Plasma impurity composition in Alcator C-Mod tokamak.

Size: px
Start display at page:

Download "Plasma impurity composition in Alcator C-Mod tokamak."

Transcription

1 Plasma impurity composition in Alcator C-Mod tokamak. I. O. Bespamyatnov a, W. L. Rowan a, K. T. Liao a, M. Brookman a, M. L. Reinke b, E. S. Marmar b, M. J. Greenwald b a Institute for Fusion Studies, The University of Texas, Austin, TX b MIT Plasma Science and Fusion Center, Cambridge, MA bespam@physics.utexas.edu

2 Abstract Accurate characterization of the impurities in the tokamak plasma is an important and complex task. Impurities may lead to fuel dilution and enhanced radiative losses from plasma. Moreover, density of impurities relate to the effective ion charge Z eff, which greatly influences main-ion and electron transport. The task of quantifying the impurities in Alcator C-Mod tokamak is even more critical for few reasons. C-Mod s plasma contains a vast variety and amount of intrinsic or seeded impurities during regular operations. The most typical ones are: B, Ar, Mo, W, Ca, Ne, N, He. Some of the impurities are seeded for the diagnostic purposes, some for other reasons. Z eff of well confined C- Mod plasma may reach values more than 5. C-Mod s impurities dilute the main ions, influence confinement and particle and thermal transport. In order to properly characterize these impurity effects, density of each impurity should be accurately quantified. Impurities are typically diagnosed spectroscopically. Measurement of the absolute density requires proper radiometric diagnostic calibration, which is a difficult and sometimes impossible task. Some of the calibrations may be acquired from contrasting the specific impurity measurement with independent measurement of Z eff and neutron rate. Some of the diagnostics may be cross-calibrated. Here we attempt to perform a constrained analysis of the impurity content for a variety of the C-Mod plasma discharges. The goal here is to develop a technique to combine results from C-Mod impurity diagnostics into a joint analysis. The reliable estimate of impurity content and Z eff for most of the C-Mod plasma discharges is sought as the result. Few examples of the impurity composition analysis are discussed in detail. *Work supported by USDOE Awards DE-FG03-96ER54373 and DE-FC02-99-ER54512

3 Plasma composition Alcator C-Mod contains variety of intrinsic and seeded impurities (and main ions): 1. Mo and W from tiles 2. B- boronization 3. D, H, He main ions 4. Ar, He seeded for diagnostic purposes 5. Ne, N 2 puff decreases the Mo levels 6. Ca laser blow-off injection (transport studies) It is critical to know the relative composition of the plasma (Z eff, f imp, <Z> ion ) 1. High impurity content will lead to fuel dilution and enhanced radiative losses from a the plasma. 2. Z eff is a important parameter for plasma transport modeling 3. Z eff and f ion are needed for calculation of the neutral beam attenuation. 4. Z eff and <Z> ion profiles are also needed, not only <Z eff > nimp ne = nionzion = nh + DZH, D ( = 1) + nimpzimp fimp = n n Z Z = = 1 + f Z ( Z 1) 2 ion ion eff imp imp imp nionzion Z ion e fimpzimp ( Zimp 1) = 1+ fimpzimp

4 Visible bremsstrahlung Bremsstrahlung radiation broadband emission from electron-ion collision. Frequently used for Z eff measurement and calibrations of spectral diagnostics. Two measurements at C-Mod. 1. Z ave - single chord measurement of the chord-average Z eff. Chord location: F-port, midplane, R tan = 0.675m (λ=536nm) Uses: Interferometer measured average ne (nl 04 ) and GPC core temperature Te(0). Advantages: Fast data-analysis Disadvantage. No Z eff profile, Molecular pseudo-continuum + possible impurity lines 2. DALSA visible continuum imaging diagnostic*. Chord location: K-port, midplane, coverage (full LFS profile) (λ=536nm) Uses: TS ne and Te measurements. Abel inversion. Advantages: Full Z eff profile. Disadvantage. Molecular pseudo-continuum, mirror reflectivity changes in time. ε λ nz e eff g ff W = exp π Te λ Teλ cm A sr * *E.S. Marmar et al, RSI, 72,1,(2001)

5 Z eff from neoclassical conductivity Z eff (neo) External and bootstrap plasma currents are calculated based on neoclassical theory and compared to measured plasma current and loop voltage: (σ neo (Z eff ) and j BS (Z eff ) are from*) Z eff is being iterated until calculated and measured currents agree. 1. Standard approach (current profile is unknown): Vloop ( measured ) Itot ( measured) = Iext + I BS ( neo) = σ neoda jbs ( neo) da 2π R + 0 Assumptions: Electric field E is at equilibrium and the constant across the profile. Z eff profile is flat 2. Extended approach: V ( measured ) j ( EFIT ) = j + j = E σ + j = σ + j loop tot ext BS ( neo) neo BS ( neo) neo BS ( neo) 2π R0 Assumptions: Electric field E is at equilibrium and the constant across the profile. EFIT J tot is well known (options: Kinetic EFIT+ MSE constraint) Advantages: full Z eff profile, less ambiguity in local convergence *O. Sauter et al, POP, 6,7 (1999)

6 Z eff from neoclassical conductivity Examples on Z eff (neo) profiles (extended approach) Based on two EFIT runs (Standard EFIT and MSE-constrained EFIT with SIR correction) EFIT runs by S. Shiraiwa and M. Greenwald Calculated Z eff profile is very sensitive to current profile shape.

7 Comparison of Z ave and Z eff(neo) Comparison of Z ave and chord averaged Z eff (neo) (extended approach) (left) Comparison of brightness (measured by Z ave ) and (calculated using TS and Z eff (neo) )(right) Zbright ( brightness) = ε λdl ε λ nz e eff g ff W = exp π Te λ Teλ cm A sr

8 Impurity measurements at C-Mod There are many diagnostics which can provide some information on specific impurities. 1. CXRS can measure density profiles of a particular light impurities (like B 5+ and He 2+ ). 2. HIREX-Sr (if calibrated) can provide density profiles of some excitation states of seeded high-z impurities like Ar and Ca. 3. XEUS and VUV (not calibrated) average densities of many different impurities. Can serve as a measure of relative density change of an impurity in time * 4. H/D ratio Measurements of the integrated radiation. (Consistency check or calibration for a dominant impurity) 1. XTOMO- 3D structure and dynamics of SXR radiation in Alcator C-Mod. 2. Bolometers- Power loss from the plasma 3. AXUV - 3D structure and dynamics of XUV radiation in Alcator C-Mod. 4. Measurement of the neutron flux *M.L.Reinke et al, RSI 81, (2010)

9 Boron and He density profiles measured by CXRS Two CXRS systems. 1. Core-CXRS. Poloidal and toroidal array: Ion: B or He Location: F-port Resolution: 1 cm and 20 msec. Coverage: ρ Ψ =[0-1.0] 2. Edge-CXRS. A set of gas puff and beam CXRS systems Ion: boron Location. B, K and F-port. Resolution: 1.2mm, 5 msec. Coverage: ρ Ψ =[ ] Both systems provide 2D(r, t) profiles. Examples for Core-CXRS system B 5+ as trace impurity He 2+ as main ion

10 Historical calibration of the HIREX-Sr Selected Ohmic shot with strong Ar puff ( ) Measured (non-calibrated) emissivity of Ar 16+ (Ly α ) and Ar 17+ (Z) lines compared to calculated emissivity. Emission rate coefficients are from FAC-based modeling (THACO). Calibration coefficients are calculated by comparing Ar densities to Z eff contributions. rec exc ion exc Ar Ar Ar Ar εly = CLy ne n 18+ σly n 17+ σly n 16+ σly ne n 17+ σ α α + + α α α Lyα rec exc ion exc Ar Ar Ar Ar εz = CZ ne n 17+ σz n 16+ σz n 15+ σz ne n σz f Ar n Ly 17+ Ar α 17+ = 2 n C n σ exc e Ly e Ly α ε α f Ar n ε n C n 16+ Ar 16+ = 2 Z exc e Z e σ Z 1 ( slope) = C α Ly 7 1 ( slope) = C Z 7

11 Neutron rate for consistency check Total fusion yield is measured by two neutron detectors: Fusion yield can also be calculate based on: 1. n e (from TS) 2. T i (from consolidated TFIT (HIREX+CXRS) 3. Z eff from neoclassical conductivity (flat) 4. n D (from calculated impurity composition(z eff, <Z> ion ) 5. Cross-sections from Bosch et al, NF 32, 611 (1992) Comparison of the measured and calculated yields may serve as a cross-check for impurity composition* Z Z n n R ( ) ion eff D= e /1+ H/ D Z 1 ion C.L.Fiore et al, RSI, 63,10 (1992) Measure of dilution *M.L.Reinke NSE fall seminar 9/14/2011

12 Impurity composition (Three H-modes) Shot Three H-modes (marked in red). Clear H to L transition. B T =4.8T. The high confinement, or H-mode regime, is characterized by edge transport barriers in both energy and particle channels. Argon was injected for HIREX-Sr. DNB was injected for CXRS. Boron is intrinsic.

13 Impurity composition (Three H-modes) Calculated Ar and B densities (from Hirex-Sr and CXRS) contribute to average plasma Z eff (neo). a b c The remainder on Z eff is a considered to be a contribution from Mo (a) A calculated contribution from Mo correlates with Mo line emission measured by McPherson (VUV). (b) The calculated impurity fractions for Ar, B and Mo. (c)

14 Impurity composition (Three H-modes) A measured and calculated neutron rates are compared on the graph. T i profiles: T e profile corrected by central HIREX-Sr T i (0) are used for calculation of the neutron yield. Results from two calculations are plotted. Z Z ion eff 1. n <Z> ion calculated from f imp. (blue) D= ne /1 ( + RH/ D) Z 1 ion 2. <Z> ion =5 (pure boron) (purple) Both calculations well agrees with measurement. Although, purple line is a bit below. Less agreement in the Ohmic phase

15 Impurity composition (Long steady H-modes) Shot Long steady EDA H-mode (marked in red). B T =4.4T. The high confinement, or H-mode regime, is characterized by edge transport barriers in both energy and particle channels. Argon was injected for HIREX-Sr. DNB was injected for CXRS. Boron is intrinsic.

16 Impurity composition (Long steady H-mode) Calculated Ar and B densities (from Hirex-Sr and CXRS) contribute to average plasma Z eff (neo). a b c The remainder on Z eff is a considered to be a contribution from Mo (a) A calculated contribution from Mo correlates with Mo line emission measured by McPherson (VUV). (b) The calculated impurity fractions for Ar, B and Mo. (c)

17 Impurity composition (Long steady H-mode) A measured and calculated neutron rates are compared on the graph. T i profiles: Te profiles corrected by central HIREX-Sr T i (0) are used for calculation of the neutron yield. Results from two calculations are plotted. Z Z ion eff 1. n <Z> ion calculated from f imp. (blue) D= ne ( 1 RH/ D) Z 1 ion 2. <Z> ion =5 (pure boron) (purple) Both calculations well agrees with measurement. Although, purple line is a bit below. Less agreement in the Ohmic phase.

18 Impurity composition (I-mode) Shot Long steady I-mode (marked in red). A new discovered I-mode regime is characterized by edge thermal transport barrier without a significant reduction in particle transport. Argon was injected for HIREX-Sr. DNB was injected for CXRS. Boron is intrinsic.

19 Impurity composition (I-mode) Calculated Ar and B densities (from Hirex-Sr and CXRS) contribute to average plasma Z eff (neo). a b c The remainder on Z eff is a considered to be a contribution from Mo (a) A calculated contribution from Mo correlates with Mo line emission measured by McPherson (VUV). (b) The calculated impurity fractions for Ar, B and Mo. (c)

20 Impurity composition (I-mode) A measured and calculated neutron rates are compared on the graph. T i profiles measured by HIREX-Sr are used for calculation of neutron yield. Results from two calculations are plotted. 1. <Z> ion calculated from f imp. (blue) Z Z ion eff n = n 1 R 2. <Z> ion =5 (pure boron) (purple) Z 1 ( ) D e H/ D ion Good example, where calculated impurity composition (blue) agrees with measurement, but <Z> ion =5 (purple) does not. If Z eff constitutes only from boron, then calculated neutron yield is twice smaller than measured. Less agreement during the second half of the I-mode. (possibly that T i is underestimated or some additional very high Z contributor to plasma (W?)

21 Summary and conclusions 1. A historical calibration analysis of the HIREX-SR was performed. In the result the Ar 17+ and Ar 16+ density profiles were be extracted from HIREX emissivity profiles of Ly-α and Z lines. 2. These Ar densities and CXRS measured B 5+ densities were used to analyze their contributions to Z eff. Average Z eff (neo) was calculated from measured I p and V loop and assuming that plasma conductivity is neoclassical. 3. Z eff (neo) was compared to Z ave, calculated from measured visible bremsstrahlung. 4. Three shots (Two H-mode and one I-mode) were analyzed. 5. For each shot the Ar and Mo densities and their contributions to Z eff were identified. 6. The remaining Z eff contributions were associated with Mo. The calculated Mo contributions well correlate with brightnesses of the Mo XXXII (127.81) line. 7. The results of the plasma impurity composition analysis were cross-checked by the comparison of the measured neutron yield and calculated neutron yield using measured T i, Z eff and calculated <Z> ion. Boron is not the main contributor to Z eff (for H-mode and I-mode). It seems Mo is the main contributor. Ar is also an important contributor for typical levels of Ar puff needed for HIREX-Sr analysis.

22 Proposed consolidated analysis and plans Create a new plasma composition widget The code collects data from different impurity spectroscopy diagnostics. All data will be split among several categories like: 1. Calibrated absolute 2D (r,t) profile of density of a specific impurity (or state). 2. Full calibrated 1D (t) average density of a specific impurity (or state). 3. Non-calibrated 2D (r,t) profile of density of a specific impurity (or state). 4. Non calibrated 1D (t) average density of a specific impurity (or state). User selects which data to use and selects the list of impurities for composition analysis. Neutron yield (as well as P rad, Axuv) serves as constrains for composition. Z eff : 2D and 1D profiles serve as another constraint. Some calibrations of non-calibrated diagnostics may be acquired as historical calibrations for dominant impurity. Plans for the near future. Apply the analysis for shots with Ne puffs. Apply the analysis for shots with He as minority and He as the main ion. (He measured by CXRS Try to use Z eff profiles (DALSA, Z eff(neo) ) to get a spatial resolved impurity composition.

Study of B +1, B +4 and B +5 impurity poloidal rotation in Alcator C-Mod plasmas for 0.75 ρ 1.0.

Study of B +1, B +4 and B +5 impurity poloidal rotation in Alcator C-Mod plasmas for 0.75 ρ 1.0. Study of B +1, B +4 and B +5 impurity poloidal rotation in Alcator C-Mod plasmas for 0.75 ρ 1.0. Igor Bespamyatnov, William Rowan, Ronald Bravenec, and Kenneth Gentle The University of Texas at Austin,

More information

ITB Transport Studies in Alcator C-Mod. Catherine Fiore MIT Plasma Science and Fusion Center Transport Task Force March 26th Boulder, Co

ITB Transport Studies in Alcator C-Mod. Catherine Fiore MIT Plasma Science and Fusion Center Transport Task Force March 26th Boulder, Co Transport Studies in Alcator C-Mod Catherine Fiore MIT Plasma Science and Fusion Center Transport Task Force March 26th Boulder, Co With Contributions from: I. Bespamyatnov, P. T. Bonoli*, D. Ernst*, M.

More information

Validation of spectral MSE for Alcator C-Mod and for ITER

Validation of spectral MSE for Alcator C-Mod and for ITER Validation of spectral MSE for Alcator C-Mod and for ITER K.T. Liao 1, W.L. Rowan 1, R.T. Mumgaard 2, Bob Granetz 2, Steve Scott 3, Fred Levinton 4, Howard Yuh 4, O. Marchuk 5, Y. Ralchenko 6 1 The University

More information

Evaluation of Anomalous Fast-Ion Losses in Alcator C-Mod

Evaluation of Anomalous Fast-Ion Losses in Alcator C-Mod Evaluation of Anomalous Fast-Ion Losses in Alcator C-Mod S. D. Scott Princeton Plasma Physics Laboratory In collaboration with R. Granetz, D. Beals, M. Greenwald MIT PLASMA Science and Fusion Center W.

More information

Ohmic and RF Heated ITBs in Alcator C-Mod

Ohmic and RF Heated ITBs in Alcator C-Mod Ohmic and RF Heated s in Alcator C-Mod William L. Rowan, Igor O. Bespamyatnov Fusion Research Center, The University of Texas at Austin C.L. Fiore, A. Dominguez, A.E. Hubbard, A. Ince-Cushman, M.J. Greenwald,

More information

Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas

Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas 1 EX/P5-4 Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas J.E. Rice 1), A.C. Ince-Cushman 1), P.T. Bonoli 1), M.J. Greenwald 1), J.W. Hughes 1), R.R. Parker 1), M.L. Reinke

More information

Reduction of Turbulence and Transport in the Alcator C-Mod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection

Reduction of Turbulence and Transport in the Alcator C-Mod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection Reduction of Turbulence and Transport in the Alcator C-Mod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection M. Porkolab, P. C. Ennever, S. G. Baek, E. M. Edlund, J. Hughes, J. E.

More information

Enhanced Energy Confinement Discharges with L-mode-like Edge Particle Transport*

Enhanced Energy Confinement Discharges with L-mode-like Edge Particle Transport* Enhanced Energy Confinement Discharges with L-mode-like Edge Particle Transport* E. Marmar, B. Lipschultz, A. Dominguez, M. Greenwald, N. Howard, A. Hubbard, J. Hughes, B. LaBombard, R. McDermott, M. Reinke,

More information

ICRF Induced Argon Pumpout in H-D Plasmas in Alcator C-Mod

ICRF Induced Argon Pumpout in H-D Plasmas in Alcator C-Mod ICRF Induced Argon Pumpout in H-D Plasmas in Alcator C-Mod C. Gao, J.E. Rice, M.L. Reinke, Y. Lin, S.J. Wukitch, L. Delgado-Aparicio, E.S. Marmar, and Alcator C-Mod Team MIT-PSFC, University of York, Princeton

More information

IMPURITY ANALYSIS AND MODELING OF DIII-D RADIATIVE MANTLE DISCHARGES

IMPURITY ANALYSIS AND MODELING OF DIII-D RADIATIVE MANTLE DISCHARGES IMPURITY ANALYSIS AND MODELING OF DIII-D RADIATIVE MANTLE DISCHARGES J. Mandrekas, W.M. Stacey Georgia Institute of Technology M. Murakami, M.R. Wade ORNL G. L. Jackson General Atomics Presented at the

More information

Light Impurity Transport Studies in Alcator C-Mod*

Light Impurity Transport Studies in Alcator C-Mod* Light Impurity Transport Studies in Alcator C-Mod* I. O. Bespamyatnov, 1 W. L. Rowan, 1 C. L. Fiore, 2 K. W. Gentle, 1 R. S. Granet, 2 and P. E. Phillips 1 1 Fusion Research Center, The University of Texas

More information

Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod

Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod PFC/JA-94-15 Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod J.A. Goetz, B. Lipschultz, M.A. Graf, C. Kurz, R. Nachtrieb, J.A. Snipes, J.L. Terry Plasma

More information

Transport of Helium Impurity in Alcator C-Mod*

Transport of Helium Impurity in Alcator C-Mod* Transport of Helium Impurity in Alcator C-Mod* K. T. Liao, W. L. Rowan, I. O. Bespamyatnov, W. Horton, and X.R. Fu, R. Granetz, J. Hughes, Y. Ma, J. Walk Institute for Fusion Studies, The University of

More information

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER M.L. Reinke 1, A. Loarte 2, M. Chilenski 3, N. Howard 3, F. Köchl 4, A. Polevoi 2, A. Hubbard 3, J.W. Hughes

More information

EXC/P2-02. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod

EXC/P2-02. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod EXC/P2-02 Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod J. R. Wilson 1, C. E. Kessel 1, S. Wolfe 2, I. Hutchinson 2, P. Bonoli 2, C. Fiore 2, A. Hubbard 2, J. Hughes 2, Y. Lin 2, Y.

More information

Radial impurity transport in the H mode transport barrier region in Alcator C-Mod

Radial impurity transport in the H mode transport barrier region in Alcator C-Mod Radial impurity transport in the H mode transport barrier region in Alcator C-Mod T. Sunn Pedersen, R.S. Granetz, A.E. Hubbard, I.H. Hutchinson, E.S. Marmar, J.E. Rice, J. Terry Plasma Science and Fusion

More information

Abstract. PEGASUS Toroidal Experiment University of Wisconsin-Madison

Abstract. PEGASUS Toroidal Experiment University of Wisconsin-Madison Abstract Measurement capabilities for the Pegasus ST are increasing to support the scientific studies of plasma behavior at very-low A. Global parameters are obtained from equilibrium reconstructions constrained

More information

Validation Study of gyrokinetic simulation (GYRO) near the edge in Alcator C-Mod ohmic discharges

Validation Study of gyrokinetic simulation (GYRO) near the edge in Alcator C-Mod ohmic discharges Validation Study of gyrokinetic simulation (GYRO) near the edge in Alcator C-Mod ohmic discharges C. Sung, A. E. White, N. T. Howard, D. Mikkelsen, C. Holland, J. Rice, M. Reinke, C. Gao, P. Ennever, M.

More information

A Motional Stark Effect Instrument to Measure q(r) on C-Mod

A Motional Stark Effect Instrument to Measure q(r) on C-Mod 1 A Motional Stark Effect Instrument to Measure q(r) on C-Mod Presented at the 42nd Annual Meeting of the American Physical Society Division of Plasma Physics, Quebec City, Can., Oct. 2000 N. Bretz, Princeton

More information

ICRF Mode Conversion Flow Drive on the Alcator C Mod Tokamak

ICRF Mode Conversion Flow Drive on the Alcator C Mod Tokamak 23 rd IAEA Fusion Energy Conference, EXW/4 1 ICRF Mode Conversion Flow Drive on the Alcator C Mod Tokamak Yijun Lin, J.E. Rice, S.J. Wukitch, M.L. Reinke, M. Greenwald, A. E. Hubbard, E.S. Marmar, Y. Podpaly,

More information

ICRF Induced Argon Pumpout in H-D Plasmas at Alcator C-Mod

ICRF Induced Argon Pumpout in H-D Plasmas at Alcator C-Mod 0 ICRF Induced Argon Pumpout in H-D Plasmas at Alcator C-Mod C Gao J.E. Rice, M.L. Reinke, S.J. Wukitch, Y. Lin and Alcator C-Mod Team MIT-PSFC October 29, 2014 C Gao etc., MIT-PSFC 56th APS-DPP New Orleans,

More information

Fast Ion Measurement in the Alcator C-Mod plasma: How, Why, and Who Cares*

Fast Ion Measurement in the Alcator C-Mod plasma: How, Why, and Who Cares* Fast Ion Measurement in the Alcator C-Mod plasma: How, Why, and Who Cares* W. L. Rowan, a I. O. Bespamyatnov, a A. Bader, b R. S. Granetz, b and Ken Liao a a Fusion Research Center, The University of Texas

More information

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK

More information

Poloidal Variation of High-Z Impurity Density in ICRF- Heated Alcator C-Mod Plasmas

Poloidal Variation of High-Z Impurity Density in ICRF- Heated Alcator C-Mod Plasmas Poloidal Variation of High-Z Impurity Density in ICRF- Heated Alcator C-Mod Plasmas M.L. Reinke, I.H. Hutchinson, J.E. Rice, N.T. Howard, A. Bader, S. Wukitch, Y. Lin, D.C. Pace, A. Hubbard, J.W. Hughes

More information

Impurity expulsion in an RFP plasma and the role of temperature screening

Impurity expulsion in an RFP plasma and the role of temperature screening Impurity expulsion in an RFP plasma and the role of temperature screening S. T. A. Kumar, D. J. Den Hartog, R. M. Magee, G. Fiksel, D. Craig Department of Physics, University of Wisconsin-Madison, Madison,Wisconsin,

More information

Plasma Radiation. Ø Free electrons Blackbody emission Bremsstrahlung

Plasma Radiation. Ø Free electrons Blackbody emission Bremsstrahlung Plasma Radiation Ø Free electrons Blackbody emission Bremsstrahlung Ø Bound electrons (Z>2) Unresolved, multi-line emission Resolved line emission -- Single Z +n Objective Infer a thermodynamic quantity

More information

Active Spectroscopy. Neutral Beam Diagnostics for Alcator C-Mod

Active Spectroscopy. Neutral Beam Diagnostics for Alcator C-Mod Active Spectroscopy Neutral Beam Diagnostics for Alcator C-Mod Contents Introduction The diagnostic neutral beam Description Neutral Beam Penetration Diagnostics Profiles Turbulence Conclusions p 13.1

More information

PFC/JA M. E. Foord, E. S. Marmar, J. L. Terry. Plasma Fusion Center Massachusetts Institute of Technology Cambridge, MA

PFC/JA M. E. Foord, E. S. Marmar, J. L. Terry. Plasma Fusion Center Massachusetts Institute of Technology Cambridge, MA PFC/JA-81-27 MULTICHANNEL LIGHT DETECTOR SYSTEM FOR VISIBLE CONTINUUM MEASUREMENTS ON ALCATOR C M. E. Foord, E. S. Marmar, J. L. Terry Plasma Fusion Center Massachusetts Institute of Technology Cambridge,

More information

Lower Hybrid Wave Induced Rotation on Alcator C-Mod* Ron Parker, Yuri Podpaly, John Rice, Andréa Schmidt

Lower Hybrid Wave Induced Rotation on Alcator C-Mod* Ron Parker, Yuri Podpaly, John Rice, Andréa Schmidt Lower Hybrid Wave Induced Rotation on Alcator C-Mod* Ron Parker, Yuri Podpaly, John Rice, Andréa Schmidt *Work supported by USDoE awards DE-FC-99ER551 and DE-AC-7CH373 Abstract Injection of RF power in

More information

Impurity transport analysis & preparation of W injection experiments on KSTAR

Impurity transport analysis & preparation of W injection experiments on KSTAR Impurity transport analysis & preparation of W injection experiments on KSTAR J. H. Hong, H. Y. Lee, S. H. Lee, S. Jang, J. Jang, T. Jeon, H. Lee, and W. Choe ( ) S. G. Lee, C. R. Seon, J. Kim, ( ) 마스터부제목스타일편집

More information

Investigation of Intrinsic Rotation Dependencies in Alcator C-Mod

Investigation of Intrinsic Rotation Dependencies in Alcator C-Mod Investigation of Intrinsic Rotation Dependencies in Alcator C-Mod D. Kwak, A. E. White, J. E. Rice, N. T. Howard, C. Gao, M. L. Reinke, M. Greenwald, C. Angioni, R. M. McDermott, and the C-Mod and ASDEX

More information

Spontaneous Core Toroidal Rotation in Alcator C- Mod L-Mode, H-Mode and ITB Plasmas.

Spontaneous Core Toroidal Rotation in Alcator C- Mod L-Mode, H-Mode and ITB Plasmas. PSFC/JA-8-11 Spontaneous Core Toroidal Rotation in Alcator C- Mod L-Mode, H-Mode and ITB Plasmas. Rice, J.E.; Ince-Cushman, A.C.; Reinke, M.L.; Podpaly, Y.; Greenwald, M.J.; LaBombard, B.S.; Marmar, E.S.

More information

CONFINEMENT OF INJECTED SILICON IN THE ALCATOR A TOKAMAK

CONFINEMENT OF INJECTED SILICON IN THE ALCATOR A TOKAMAK CONFNEMENT OF NJECTED SLCON N THE ALCATOR A TOKAMAK E.S. Marmar and J.E. Rice MTPlasma Fusion Center Cambridge, MA. 2139 and S.A. Allen Department of Physics, Johns Hopkins University, Baltimore, MD. 21218

More information

Dependence of non-local effects on plasma parameters during cold-pulse experiments in Alcator C-Mod

Dependence of non-local effects on plasma parameters during cold-pulse experiments in Alcator C-Mod Dependence of non-local effects on plasma parameters during cold-pulse experiments in Alcator C-Mod P. Rodriguez-Fernandez 1, N.M. Cao 1, A. Creely 1, M. Greenwald 1, S. Houshmandyar 2, N.T. Howard 1,

More information

Introduction to the Diagnosis of Magnetically Confined Thermonuclear Plasma

Introduction to the Diagnosis of Magnetically Confined Thermonuclear Plasma Introduction to the Diagnosis of Magnetically Confined Thermonuclear Plasma Core diagnostics II: Bolometry and Soft X-rays J. Arturo Alonso Laboratorio Nacional de Fusión EURATOM-CIEMAT E6 P2.10 arturo.alonso@ciemat.es

More information

n=1 RESISTIVE MODES in REVERSED MAGNETIC SHEAR ALCATOR C-MOD PLASMAS

n=1 RESISTIVE MODES in REVERSED MAGNETIC SHEAR ALCATOR C-MOD PLASMAS October 10, 2000 n=1 RESISTIVE MODES in REVERSED MAGNETIC SHEAR ALCATOR C-MOD PLASMAS Y. IN, J.J.RAMOS, A.E.HUBBARD, I.H.HUTCHINSON, M. PORKOLAB, J. SNIPES, S. WOLFE, A. BONDESON MIT Plasma Science and

More information

Alcator C-Mod. Double Transport Barrier Plasmas. in Alcator C-Mod. J.E. Rice for the C-Mod Group. MIT PSFC, Cambridge, MA 02139

Alcator C-Mod. Double Transport Barrier Plasmas. in Alcator C-Mod. J.E. Rice for the C-Mod Group. MIT PSFC, Cambridge, MA 02139 Alcator C-Mod Double Transport Barrier Plasmas in Alcator C-Mod J.E. Rice for the C-Mod Group MIT PSFC, Cambridge, MA 139 IAEA Lyon, Oct. 17, Outline Double Barrier Plasma Profiles and Modeling Conditions

More information

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OVERVIEW OF THE ALCATOR C-MOD PROGRAM IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OUTLINE C-Mod is compact, high field, high density, high power

More information

ICRF Mode Conversion Flow Drive on Alcator C-Mod and Projections to Other Tokamaks

ICRF Mode Conversion Flow Drive on Alcator C-Mod and Projections to Other Tokamaks ICRF Mode Conversion Flow Drive on Alcator C-Mod and Projections to Other Tokamaks Y. Lin, J.E. Rice, S.J. Wukitch, M.J. Greenwald, A.E. Hubbard, A. Ince- Cushman, L. Lin, E.S. Marmar, M. Porkolab, M.L.

More information

EX/C3-5Rb Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

EX/C3-5Rb Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier EX/C-Rb Relationship between particle and heat transport in JT-U plasmas with internal transport barrier H. Takenaga ), S. Higashijima ), N. Oyama ), L. G. Bruskin ), Y. Koide ), S. Ide ), H. Shirai ),

More information

Pedestals and Fluctuations in C-Mod Enhanced D α H-modes

Pedestals and Fluctuations in C-Mod Enhanced D α H-modes Pedestals and Fluctuations in Enhanced D α H-modes Presented by A.E.Hubbard With Contributions from R.L. Boivin, B.A. Carreras 1, S. Gangadhara, R. Granetz, M. Greenwald, J. Hughes, I. Hutchinson, J. Irby,

More information

ICRF Minority-Heated Fast-Ion Distributions on the Alcator C-Mod: Experiment and Simulation

ICRF Minority-Heated Fast-Ion Distributions on the Alcator C-Mod: Experiment and Simulation ICRF Minority-Heated Fast-Ion Distributions on the Alcator C-Mod: Experiment and Simulation A. Bader 1, P. Bonoli 1, R. Granetz 1, R.W. Harvey 2, E.F. Jaeger 3, R. Parker 1, S. Wukitch 1. 1)MIT-PSFC, Cambridge,

More information

Partially Coherent Fluctuations in Novel High Confinement Regimes of a Tokamak

Partially Coherent Fluctuations in Novel High Confinement Regimes of a Tokamak Partially Coherent Fluctuations in Novel High Confinement Regimes of a Tokamak István Cziegler UCSD, Center for Energy Research Center for Momentum Transport and Flow Organization Columbia Seminar Feb

More information

Observation of Neo-Classical Ion Pinch in the Electric Tokamak*

Observation of Neo-Classical Ion Pinch in the Electric Tokamak* 1 EX/P6-29 Observation of Neo-Classical Ion Pinch in the Electric Tokamak* R. J. Taylor, T. A. Carter, J.-L. Gauvreau, P.-A. Gourdain, A. Grossman, D. J. LaFonteese, D. C. Pace, L. W. Schmitz, A. E. White,

More information

Recent results from lower hybrid current drive experiments on Alcator C-Mod

Recent results from lower hybrid current drive experiments on Alcator C-Mod Recent results from lower hybrid current drive experiments on Alcator C-Mod R. R. Parker, S.-G. Baek, C. Lau, Y. Ma, O. Meneghini, R. T. Mumgaard, Y. Podpaly, M. Porkolab, J.E. Rice, A. E. Schmidt, S.

More information

Formation and stability of impurity snakes in tokamak plasmas

Formation and stability of impurity snakes in tokamak plasmas PSFC/JA--9 Formation and stability of impurity snakes in tokamak plasmas L. Delgado-Aparicio,, L. Sugiyama, R. Granetz, J. Rice, Y. Podpaly, M. Reinke, D. Gates, P. Beirsdorfer 4, M. Bitter, S. Wolfe,

More information

Studies of Turbulence and Transport in Alcator C- Mod H-Mode Plasmas with Phase Contrast Imaging and Comparisons with GYRO*

Studies of Turbulence and Transport in Alcator C- Mod H-Mode Plasmas with Phase Contrast Imaging and Comparisons with GYRO* Studies of Turbulence and Transport in C- Mod H-Mode Plasmas with Phase Contrast Imaging and Comparisons with GYRO* M. Porkolab 1, L. Lin 1, E.M. Edlund 1, J.C. Rost 1, C.L. Fiore 1, M. Greenwald 1, Y.

More information

Helium ELMy H-modes in Alcator C-Mod in Support of ITER Helium Operating Phases

Helium ELMy H-modes in Alcator C-Mod in Support of ITER Helium Operating Phases Helium ELMy H-modes in Alcator C-Mod in Support of ITER Helium Operating Phases C. E. Kessel 1, S. M. Wolfe 2, M. L. Reinke 3, M. A. Chilenski 2, J. W. Hughes 2, Y. Lin 2, S. Wukitch 2 and the C-Mod Team

More information

Bayesian inference of impurity transport coefficient profiles

Bayesian inference of impurity transport coefficient profiles Bayesian inference of impurity transport coefficient profiles M.A. Chilenski,, M. Greenwald, Y. Marzouk, J.E. Rice, A.E. White Systems and Technology Research MIT Plasma Science and Fusion Center/Alcator

More information

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod 1 EX/P4-22 Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.

More information

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation P.T. Bonoli, A. E. Hubbard, J. Ko, R. Parker, A.E. Schmidt, G. Wallace, J. C. Wright, and the Alcator C-Mod

More information

Heat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment.

Heat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment. Heat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment E. Kolemen a, S.L. Allen b, B.D. Bray c, M.E. Fenstermacher b, D.A. Humphreys c, A.W. Hyatt c, C.J. Lasnier b,

More information

Plasma Science and Fusion Center

Plasma Science and Fusion Center Plasma Science and Fusion Center Turbulence and transport studies in ALCATOR C Mod using Phase Contrast Imaging (PCI) Diagnos@cs and Comparison with TRANSP and Nonlinear Global GYRO Miklos Porkolab (in

More information

TRANSPORT PROGRAM C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER

TRANSPORT PROGRAM C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER TRANSPORT PROGRAM C-Mod C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER C-MOD - OPPORTUNITIES AND CHALLENGES Prediction and control are the ultimate goals

More information

High fusion performance at high T i /T e in JET-ILW baseline plasmas with high NBI heating power and low gas puffing

High fusion performance at high T i /T e in JET-ILW baseline plasmas with high NBI heating power and low gas puffing High fusion performance at high T i /T e in JET-ILW baseline plasmas with high NBI heating power and low gas puffing Hyun-Tae Kim, A.C.C. Sips, C. D. Challis, F. Rimini, L. Garzotti, E. Lerche, L. Frassinetti,

More information

DNB Program. W.L. Rowan, D. Beals, R.V. Bravenec, M.B. Sampsell, D.M. Patterson Fusion Research Center, University of Texas at Austin

DNB Program. W.L. Rowan, D. Beals, R.V. Bravenec, M.B. Sampsell, D.M. Patterson Fusion Research Center, University of Texas at Austin DNB Program W.L. Rowan, D. Beals, R.V. Bravenec, M.B. Sampsell, D.M. Patterson Fusion Research Center, University of Texas at Austin G. Schilling, G. Kramer, R. Feder Princeton Plasma Physics Laboratory

More information

Study of Enhanced D α H-modes Using the Alcator C-Mod Reflectometer

Study of Enhanced D α H-modes Using the Alcator C-Mod Reflectometer Study of Enhanced D α H-modes Using the Reflectometer Y. Lin 1, J.H. Irby, E.S. Marmar, R. Nazikian, M. Greenwald, A.E. Hubbard, J. Hughes, I.H. Hutchinson, B. LaBombard, A. Mazurenko, E. Nelson-Melby,

More information

Impurity Seeding in ASDEX Upgrade Tokamak Modeled by COREDIV Code

Impurity Seeding in ASDEX Upgrade Tokamak Modeled by COREDIV Code Contrib. Plasma Phys. 56, No. 6-8, 772 777 (2016) / DOI 10.1002/ctpp.201610008 Impurity Seeding in ASDEX Upgrade Tokamak Modeled by COREDIV Code K. Gała zka 1, I. Ivanova-Stanik 1, M. Bernert 2, A. Czarnecka

More information

Application of atomic data to quantitative analysis of tungsten spectra on EAST tokamak

Application of atomic data to quantitative analysis of tungsten spectra on EAST tokamak Technical Meeting on Uncertainty Assessment and Benchmark Experiments for Atomic and Molecular Data for Fusion Applications, 19-21 December 2016, Vienna, Austria Application of atomic data to quantitative

More information

Observation of Co- and Counter Rotation Produced by Lower Hybrid Waves in Alcator C-Mod*

Observation of Co- and Counter Rotation Produced by Lower Hybrid Waves in Alcator C-Mod* Observation of Co- and Counter Rotation Produced by Lower Hybrid Waves in Alcator C-Mod* R. R. Parker, Y. Podpaly, J. Lee, M. L. Reinke, J. E. Rice, P.T. Bonoli, O. Meneghini, S. Shiraiwa, G. M. Wallace,

More information

Effect of secondary beam neutrals on MSE: theory

Effect of secondary beam neutrals on MSE: theory Effect of secondary beam neutrals on MSE: theory S. Scott (PPPL) J. Ko, I. Hutchinson (PSFC/MIT) H. Yuh (Nova Photonics) Poster NP8.87 49 th Annual Meeting, DPP-APS Orlando, FL November 27 Abstract A standard

More information

X-ray Spectroscopy on Fusion Plasmas

X-ray Spectroscopy on Fusion Plasmas X-ray Spectroscopy on s An ongoing discussion between the two Manfreds Manfred von Hellermann for CXRS Manfred Bitter for x-ray spectroscopy G. Bertschinger for many contributers (Bitter, Kunze, Weinheimer,

More information

Information Session for the ITER CPTS System

Information Session for the ITER CPTS System Information Session for the ITER CPTS System Fusion for Energy Barcelona, 15 April 2015 1 Introduction to the meeting Information provided is preliminary and subject to Agenda change ahead of formal tendering

More information

Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-60U

Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-60U 1 EX/P4-25 Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-6U T. Nakano, H. Kubo, N. Asakura, K. Shimizu and S. Higashijima Japan Atomic Energy Agency, Naka,

More information

Physics of the detached radiative divertor regime in DIII-D

Physics of the detached radiative divertor regime in DIII-D Plasma Phys. Control. Fusion 41 (1999) A345 A355. Printed in the UK PII: S741-3335(99)97299-8 Physics of the detached radiative divertor regime in DIII-D M E Fenstermacher, J Boedo, R C Isler, A W Leonard,

More information

Role of Magnetic Configuration and Heating Power in ITB Formation in JET.

Role of Magnetic Configuration and Heating Power in ITB Formation in JET. Role of Magnetic Configuration and Heating Power in ITB Formation in JET. The JET Team (presented by V. Parail 1 ) JET Joint Undertaking, Abingdon, Oxfordshire, United Kingdom 1 present address: EURATOM/UKAEA

More information

Investigation of causes for the discrepancy between the measured and modeled helium emissions using a gas puff imaging diagnostic

Investigation of causes for the discrepancy between the measured and modeled helium emissions using a gas puff imaging diagnostic Investigation of causes for the discrepancy between the measured and modeled helium emissions using a gas puff imaging diagnostic S. Baek, J. Terry, D. P. Stotler*, D. Brunner, B. LaBombard MIT Plasma

More information

Correlation Between Plasma Rotation and Electron Temperature Gradient Scale Length in LOC/SOC Transition at Alcator C-Mod

Correlation Between Plasma Rotation and Electron Temperature Gradient Scale Length in LOC/SOC Transition at Alcator C-Mod Correlation Between Plasma Rotation and Electron Temperature Gradient Scale Length in LOC/SOC Transition at Alcator C-Mod Saeid Houshmandyar 1 W. L. Rowan, 1 P. E. Phillips, 1 M. J. Greenwald, 2 J. W.

More information

Divertor physics research on Alcator C-Mod. B. Lipschultz, B. LaBombard, J.L. Terry, C. Boswell, I.H. Hutchinson

Divertor physics research on Alcator C-Mod. B. Lipschultz, B. LaBombard, J.L. Terry, C. Boswell, I.H. Hutchinson PSFC/JA-05-38 Divertor physics research on Alcator C-Mod B. Lipschultz, B. LaBombard, J.L. Terry, C. Boswell, I.H. Hutchinson Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge

More information

Connections between Particle Transport and Turbulence Structures in the Edge and SOL of Alcator C-Mod

Connections between Particle Transport and Turbulence Structures in the Edge and SOL of Alcator C-Mod Connections between Particle Transport and Turbulence Structures in the Edge and SOL of Alcator C-Mod I. Cziegler J.L. Terry, B. LaBombard, J.W. Hughes MIT - Plasma Science and Fusion Center th 19 Plasma

More information

First Quantification of Electron Thermal Transport in the MST Reversed-Field Pinch

First Quantification of Electron Thermal Transport in the MST Reversed-Field Pinch First Quantification of Electron Thermal Transport in the MST Reversed-Field Pinch Title Abs. TS over. MStFIt j 2kA Te ne Zeff 4kA Te ne Zeff Pohm, W, TauE,beta Xe,D Mot. FIR pola. Monte Carlo Un. An.

More information

Current Drive Experiments in the Helicity Injected Torus (HIT II)

Current Drive Experiments in the Helicity Injected Torus (HIT II) Current Drive Experiments in the Helicity Injected Torus (HIT II) A. J. Redd, T. R. Jarboe, P. Gu, W. T. Hamp, V. A. Izzo, B. A. Nelson, R. G. O Neill, R. Raman, J. A. Rogers, P. E. Sieck and R. J. Smith

More information

Gyrokine.c Analysis of the Linear Ohmic Confinement Regime in Alcator C- Mod *

Gyrokine.c Analysis of the Linear Ohmic Confinement Regime in Alcator C- Mod * Gyrokine.c Analysis of the Linear Ohmic Confinement Regime in Alcator C- Mod * Miklos Porkolab in collabora.on with J. Dorris, P. Ennever, D. Ernst, C. Fiore, M. Greenwald, A. Hubbard, E. Marmar, Y. Ma,

More information

Plasma Spectroscopy in ISTTOK

Plasma Spectroscopy in ISTTOK Plasma Spectroscopy in ISTTOK J. Figueiredo 1, R. B. Gomes 1, T. Pereira 1, H. Fernandes 1, A. Sharakovski 2 1 Associação EURATOM/IST, Centro de Fusão Nuclear, IST, 1049-001 Lisboa, Portugal 2 Association

More information

Calibration of and Measurements from the C-Mod MSE Diagnostic

Calibration of and Measurements from the C-Mod MSE Diagnostic Calibration of and Measurements from the C-Mod MSE Diagnostic Howard Y. Yuh, MIT Steve D. Scott, PPPL R. Granetz, E.S.Marmar, S.M.Wolfe, D.Beals,MIT W.Rowan, R.Bravenec, M.Sampsell, U.Texas Austin Motional

More information

Experimental Investigations of Magnetic Reconnection. J Egedal. MIT, PSFC, Cambridge, MA

Experimental Investigations of Magnetic Reconnection. J Egedal. MIT, PSFC, Cambridge, MA Experimental Investigations of Magnetic Reconnection J Egedal MIT, PSFC, Cambridge, MA Coronal Mass Ejections Movie from NASA s Solar Dynamics Observatory (SDO) Space Weather The Solar Wind affects the

More information

THE ADVANCED TOKAMAK DIVERTOR

THE ADVANCED TOKAMAK DIVERTOR I Department of Engineering Physics THE ADVANCED TOKAMAK DIVERTOR S.L. Allen and the team 14th PSI QTYUIOP MA D S O N UCLAUCLA UCLA UNIVERSITY OF WISCONSIN THE ADVANCED TOKAMAK DIVERTOR S.L. Allen and

More information

Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas )

Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas ) Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas ) Kenichi NAGAOKA 1,2), Hiromi TAKAHASHI 1,2), Kenji TANAKA 1), Masaki OSAKABE 1,2), Sadayoshi MURAKAMI

More information

Effects of thermal expansion of crystal-lattice on x-ray imaging crystal spectrometers

Effects of thermal expansion of crystal-lattice on x-ray imaging crystal spectrometers PSFC/JA-11-27 Effects of thermal expansion of crystal-lattice on x-ray imaging crystal spectrometers L. Delgado-Aparicio 1, M. Bitter 1, Y. Podpaly 2, J. Rice 2, W. Burke 2, M. Sanchez del Rio 3, K. Hill

More information

Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options

Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options A.M. Garofalo, T. Petrie, J. Smith, V. Chan, R. Stambaugh (General Atomics) J. Canik, A. Sontag, M. Cole (Oak Ridge National Laboratory)

More information

Development of LH wave fullwave simulation based on FEM

Development of LH wave fullwave simulation based on FEM Development of LH wave fullwave simulation based on FEM S. Shiraiwa and O. Meneghini on behalf of LHCD group of Alacator C-Mod PSFC, MIT 2010/03/10 San-Diego, CA Special acknowledgements : R. Parker, P.

More information

Heating and Confinement Study of Globus-M Low Aspect Ratio Plasma

Heating and Confinement Study of Globus-M Low Aspect Ratio Plasma EX/P5- Heating and Confinement Study of Globus-M Low Aspect Ratio Plasma N.V. Sakharov ), V.V. Dyachenko ), B.B. Ayushin ), A.V. Bogomolov ), F.V. Chernyshev ), V.K. Gusev ), S.A. Khitrov ), N.A. Khromov

More information

The effect of the radial electric field on neoclassical flows in a tokamak pedestal

The effect of the radial electric field on neoclassical flows in a tokamak pedestal PSFC/JA-1-4 The effect of the radial electric field on neoclassical flows in a tokamak pedestal Grigory Kagan 1, Kenneth D. Marr, Peter J. Catto, Matt Landreman, Bruce Lipschultz and Rachael McDermott

More information

SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-10 TOKAMAK PLASMAS

SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-10 TOKAMAK PLASMAS SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-1 TOKAMAK PLASMAS V. Vershkov, L.G. Eliseev, S.A. Grashin. A.V. Melnikov, D.A. Shelukhin, S.V. Soldatov, A.O. Urazbaev and T-1 team

More information

Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD

Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD Development of a High-Speed VUV Camera System for 2-Dimensional Imaging of Edge Turbulent Structure in the LHD Masaki TAKEUCHI, Satoshi OHDACHI and LHD experimental group National Institute for Fusion

More information

Improved absolute calibration of core Thomson scattering(ts) diagnostics on Alctor C-Mod

Improved absolute calibration of core Thomson scattering(ts) diagnostics on Alctor C-Mod Improved absolute calibration of core Thomson scattering(ts) diagnostics on Alctor C-Mod Yunxing Ma, J.W.Hughes, A.Hubbard MIT Plasma Science and Fusion Center Presented at 2008 APS DPP Conference Dallas,

More information

Progress of Confinement Physics Study in Compact Helical System

Progress of Confinement Physics Study in Compact Helical System 1st IAEA Fusion Energy Conference Chengdu, China, 16-1 October, 6 IAEA-CN-149/ EX/5-5Rb Progress of Confinement Physics Study in Compact Helical System S. Okamura et al. NIFS-839 Oct. 6 1 EX/5-5Rb Progress

More information

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME by R. NAZIKIAN, M.E. AUSTIN, R.V. BUDNY, M.S. CHU, W.W. HEIDBRINK, M.A. MAKOWSKI, C.C. PETTY, P.A. POLITZER, W.M. SOLOMON, M.A.

More information

AND EXCITED STATES IN A TOKAMAK PLASMA. October, Plasma Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139

AND EXCITED STATES IN A TOKAMAK PLASMA. October, Plasma Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139 PFC/JA-85-34 OBSERVATION OF CHARGE-TRANSFER POPULATION OF HIGH N LEVELS IN AR+ 1 6 FROM NEUTRAL HYDROGEN IN THE GROUND AND EXCITED STATES IN A TOKAMAK PLASMA J.E. Rice, E.S. Marmar, J.L. Terry, E. KAllne,

More information

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén Current density modelling in JET and JT-60U identity plasma experiments Paula Sirén 1/12 1/16 Euratom-TEKES Euratom-Tekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET

More information

Rotation Speed Differences of Impurity Species in the DIII-D Tokamak and Comparison with Neoclassical Theory

Rotation Speed Differences of Impurity Species in the DIII-D Tokamak and Comparison with Neoclassical Theory Rotation Speed Differences of Impurity Species in the DIII-D Tokamak and Comparison with Neoclassical Theory L.R. Baylor, K.H. Burrell*, R.J. Groebner*, D.R. Ernst #, W.A. Houlberg, M. Murakami, and The

More information

Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod

Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod PFC/JA-96-42 Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod A.E. Hubbard, J.A. Goetz, I.H. Hutchinson, Y. In, J. Irby, B. LaBombard, P.J. O'Shea, J.A. Snipes, P.C. Stek, Y. Takase, S.M.

More information

STATUS OF THE HIT-II EXPERIMENTAL PROGRAM

STATUS OF THE HIT-II EXPERIMENTAL PROGRAM STATUS OF THE HIT-II EXPERIMENTAL PROGRAM Roger J. Smith and the HIT-II Team Plasma Dynamics Group University of Washington, Seattle, Washington HIT-II Team Faculty/Staff Support Staff Graduate Students

More information

Neutral Density Profiles From a Diverted Plasma in Alcator C-Mod. Christopher Paul Barrington-Leigh

Neutral Density Profiles From a Diverted Plasma in Alcator C-Mod. Christopher Paul Barrington-Leigh Neutral Density Profiles From a Diverted Plasma in Alcator C-Mod by Christopher Paul Barrington-Leigh Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of

More information

Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system

Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system J.M. Ané 1, V. Grandgirard, F. Albajar 1, J.Johner 1 1Euratom-CEA Association, Cadarache, France Euratom-EPFL

More information

1. Motivation power exhaust in JT-60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT-60SA. 4. Results. 5.

1. Motivation power exhaust in JT-60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT-60SA. 4. Results. 5. 1. Motivation power exhaust in JT-60SA tokamak 2. Tool COREDIV code 3. Operational scenarios of JT-60SA 4. Results 5. Conclusions K. Gałązka Efficient power exhaust in JT-60SA by COREDIV Page 2 The Institute

More information

The Instrumental Function of the X-ray Imaging Crystal Spectrometer on Alcator C-Mod

The Instrumental Function of the X-ray Imaging Crystal Spectrometer on Alcator C-Mod The Instrumental Function of the X-ray Imaging Crystal Spectrometer on Alcator C-Mod M. Bitter, K. W. Hill, B. Stratton, S. Scott Princeton Plasma Physics Laboratory, Princeton, NJ, USA A. Ince-Cushman,

More information

Design of New Optical System for Visible Plasma Radiation Measurements at COMPASS Tokamak

Design of New Optical System for Visible Plasma Radiation Measurements at COMPASS Tokamak WDS'08 Proceedings of Contributed Papers, Part II, 100 104, 2008. ISBN 978-80-7378-066-1 MATFYZPRESS Design of New Optical System for Visible Plasma Radiation Measurements at COMPASS Tokamak D. I. Naydenkova

More information

Fusion Development Facility (FDF) Divertor Plans and Research Options

Fusion Development Facility (FDF) Divertor Plans and Research Options Fusion Development Facility (FDF) Divertor Plans and Research Options A.M. Garofalo, T. Petrie, J. Smith, M. Wade, V. Chan, R. Stambaugh (General Atomics) J. Canik (Oak Ridge National Laboratory) P. Stangeby

More information

Localized Electron Cyclotron Current Drive in DIII D: Experiment and Theory

Localized Electron Cyclotron Current Drive in DIII D: Experiment and Theory Localized Electron Cyclotron Current Drive in : Experiment and Theory by Y.R. Lin-Liu for C.C. Petty, T.C. Luce, R.W. Harvey,* L.L. Lao, P.A. Politzer, J. Lohr, M.A. Makowski, H.E. St John, A.D. Turnbull,

More information