravenec, M.Sampsell, U.Texas Austin Motional

More information

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén Current density modelling in JET and JT-60U identity plasma experiments Paula Sirén 1/12 1/16 Euratom-TEKES Euratom-Tekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET

More information

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME by R. NAZIKIAN, M.E. AUSTIN, R.V. BUDNY, M.S. CHU, W.W. HEIDBRINK, M.A. MAKOWSKI, C.C. PETTY, P.A. POLITZER, W.M. SOLOMON, M.A.

More information

Improved absolute calibration of core Thomson scattering(ts) diagnostics on Alctor C-Mod

Improved absolute calibration of core Thomson scattering(ts) diagnostics on Alctor C-Mod Improved absolute calibration of core Thomson scattering(ts) diagnostics on Alctor C-Mod Yunxing Ma, J.W.Hughes, A.Hubbard MIT Plasma Science and Fusion Center Presented at 2008 APS DPP Conference Dallas,

More information

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER A. Loarte ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex, France

More information

Plasma Spectroscopy Inferences from Line Emission

Plasma Spectroscopy Inferences from Line Emission Plasma Spectroscopy Inferences from Line Emission Ø From line λ, can determine element, ionization state, and energy levels involved Ø From line shape, can determine bulk and thermal velocity and often

More information

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract This work was performed under the auspices of the U.S. Department of Energy by under contract DE-AC52-7NA27344. Lawrence Livermore National Security, LLC The ITER tokamak Tungsten (W) is attractive as

More information

C-Mod Core Transport Program. Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center

C-Mod Core Transport Program. Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center C-Mod Core Transport Program Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center Practical Motivations for Transport Research Overall plasma behavior must be robustly

More information

Temperature measurement and real-time validation

Temperature measurement and real-time validation Temperature measurement and real-time validation A. Herrmann, B. Sieglin, M. Faitsch, P. de Marné, ASDEX Upgrade team st IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis ITER-

More information

DIII-D TOKAMAK MODELING OF THE RECYCLING PARTICLE FLUX AND ELECTRON PARTICLE TRANSPORT IN THE

DIII-D TOKAMAK MODELING OF THE RECYCLING PARTICLE FLUX AND ELECTRON PARTICLE TRANSPORT IN THE MODELING OF THE RECYCLING ARTICLE FLUX AND ELECTRON ARTICLE TRANSORT IN THE DIIID TOKAMAK by D.R. BAKER, R. MAINGI, L.W. OWEN, G.D. ORTER, and G.L. JACKSON OCTOBER 1996 GENERAL ATOMICS ortions of this

More information

The Zeeman effect on the n=7-6 and n=6-5 lines of H- like B and its influence on CXRS measurements in the Alcator C-Mod tokamak.

The Zeeman effect on the n=7-6 and n=6-5 lines of H- like B and its influence on CXRS measurements in the Alcator C-Mod tokamak. PSFC/RR-03-9 The Zeeman effect on the n=7-6 and n=6-5 lines of H- like B and its influence on CXRS measurements in the Alcator C-Mod tokamak. Marr, K.M., Terry, J., Lipschultz, B. Written in 2003, electronically

More information

Tungsten impurity transport experiments in Alcator C-Mod to address high priority research and development for ITER

Tungsten impurity transport experiments in Alcator C-Mod to address high priority research and development for ITER Tungsten impurity transport experiments in Alcator C-Mod to address high priority research and development for ITER The MIT Faculty has made this article openly available. Please share how this access

More information

Integration of Fokker Planck calculation in full wave FEM simulation of LH waves

Integration of Fokker Planck calculation in full wave FEM simulation of LH waves Integration of Fokker Planck calculation in full wave FEM simulation of LH waves O. Meneghini S. Shiraiwa R. Parker 51 st DPP APS, Atlanta November 4, 29 L H E A F * Work supported by USDOE awards DE-FC2-99ER54512

More information

L-to-H power threshold comparisons between NBI and RF heated plasmas in NSTX

L-to-H power threshold comparisons between NBI and RF heated plasmas in NSTX Research Supported by L-to-H power threshold comparisons between NBI and RF heated plasmas in NSTX T.M. Biewer 1, R. Maingi 1, H. Meyer 2, R.E. Bell 3, C. Bush 1, S. Kaye 3, S. Kubota 3, B. LeBlanc 3,

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

Enhanced con nement discharges in DIII-D with neon and argon induced radiation

Enhanced con nement discharges in DIII-D with neon and argon induced radiation Journal of Nuclear Materials 266±269 (1999) 380±385 Enhanced con nement discharges in DIII-D with neon and argon induced radiation G.L. Jackson a, *, M. Murakami b, G.M. Staebler a, M.R. Wade b, A.M. Messiaen

More information

Confinement and Transport Research in Alcator C-Mod

Confinement and Transport Research in Alcator C-Mod PSFC/JA-05-32. Confinement and Transport Research in Alcator C-Mod M. Greenwald, N. Basse, P. Bonoli, R. Bravenec 1, E. Edlund, D. Ernst, C. Fiore, R. Granetz, A. Hubbard, J. Hughes, I. Hutchinson, J.

More information

Estimating the plasma flow in a recombining plasma from

Estimating the plasma flow in a recombining plasma from Paper P3-38 Estimating the plasma flow in a recombining plasma from the H α emission U. Wenzel a, M. Goto b a Max-Planck-Institut für Plasmaphysik (IPP) b National Institute for Fusion Science, Toki 509-5292,

More information

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus)

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) PD/P-01 C. Castaldo 1), R. Cesario 1), Y, Andrew 2), A. Cardinali 1), V. Kiptly 2), M. Mantsinen

More information

IMPURITY BEHAVIOR IN PBX L- and H-MODE PLASMAS. K. Ida*, R.J. Fonck, S. Sesnic, R.A. Hulse, B. LeBlanc, and S. F. Paul

IMPURITY BEHAVIOR IN PBX L- and H-MODE PLASMAS. K. Ida*, R.J. Fonck, S. Sesnic, R.A. Hulse, B. LeBlanc, and S. F. Paul IMPURITY BEHAVIOR IN PBX L- and H-MODE PLASMAS K. Ida*, R.J. Fonck, S. Sesnic, R.A. Hulse, B. LeBlanc, and S. F. Paul Princeton University, Plasma Physics Laboratory Princeton, New Jersey 085*13 PPPL 2538

More information

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices G.M. Wright 1, D. Brunner 1, M.J. Baldwin 2, K. Bystrov 3, R. Doerner 2, B. LaBombard 1, B. Lipschultz 1, G. de Temmerman 3,

More information

Divertor Detachment on TCV

Divertor Detachment on TCV Divertor Detachment on TCV R. A. Pitts, Association EURATOM-Confédération Suisse,, CH- LAUSANNE, Switzerland thanks to A. Loarte a, B. P. Duval, J.-M. Moret, J. A. Boedo b, L. Chousal b, D. Coster c, G.

More information

Flow dynamics and plasma heating of spheromaks in SSX

Flow dynamics and plasma heating of spheromaks in SSX Flow dynamics and plasma heating of spheromaks in SSX M. R. Brown and C. D. Cothran, D. Cohen, J. Horwitz, and V. Chaplin Department of Physics and Astronomy Center for Magnetic Self Organization Swarthmore

More information

ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model

ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model 1 THC/3-3 ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model J.E. Kinsey, G.M. Staebler, J. Candy, and R.E. Waltz General Atomics, P.O. Box 8608, San Diego, California

More information

Production of Over-dense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device

Production of Over-dense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device Production of Over-dense Plasmas by Launching 2.45GHz Electron Cyclotron Waves in a Helical Device R. Ikeda a, M. Takeuchi a, T. Ito a, K. Toi b, C. Suzuki b, G. Matsunaga c, S. Okamura b, and CHS Group

More information

Confinement Studies during LHCD and LHW Ion Heating on HL-1M

Confinement Studies during LHCD and LHW Ion Heating on HL-1M Confinement Studies during LHCD and LHW Ion Heating on HL-1M Y. Liu, X.D.Li, E.Y. Wang, J. Rao, Y. Yuan, H. Xia, W.M. Xuan, S.W. Xue, X.T. Ding, G.C Guo, S.K. Yang, J.L. Luo, G.Y Liu, J.E. Zeng, L.F. Xie,

More information

DEPENDENCE OF THE H-MODE PEDESTAL STRUCTURE ON ASPECT RATIO

DEPENDENCE OF THE H-MODE PEDESTAL STRUCTURE ON ASPECT RATIO 21 st IAEA Fusion Energy Conference Chengdu, China Oct. 16-21, 2006 DEPENDENCE OF THE H-MODE PEDESTAL STRUCTURE ON ASPECT RATIO R. Maingi 1, A. Kirk 2, T. Osborne 3, P. Snyder 3, S. Saarelma 2, R. Scannell

More information

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE

EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON H-MODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIII-D Group 47 th Annual Meeting

More information

Measurement of the Current Density Profile in the Alcator C Tokamak using Lithium Pellets

Measurement of the Current Density Profile in the Alcator C Tokamak using Lithium Pellets PFC/JA-89-12 Measurement of the Current Density Profile in the Alcator C Tokamak using Lithium Pellets Marmar, E.S., Terry, J.L., Lipschultz, B., and Rice, J.E. Plasma Fusion Center Massachusetts Institute

More information

Progress in characterization of the H-mode pedestal

Progress in characterization of the H-mode pedestal Journal of Physics: Conference Series Progress in characterization of the H-mode pedestal To cite this article: A W Leonard 2008 J. Phys.: Conf. Ser. 123 012001 View the article online for updates and

More information

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1, D.L. Brower 2, C. Deng 2, D.T.Anderson 1, F.S.B. Anderson 1, A.F. Almagri

More information

D- 3 He HA tokamak device for experiments and power generations

D- 3 He HA tokamak device for experiments and power generations D- He HA tokamak device for experiments and power generations US-Japan Fusion Power Plant Studies Contents University of Tokyo, Japan January -, 5 O.Mitarai (Kyushu Tokai University).Motivation.Formalism,

More information

GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D

GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D by C.C. PETTY, P.A. POLITZER, R.J. JAYAKUMAR, T.C. LUCE, M.R. WADE, M.E. AUSTIN, D.P. BRENNAN, T.A. CASPER, M.S. CHU, J.C. DeBOO, E.J. DOYLE,

More information

September, Plasma Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139

September, Plasma Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139 PFC/JA-85-31 EFFECT OF PELLET FUELNG ON ENERGY TRANSPORT N ORMCALLY HEATED ALCATOR C PLASMAS S.M. Wolfe, M. Greenwald, R. Gandy, R. Granetz, C. Gomez, D. Gwinn, B. Lipschultz, S. McCool, E. Marmar, J.

More information

Mechanisms for ITB Formation and Control in Alcator C-Mod Identified through Gyrokinetic Simulations of TEM Turbulence

Mechanisms for ITB Formation and Control in Alcator C-Mod Identified through Gyrokinetic Simulations of TEM Turbulence th IAEA Fusion Energy Conference Vilamoura, Portugal, 1-6 November IAEA-CN-116/TH/-1 Mechanisms for ITB Formation and Control in Alcator C-Mod Identified through Gyrokinetic Simulations of TEM Turbulence

More information

Faraday Effect Measurement of Internal Magnetic Field and Fluctuations in C-MOD

Faraday Effect Measurement of Internal Magnetic Field and Fluctuations in C-MOD Faraday Effect Measurement of Internal Magnetic Field and Fluctuations in C-MOD William F. Bergerson 1 Coauthors: P. Xu 2, J. H. Irby 2, D. L. Brower 1, W. X. Ding 1, E. S. Marmar 2 1 University of California

More information

Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C- Mod

Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C- Mod Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C- Mod J. Liptac, J. Decker, R. Parker, V. Tang, P. Bonoli MIT PSFC Y. Peysson CEA Cadarache APS 3 Albuquerque, NM Abstract A Lower Hybrid

More information

Initial Experimental Program Plan for HSX

Initial Experimental Program Plan for HSX Initial Experimental Program Plan for HSX D.T. Anderson, A F. Almagri, F.S.B. Anderson, J. Chen, S. Gerhardt, V. Sakaguchi, J. Shafii and J.N. Talmadge, UW-Madison HSX Plasma Laboratory Team The Helically

More information

Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment

Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment E. T. Hinson J. L. Barr, M. W. Bongard, M. G. Burke, R. J. Fonck, J. M. Perry, A. J. Redd,

More information

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011 Tokamak Divertor System Concept and the Design for ITER Chris Stoafer April 14, 2011 Presentation Overview Divertor concept and purpose Divertor physics General design considerations Overview of ITER divertor

More information

TRANSP Simulations of ITER Plasmas

TRANSP Simulations of ITER Plasmas PPPL-3152 - Preprint Date: December 1995, UC-420, 421, 427 TRANSP Simulations of ITER Plasmas R. V. Budny, D. C. McCune, M. H. Redi, J. Schivell, and R. M. Wieland Princeton University Plasma Physics Laboratory

More information

The role of PMI in MFE/IFE common research

The role of PMI in MFE/IFE common research The role of PMI in MFE/IFE common research Presented by Doerner for the Team and TITAN 1-1 Participants In 2006, Jupiter II recognized that PMI was a bridge issue between MFE and IFE R&D Both MFE and IFE

More information

Chapter IX: Nuclear fusion

Chapter IX: Nuclear fusion Chapter IX: Nuclear fusion 1 Summary 1. General remarks 2. Basic processes 3. Characteristics of fusion 4. Solar fusion 5. Controlled fusion 2 General remarks (1) Maximum of binding energy per nucleon

More information

Development of Polarization Interferometer Based on Fourier Transform Spectroscopy for Thomson Scattering Diagnostics

Development of Polarization Interferometer Based on Fourier Transform Spectroscopy for Thomson Scattering Diagnostics 16th International Toki Conference Advanced Imaging and Plasma Diagnostics Ceratopia Toki, Gifu, JAPAN December 5-8, 2006 Development of Polarization Interferometer Based on Fourier Transform Spectroscopy

More information

Impurity Transport in JET L-mode Discharges

Impurity Transport in JET L-mode Discharges JET P(99)3 K D Lawson et al Impurity Transport in JET L-mode Discharges JET P(99)3 Impurity Transport in JET L-mode Discharges K D Lawson, L Lauro-Taroni, R Giannella, N A C Gottardi 3, N C Hawkes, P D

More information

ICRH Experiments on the Spherical Tokamak Globus-M

ICRH Experiments on the Spherical Tokamak Globus-M 1 Experiments on the Spherical Tokamak Globus-M V.K.Gusev 1), F.V.Chernyshev 1), V.V.Dyachenko 1), Yu.V.Petrov 1), N.V.Sakharov 1), O.N.Shcherbinin 1), V.L.Vdovin 2) 1) A.F.Ioffe Physico-Technical Institute,

More information

Experimental Results on Pellet Injection and MHD from the RTP Tokamak

Experimental Results on Pellet Injection and MHD from the RTP Tokamak Experimental Results on Pellet Injection and MHD from the RTP Tokamak A.A.M. Oomens, J. de Kloe, F.J.B. Salzedas, M.R. de Baar, C.J. Barth, M.N.A. Beurskens, A.J.H. Donné, B. de Groot, G.M.D. Hogeweij,

More information

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod JUST DID IT. J A Snipes, N Basse, C Boswell, E Edlund, A Fasoli #, N N Gorelenkov, R S Granetz, L Lin, Y Lin, R Parker, M Porkolab, J

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

Effect of ECRH Regime on Characteristics of Short-Wave Turbulence in Plasma of the L-2M Stellarator

Effect of ECRH Regime on Characteristics of Short-Wave Turbulence in Plasma of the L-2M Stellarator 1 Effect of ECRH Regime on Characteristics of Short-Wave Turbulence in Plasma of the L-2M Stellarator N.N. Skvortsova, D.K. Akulina, G.M. Batanov, G.S. Voronov, L.V. Kolik, L.M. Kovrizhnykh, A.A. Letunov,

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

HFS PELLET REFUELING FOR HIGH DENSITY TOKAMAK OPERATION

HFS PELLET REFUELING FOR HIGH DENSITY TOKAMAK OPERATION ASDEX Upgrade Session: "Issues and prospects of effcient fueling for magnetic confinement" HFS ELLET REFUELING FOR HIGH DENSITY TOKAMAK OERATION.T. Lang for the ASDEX Upgrade and JET teams Cubic mm size

More information

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.

More information

Impact of neutral atoms on plasma turbulence in the tokamak edge region

Impact of neutral atoms on plasma turbulence in the tokamak edge region Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint Varenna-Lausanne International

More information

Towards control of steady state plasma on Tore Supra

Towards control of steady state plasma on Tore Supra Towards control of steady state plasma on Tore Supra P. Moreau, O. Barana, S. Brémond, J. Bucalossi, E. Chatelier, E. Joffrin, D. Mazon, F. Saint-Laurent, E. Witrant and Tore Supra Team Abstract Magnetic

More information

A novel tracer-gas injection system for scrape-off layer impurity transport and screening experiments

A novel tracer-gas injection system for scrape-off layer impurity transport and screening experiments A novel tracer-gas injection system for scrape-off layer impurity transport and screening experiments B. LaBombard, S. Gangadhara, B. Lipschultz, S. Lisgo a, D.A. Pappas, C.S. Pitcher, P. Stangeby a, J.

More information

Energetic particle modes: from bump on tail to tokamak plasmas

Energetic particle modes: from bump on tail to tokamak plasmas Energetic particle modes: from bump on tail to tokamak plasmas M. K. Lilley 1 B. N. Breizman 2, S. E. Sharapov 3, S. D. Pinches 3 1 Physics Department, Imperial College London, London, SW7 2AZ, UK 2 IFS,

More information

The Advanced Tokamak: Goals, prospects and research opportunities

The Advanced Tokamak: Goals, prospects and research opportunities The Advanced Tokamak: Goals, prospects and research opportunities Amanda Hubbard MIT Plasma Science and Fusion Center with thanks to many contributors, including A. Garafolo, C. Greenfield, C. Kessel,

More information

Mission and Design of the Fusion Ignition Research Experiment (FIRE)

Mission and Design of the Fusion Ignition Research Experiment (FIRE) Mission and Design of the Fusion Ignition Research Experiment (FIRE) D. M. Meade 1), S. C. Jardin 1), J. A. Schmidt 1), R. J. Thome 2), N. R. Sauthoff 1), P. Heitzenroeder 1), B. E. Nelson 3), M. A. Ulrickson

More information

HIGH SPATIAL AND TEMPORAL RESOLUTION VISIBLE SPECTROSCOPY OF THE PLASMA EDGE IN DIII-D

HIGH SPATIAL AND TEMPORAL RESOLUTION VISIBLE SPECTROSCOPY OF THE PLASMA EDGE IN DIII-D Ii,,i GA-A--20105 DE91 002718 HIGH SPATIAL AND TEMPORAL RESOLUTION VISIBLE SPECTROSCOPY OF THE PLASMA EDGE IN DIII-D by P. Gohil, K.H. Burrell, R.J. Groebner, and R.P. Seraydarian This is a preprint of

More information

ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations

ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations 1 EXC/P5-02 ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations B. Hudson 1, T.E. Evans 2, T.H. Osborne 2, C.C. Petty 2, and P.B. Snyder 2 1 Oak Ridge Institute for Science

More information

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This

More information

Rotation and Neoclassical Ripple Transport in ITER

Rotation and Neoclassical Ripple Transport in ITER Rotation and Neoclassical Ripple Transport in ITER Elizabeth J. Paul 1 Matt Landreman 1 Francesca Poli 2 Don Spong 3 Håkan Smith 4 William Dorland 1 1 University of Maryland 2 Princeton Plasma Physics

More information

EFDA European Fusion Development Agreement - Close Support Unit - Garching

EFDA European Fusion Development Agreement - Close Support Unit - Garching Multi-machine Modelling of Divertor Geometry Effects Alberto Loarte EFDA CSU -Garching Acknowledgements: K. Borrass, D. Coster, J. Gafert, C. Maggi, R. Monk, L. Horton, R.Schneider (IPP), A.Kukushkin (ITER),

More information

Review of experimental observations of plasma detachment and of the effects of divertor geometry on divertor performance

Review of experimental observations of plasma detachment and of the effects of divertor geometry on divertor performance Review of experimental observations of plasma detachment and of the effects of divertor geometry on divertor performance Alberto Loarte European Fusion Development Agreement Close Support Unit - Garching

More information

GA A27849 APPLICATION OF ELECTRON CYCLOTRON HEATING TO THE STUDY OF TRANSPORT IN ITER BASELINE SCENARIO-LIKE DISCHARGES IN DIII-D

GA A27849 APPLICATION OF ELECTRON CYCLOTRON HEATING TO THE STUDY OF TRANSPORT IN ITER BASELINE SCENARIO-LIKE DISCHARGES IN DIII-D GA A27849 APPLICATION OF ELECTRON CYCLOTRON HEATING TO THE STUDY OF TRANSPORT IN ITER BASELINE by R.I. PINSKER, M.E. AUSTIN, D.R. ERNST, A.M. GAROFALO, B.A. GRIERSON, J.C. HOSEA, T.C. LUCE, A. MARINONI,

More information

Response of thin foil Faraday Cup lost alpha particle detector in intense neutron and gamma ray radiation fields

Response of thin foil Faraday Cup lost alpha particle detector in intense neutron and gamma ray radiation fields Response of thin foil Faraday Cup lost alpha particle detector in intense neutron and gamma ray radiation fields F.E. Cecil 1, V. Kiptily 2, D. Darrow 3, A. Horton 2, K. Fullard 2, K. Lawson 2, G. Matthews

More information

Chamber Development Plan and Chamber Simulation Experiments

Chamber Development Plan and Chamber Simulation Experiments Chamber Development Plan and Chamber Simulation Experiments Farrokh Najmabadi HAPL Meeting November 12-13, 2001 Livermore, CA Electronic copy: http://aries.ucsd.edu/najmabadi/talks UCSD IFE Web Site: http://aries.ucsd.edu/ife

More information

Müeller Matrix for Imperfect, Rotated Mirrors

Müeller Matrix for Imperfect, Rotated Mirrors From: Steve Scott, Howard Yuh To: MSE Enthusiasts Re: MSE Memo #0c: Proper Treatment of Effect of Mirrors Date: February 1, 004 (in progress) Memo 0c is an extension of memo 0b: it does a calculation for

More information

Neutron and gamma ray measurements. for fusion experiments and spallation sources

Neutron and gamma ray measurements. for fusion experiments and spallation sources Neutron and gamma ray measurements for fusion experiments and spallation sources Carlo Cazzaniga prof.ssa Claudia Riccardi 1 External supervisor: dr. Marco Tardocchi Supervisor: 1) Istituto di Fisica del

More information

J.C. Sprott. Plasma Studies. University of Wisconsin

J.C. Sprott. Plasma Studies. University of Wisconsin BOOTSTRAP-CURRENT-DRIVEN STEADY-STATE TOKAMAK J.C. Sprott PLP 891 January 1983 Plasma Studies University of Wisconsin These PLP Reports are informal and preliminary and as such may contain errors not yet

More information

A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva

A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva CRPP - EPFL SPS Annual Meeting 2014 02.07.2014 CRPP The tokamak

More information

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. Paz-Soldan 2, F. Carpanese 3, C.C. Petty 2, T.C.

More information

The Neutron Diagnostic Experiment for Alcator C-Mod

The Neutron Diagnostic Experiment for Alcator C-Mod PFC/JA-9-16 The Neutron Diagnostic Experiment for Alcator C-Mod C. L. Fiore, R. S. Granetz Plasma Fusion Center Massachusetts Institute of Technology -Cambridge, MA 2139 May, 199 To be published in Review

More information

Spa$al structure of low- frequency plasma fluctua$ons in a laboratory dipole experiment

Spa$al structure of low- frequency plasma fluctua$ons in a laboratory dipole experiment Spa$al structure of low- frequency plasma fluctua$ons in a laboratory dipole experiment J.L. Ellsworth, R.M. Bergmann, J. Kesner, MIT M. Davis, D.T. Garnier, M.E. Mauel, Columbia University Introduc$on

More information

Interactive system for the interpretation of atomic spectra

Interactive system for the interpretation of atomic spectra J. Straus, K. Kolacek, V. Bohacek, O. Frolov, V. Prukner, M. Ripa, V. Sember, J. Schmidt, P. Vrba Institute of Plasma Physics AS CR, Za Slovankou 3, P.O. Box 17, 182 21 Prague 8 D. Klir Faculty of Electrical

More information

Opacity and Optical Depth

Opacity and Optical Depth Opacity and Optical Depth Absorption dominated intensity change can be written as di λ = κ λ ρ I λ ds with κ λ the absorption coefficient, or opacity The initial intensity I λ 0 of a light beam will be

More information

INTRODUCTION TO GYROKINETIC AND FLUID SIMULATIONS OF PLASMA TURBULENCE AND OPPORTUNITES FOR ADVANCED FUSION SIMULATIONS

INTRODUCTION TO GYROKINETIC AND FLUID SIMULATIONS OF PLASMA TURBULENCE AND OPPORTUNITES FOR ADVANCED FUSION SIMULATIONS INTRODUCTION TO GYROKINETIC AND FLUID SIMULATIONS OF PLASMA TURBULENCE AND OPPORTUNITES FOR ADVANCED FUSION SIMULATIONS G.W. Hammett, Princeton Plasma Physics Lab w3.pppl.gov/ hammett Fusion Simulation

More information

Effect of the Radial Electric Field on Lower Hybrid Plasma Heating in the FT-2 Tokamak

Effect of the Radial Electric Field on Lower Hybrid Plasma Heating in the FT-2 Tokamak Plasma Physics Reports, Vol. 7, No.,, pp.. Translated from Fizika Plazmy, Vol. 7, No.,, pp. 9 9. Original Russian Text Copyright by Lashkul, Budnikov, Vekshina, D yachenko, Ermolaev, Esipov, Its, Kantor,

More information

Physics basis for similarity experiments on power exhaust between JET and ASDEX Upgrade with tungsten divertors

Physics basis for similarity experiments on power exhaust between JET and ASDEX Upgrade with tungsten divertors Physics basis for similarity experiments on power exhaust between JET and ASDEX Upgrade with tungsten divertors S. Wiesen, T. Eich, M. Bernert, S. Brezinsek, C. Giroud, E. Joffrin, A. Kallenbach, C. Lowry,

More information

Experimental Determination of the Mass of a Neutron

Experimental Determination of the Mass of a Neutron Experimental Determination of the Mass of a Neutron A. Andonian Department of Physics & Astronomy, Bates College, Lewiston, ME 04240, USA (Dated: April 13, 2016) The neutron is fundamental to our understanding

More information

Perturbative Thermal Diffusivity from Partial Sawtooth Crashes in Alcator C-Mod

Perturbative Thermal Diffusivity from Partial Sawtooth Crashes in Alcator C-Mod PSFC/JA-15-83 Perturbative Thermal Diffusivity from Partial Sawtooth Crashes in Alcator C-Mod A.J. Creely 1, A.E.White 1, E.M. Edlund 2, N.T Howard 3, A.E. Hubbard 1 1 MIT Plasma Science and Fusion Center,

More information

Where are we with laser fusion?

Where are we with laser fusion? Where are we with laser fusion? R. Betti Laboratory for Laser Energetics Fusion Science Center Dept. Mechanical Engineering and Physics & Astronomy University of Rochester HEDSA HEDP Summer School August

More information

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology

More information

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant

More information

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT GA A3736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an

More information

Perturbative thermal diffusivity from partial sawtooth crashes in Alcator C-Mod

Perturbative thermal diffusivity from partial sawtooth crashes in Alcator C-Mod PAPER Perturbative thermal diffusivity from partial sawtooth crashes in Alcator C-Mod To cite this article: A.J. Creely et al 0 Nucl. Fusion 000 Manuscript version: Accepted Manuscript Accepted Manuscript

More information

A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS

A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS Presented by D.P. SCHISSEL Presented to APS Centennial Meeting March 20 26, 1999 Atlanta, Georgia

More information

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]

More information

Variation of Turbulence and Transport with the Te/Ti Ratio in H-Mode Plasmas

Variation of Turbulence and Transport with the Te/Ti Ratio in H-Mode Plasmas Variation of Turbulence and Transport with the Te/Ti Ratio in H-Mode Plasmas by G.R. McKee with C.H. Holland, C.C. Petty, H. Reimerdes,5, T.R. Rhodes6,L. Schmitz6, S. Smith, I.U. Uzun-Kaymak, G. Wang6,

More information

Alcator C-Mod: Research in support of ITER and steps beyond

Alcator C-Mod: Research in support of ITER and steps beyond PSFC/JA-14-35 Alcator C-Mod: Research in support of ITER and steps beyond ES Marmar 1, SG Baek 1, H Barnard 1, P Bonoli 1, D Brunner 1, J Candy 2, J Canik 3, RM Churchill 4, I Cziegler 5, G Dekow 1, L

More information