A Faster Way to Fusion

Size: px
Start display at page:

Download "A Faster Way to Fusion"

Transcription

1 A Faster Way to Fusion 2017 Tokamak Energy Tokamak Energy Ltd Company Overview April 2018

2 Our Mission To deliver to mankind a cheap, safe, secure and practically limitless source of clean energy fusion power

3 Overview of Tokamak Energy Privately funded spin-out from the world leading Culham Centre for Fusion Energy Engineering Centre at Milton Park, Oxfordshire in a cluster of high tech companies World class team of over 45 full time scientists and engineers Collaborations with Princeton, Oxford, Cambridge, Imperial, and Univ of Tokyo Most downloaded paper ever in Nuclear Fusion Journal authored by Tokamak Energy 30 families of patents so far focussed around the use of high temperature superconducting (HTS) magnets in spherical tokamaks

4 The Opportunity A future supply of power independent of fossil fuels The largest addressable market on the planet Fusion is: Clean no carbon emissions or long-lived nuclear waste Safe inherent safety with no risk of a meltdown Abundant plentiful fuel (deuterium and tritium bred from lithium) Affordable our work shows that the cost of fusion power can be competitive Investment in fusion has historically been the domain of governments however there is an increasing interest from private investors

5 Fusion in a Tokamak A tokamak is a donut-shaped vessel for creating hot plasma 30 billion invested in tokamaks by governments in last 50 years Method: magnetically trap a hot plasma in a tokamak and fuse hydrogen nuclei. Two tokamaks, TFTR at Princeton and JET at Culham, have produced > 10 MW of fusion power

6 The Challenge Traditional view for fusion power & tokamaks is that bigger is better (ITER) Huge investment and timescales to progress Spherical Tokamaks are much more efficient than traditional doughnut shape tokamaks. This allows for smaller more compact designs But: there are space constraints at the centre of spherical tokamaks conventional (copper / low temperature superconducting) magnets cannot create conditions required to produce fusion energy wide narrow

7 The Tokamak Energy Solution Spherical Tokamaks Squashed shape Highly efficient High Temperature Superconductors High current at high field Fusion Power smaller, cheaper, faster

8 Why We Are Different Privately funded Freedom and flexibility to pursue the best technology Leading expertise in the sector Operating in a well-understood field of physics Building team of world class Scientists &Engineers Rapidly developed: Working prototype devices Know-how & Patents A plan to rapidly deliver a sustainable source of energy to replace fossil fuels

9 Milestones to date ST25: working prototype with copper magnets achieves plasma for three milliseconds. This demonstrates that Tokamak Energy can rapidly build and test working prototypes ST25 (HTS): first tokamak featuring all high temperature superconducting magnets The device achieved continuous plasma for 29 hours a new world record ST40: the worlds first high field spherical tokamak Construction and commissioning is well underway and first plasma achieved in April 2017

10 ST40 build & commissioning ST40: verification of plasma physics in a high field spherical tokamak (pulsed copper magnet) First plasma: April 2017 Science Magazine: BBC:

11 ST40 build & commissioning Trial assembly of Toroidal Field magnets complete Outer Vacuum Chamber construction complete August 2017

12 First phase of testing Jan 2018

13 The Way Forward ST40 Copper Magnets 15 M & 100M degrees Fusion conditions with D-D Energy gain conditions with D-T HTS Magnet Demo Large scale HTS magnet HTS supply chain development Validate magnet design and construction ST-F1 All HTS Magnets Industrial scale heat production Could be used for electricity generation ST-E1 Electricity production (to the grid) Final size and parameters to be determined Testing underway Design Phase Conceptual design Conceptual design 13

14 Summary Tokamak Energy is the only venture using the HTS-Spherical Tokamak route to fusion power A world class team Widespread endorsement A proven track record of successfully designing, engineering and operating tokamak reactors 2-3 years program to demonstrate critical technical milestones Development of partnerships & supply chain needed to meet requirements and timescales A faster route to fusion power

15 VTT involvement Numerical modelling to optimise NBI system using ASCOT code 3 rd year running VTT

16 Neutral beam injection angle Neutral beams are used to inject heat, fuel, momentum and current in the tokamak plasmas During the ST40 design phase it was asked what kind of beam and what kind of geometry should be chosen Tokamak Energy commissioned a research project from VTT to study the various options and produce the answers VTT

17 ASCOT calculations We found that it is not possible to maximise everything simultaneously Current drive is maxed at high energy to ~0.2MA limiting the non-inductive current to around 10% Maximal torque ~0.5Nm is obtained at low energy NB and could result in fast spinning plasma (reduced turbulence improved confinement) A Salmi et al, Fus. Eng. & Design 117 (2017) 14 VTT

18 Ongoing project First ST40 beam system has now been selected and we continue with ASCOT calculations to predict its performance, beam duct losses and provide input of fast particle content and alpha confinement for TAE studies. VTT

19 Future opportunities Tokamak Energy business: design, engineer and operate tokamak reactors HTS Magnet Demo Large scale HTS magnet HTS supply chain development Validate magnet design and construction - Hardware and services are needed - Power supplies, vacuum components, power banks - Conceptual designs, next step devices - Remote handling - Neutronics - High temperature supra conductors - Large effort at TE and MIT (50M ) on development and patenting HTS magnet and joining technologies - Conventional copper coils - Diagnostics ST-F1 All HTS Magnets Industrial scale heat production Could be used for electricity generation ST-E1 Electricity production (to the grid) Final size and parameters to be determined VTT

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory The Path to Fusion Energy creating a star on earth S. Prager Princeton Plasma Physics Laboratory The need for fusion energy is strong and enduring Carbon production (Gton) And the need is time urgent Goal

More information

Nuclear Fusion 1 of 24 Boardworks Ltd 2011

Nuclear Fusion 1 of 24 Boardworks Ltd 2011 Nuclear Fusion 1 of 24 Boardworks Ltd 2011 2 of 24 Boardworks Ltd 2011 How do we get energy from atoms? 3 of 24 Boardworks Ltd 2011 Energy is produced from atoms in power stations using the process of

More information

Small Spherical Tokamaks and their potential role in development of fusion power

Small Spherical Tokamaks and their potential role in development of fusion power Small Spherical Tokamaks and their potential role in development of fusion power Dr David Kingham, Nuclear Futures, 26 March 2013 Plasma in START tokamak, Courtesy Euratom/CCFE Fusion Association 1 Introduction

More information

INTRODUCTION TO MAGNETIC NUCLEAR FUSION

INTRODUCTION TO MAGNETIC NUCLEAR FUSION INTRODUCTION TO MAGNETIC NUCLEAR FUSION S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK With acknowledgments to B.Alper for use of his transparencies

More information

Toward the Realization of Fusion Energy

Toward the Realization of Fusion Energy Toward the Realization of Fusion Energy Nuclear fusion is the energy source of the sun and stars, in which light atomic nuclei fuse together, releasing a large amount of energy. Fusion power can be generated

More information

JET and Fusion Energy for the Next Millennia

JET and Fusion Energy for the Next Millennia JET and Fusion Energy for the Next Millennia JET Joint Undertaking Abingdon, Oxfordshire OX14 3EA JG99.294/1 Talk Outline What is Nuclear Fusion? How can Fusion help our Energy needs? Progress with Magnetic

More information

JET JET JET EFDA THE JOINT EUROPEAN TORUS A EUROPEAN SUCCESS STORY

JET JET JET EFDA THE JOINT EUROPEAN TORUS A EUROPEAN SUCCESS STORY EFDA LEAD ING DEVICE FOR FUSION STUDIES HOLDER OF THE WORLD RECORD OF FUSION POWER PRODUCTION EXPERIMENTS STRONGLY FOCUSSED ON THE PREPARATION FOR ITER EXPERIMENTAL DEVICE USED UNDER THE EUROPEAN FUSION

More information

The Dynomak Reactor System

The Dynomak Reactor System The Dynomak Reactor System An economically viable path to fusion power Derek Sutherland HIT-SI Research Group University of Washington November 7, 2013 Outline What is nuclear fusion? Why do we choose

More information

Physics & Engineering Physics University of Saskatchewan. Supported by NSERC, CRC

Physics & Engineering Physics University of Saskatchewan. Supported by NSERC, CRC Fusion Energy Chijin Xiao and Akira Hirose Plasma Physics laboratory Physics & Engineering Physics University of Saskatchewan Supported by NSERC, CRC Trends in Nuclear & Medical Technologies April il6-7,

More information

Fusion Energy: How it works, Why we want it, & How to get it sooner

Fusion Energy: How it works, Why we want it, & How to get it sooner MIT Plasma Science & Fusion Center Fusion Energy: How it works, Why we want it, & How to get it sooner Dennis Whyte MIT Plasma Science and Fusion Center IAP seminar, MIT January 2015 1 How It Works 2 The

More information

Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan

Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan The Sun Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan 2017 CNS Conference Niagara Falls, June 4-7, 2017 Tokamak Outline Fusion

More information

Plasma & Fusion on Earth: merging age-old natural phenomena into your present and future

Plasma & Fusion on Earth: merging age-old natural phenomena into your present and future Plasma & Fusion on Earth: merging age-old natural phenomena into your present and future Presented by Rick Lee Chief Operator, DIII-D Operations Manager, Energy/Fusion Outreach Program General Atomics

More information

Chapter IX: Nuclear fusion

Chapter IX: Nuclear fusion Chapter IX: Nuclear fusion 1 Summary 1. General remarks 2. Basic processes 3. Characteristics of fusion 4. Solar fusion 5. Controlled fusion 2 General remarks (1) Maximum of binding energy per nucleon

More information

for the French fusion programme

for the French fusion programme The ITER era : the 10 year roadmap for the French fusion programme E. Tsitrone 1 on behalf of IRFM and Tore Supra team 1 : CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France Association EURATOM-CEA TORE

More information

Overview of Pilot Plant Studies

Overview of Pilot Plant Studies Overview of Pilot Plant Studies and contributions to FNST Jon Menard, Rich Hawryluk, Hutch Neilson, Stewart Prager, Mike Zarnstorff Princeton Plasma Physics Laboratory Fusion Nuclear Science and Technology

More information

Magnetic Confinement Fusion-Status and Challenges

Magnetic Confinement Fusion-Status and Challenges Chalmers energy conference 2012 Magnetic Confinement Fusion-Status and Challenges F. Wagner Max-Planck-Institute for Plasma Physics, Greifswald Germany, EURATOM Association RLPAT St. Petersburg Polytechnic

More information

Physics of fusion power. Lecture 14: Anomalous transport / ITER

Physics of fusion power. Lecture 14: Anomalous transport / ITER Physics of fusion power Lecture 14: Anomalous transport / ITER Thursday.. Guest lecturer and international celebrity Dr. D. Gericke will give an overview of inertial confinement fusion.. Instabilities

More information

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets PFC/JA-91-5 Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets E. A. Chaniotakis L. Bromberg D. R. Cohn April 25, 1991 Plasma Fusion Center Massachusetts Institute of Technology

More information

Prospects of Nuclear Fusion Energy Research in Lebanon and the Middle-East

Prospects of Nuclear Fusion Energy Research in Lebanon and the Middle-East Prospects of Nuclear Fusion Energy Research in Lebanon and the Middle-East Ghassan Antar Physics Department American University of Beirut http://www.aub.edu.lb/physics/lpfd Outline 1. Introduction and

More information

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000 From last time Fission of heavy elements produces energy Only works with 235 U, 239 Pu Fission initiated by neutron absorption. Fission products are two lighter nuclei, plus individual neutrons. These

More information

Jacob s Ladder Controlling Lightning

Jacob s Ladder Controlling Lightning Host: Fusion specialist: Jacob s Ladder Controlling Lightning PART 1 Jacob s ladder demonstration Video Teacher resources Phil Dooley European Fusion Development Agreement Peter de Vries European Fusion

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

Mission Elements of the FNSP and FNSF

Mission Elements of the FNSP and FNSF Mission Elements of the FNSP and FNSF by R.D. Stambaugh PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Presented at FNST Workshop August 3, 2010 In Addition to What Will Be Learned

More information

Nuclear Fusion and ITER

Nuclear Fusion and ITER Nuclear Fusion and ITER C. Alejaldre ITER Deputy Director-General Cursos de Verano UPM Julio 2, 2007 1 ITER the way to fusion power ITER ( the way in Latin) is the essential next step in the development

More information

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Derek Sutherland HIT-SI Research Group University of Washington July 25, 2017 D.A. Sutherland -- EPR 2017, Vancouver,

More information

MAGNETIC FUSION m DO NOT CIRCULATE RESEARCH

MAGNETIC FUSION m DO NOT CIRCULATE RESEARCH L4SL &i?o-zf? MAGNETIC FUSION m DO NOT CIRCULATE RESEARCH i= PERMANENT RETENTION 1 I c1..- Post Office Box 1663 Los Alamos. New Mexico 87545 \ I \\.. Magnetic Fusion Research at the. Los Alamos Scientific

More information

Atomic physics in fusion development

Atomic physics in fusion development Atomic physics in fusion development The next step in fusion development imposes new requirements on atomic physics research by R.K. Janev In establishing the scientific and technological base of fusion

More information

Technological and Engineering Challenges of Fusion

Technological and Engineering Challenges of Fusion Technological and Engineering Challenges of Fusion David Maisonnier and Jim Hayward EFDA CSU Garching (david.maisonnier@tech.efda.org) 2nd IAEA TM on First Generation of FPP PPCS-KN1 1 Outline The European

More information

Fast ion physics in the C-2U advanced, beam-driven FRC

Fast ion physics in the C-2U advanced, beam-driven FRC Fast ion physics in the C-2U advanced, beam-driven FRC Richard Magee for the TAE Team 216 US-Japan Workshop on the Compact Torus August 23, 216! High β FRC embedded in magnetic mirror is a unique fast

More information

Principles of Nuclear Fusion & Fusion research in Belgium R. R. Weynants

Principles of Nuclear Fusion & Fusion research in Belgium R. R. Weynants Principles of Nuclear Fusion & Fusion research in Belgium R. R. Weynants Laboratorium voor Plasmafysica - Laboratoire de Physique des Plasmas Koninklijke Militaire School - Ecole Royale Militaire 1040

More information

Tokamak Fusion Basics and the MHD Equations

Tokamak Fusion Basics and the MHD Equations MHD Simulations for Fusion Applications Lecture 1 Tokamak Fusion Basics and the MHD Equations Stephen C. Jardin Princeton Plasma Physics Laboratory CEMRACS 1 Marseille, France July 19, 21 1 Fusion Powers

More information

TWO FUSION TYPES NEUTRONIC ANEUTRONIC

TWO FUSION TYPES NEUTRONIC ANEUTRONIC October 2016 October 2016 WHAT IS FUSION? TWO FUSION TYPES NEUTRONIC ANEUTRONIC TWO FUSION TYPES NEUTRONIC ANEUTRONIC TWO FUSION TYPES NEUTRONIC ANEUTRONIC produces neutrons produces NO neutrons NEUTRONIC

More information

ITER Participation and Possible Fusion Energy Development Path of Korea

ITER Participation and Possible Fusion Energy Development Path of Korea 1 ITER Participation and Possible Fusion Energy Development Path of Korea C. S. Kim, S. Cho, D. I. Choi ITER Korea TFT, 52 Eoeun-dong, Yuseong-gu, Daejeon 305-333, Korea kimkim@kbsi.re.kr The objective

More information

Fusion for Neutrons: Fusion Neutron Sources for the development of Fusion Energy

Fusion for Neutrons: Fusion Neutron Sources for the development of Fusion Energy Fusion for Neutrons: Fusion Neutron Sources for the development of Fusion Energy M. P. Gryaznevich Culham Science Centre, Abingdon, UK - 1 - Fusion Reactor as an Advanced Neutron Source: F4N Concept High-output

More information

Safety considerations for Fusion Energy: From experimental facilities to Fusion Nuclear Science and beyond

Safety considerations for Fusion Energy: From experimental facilities to Fusion Nuclear Science and beyond Safety considerations for Fusion Energy: From experimental facilities to Fusion Nuclear Science and beyond 1st IAEA TM on the Safety, Design and Technology of Fusion Power Plants May 3, 2016 Susana Reyes,

More information

Perspective on Fusion Energy

Perspective on Fusion Energy Perspective on Fusion Energy Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology (UCLA) President, Council of Energy Research

More information

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions Atomic and Nuclear Physics Topic 7.3 Nuclear Reactions Nuclear Reactions Rutherford conducted experiments bombarding nitrogen gas with alpha particles from bismuth-214. He discovered that fast-moving particles

More information

Is the Troyon limit a beta limit?

Is the Troyon limit a beta limit? Is the Troyon limit a beta limit? Pierre-Alexandre Gourdain 1 1 Extreme State Physics Laboratory, Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA The plasma beta,

More information

Innovative fabrication method of superconducting magnets using high T c superconductors with joints

Innovative fabrication method of superconducting magnets using high T c superconductors with joints Innovative fabrication method of superconducting magnets using high T c superconductors with joints (for huge and/or complicated coils) Nagato YANAGI LHD & FFHR Group National Institute for Fusion Science,

More information

A Technology Review of Electricity Generation from Nuclear Fusion Reaction in Future

A Technology Review of Electricity Generation from Nuclear Fusion Reaction in Future International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) 3 A Technology Review of Electricity Generation from Nuclear Fusion Reaction in Future 1 Joydeep Sarkar, 2 Karishma P. Patil, 3

More information

Concept of Multi-function Fusion Reactor

Concept of Multi-function Fusion Reactor Concept of Multi-function Fusion Reactor Presented by Songtao Wu Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui, 230031, P.R. China 1. Motivation 2. MFFR Concept

More information

ASG SUPERCONDUCTORS LA SPEZIA

ASG SUPERCONDUCTORS LA SPEZIA CASE STUDY ASG SUPERCONDUCTORS LA SPEZIA The Future of Energy The Hexagon Metrology laser trackers inspect the construction of the huge magnets of a nuclear fusion reactor by Levio Valetti A miniature

More information

A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR

A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR A.N. Mauer, W.M. Stacey, J. Mandrekas and E.A. Hoffman Fusion Research Center Georgia Institute of Technology Atlanta, GA 30332 1. INTRODUCTION

More information

Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor

Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor 1 FIP/3-4Ra Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor N. Asakura 1, K. Hoshino 1, H. Utoh 1, K. Shinya 2, K. Shimizu 3, S. Tokunaga 1, Y.Someya 1, K. Tobita 1, N. Ohno

More information

Fusion-Enabled Pluto Orbiter and Lander

Fusion-Enabled Pluto Orbiter and Lander Fusion-Enabled Pluto Orbiter and Lander Presented by: Stephanie Thomas DIRECT FUSION DRIVE Team Members Stephanie Thomas Michael Paluszek Princeton Satellite Systems 6 Market St. Suite 926 Plainsboro,

More information

HT-7U* Superconducting Tokamak: Physics design, engineering progress and. schedule

HT-7U* Superconducting Tokamak: Physics design, engineering progress and. schedule 1 FT/P2-03 HT-7U* Superconducting Tokamak: Physics design, engineering progress and schedule Y.X. Wan 1), P.D. Weng 1), J.G. Li 1), Q.Q. Yu 1), D.M. Gao 1), HT-7U Team 1) Institute of Plasma Physics, Chinese

More information

Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors Jonathan Menard (PPPL)

Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors Jonathan Menard (PPPL) Studies of Next-Step Spherical Tokamaks Using High-Temperature Superconductors Jonathan Menard (PPPL) 22 nd Topical Meeting on the Technology of Fusion Energy (TOFE) Philadelphia, PA August 22-25, 2016

More information

Aspects of Advanced Fuel FRC Fusion Reactors

Aspects of Advanced Fuel FRC Fusion Reactors Aspects of Advanced Fuel FRC Fusion Reactors John F Santarius and Gerald L Kulcinski Fusion Technology Institute Engineering Physics Department CT2016 Irvine, California August 22-24, 2016 santarius@engr.wisc.edu;

More information

Neutral beam plasma heating

Neutral beam plasma heating Seminar I b 1 st year, 2 nd cycle program Neutral beam plasma heating Author: Gabrijela Ikovic Advisor: prof.dr. Tomaž Gyergyek Ljubljana, May 2014 Abstract For plasma to be ignited, external heating is

More information

DEMO Concept Development and Assessment of Relevant Technologies. Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor

DEMO Concept Development and Assessment of Relevant Technologies. Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor FIP/3-4Rb FIP/3-4Ra DEMO Concept Development and Assessment of Relevant Technologies Y. Sakamoto, K. Tobita, Y. Someya, H. Utoh, N. Asakura, K. Hoshino, M. Nakamura, S. Tokunaga and the DEMO Design Team

More information

Fusion Development Facility (FDF) Mission and Concept

Fusion Development Facility (FDF) Mission and Concept Fusion Development Facility (FDF) Mission and Concept Presented by R.D. Stambaugh PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION University of California Los Angeles FNST Workshop

More information

Spherical Torus Fusion Contributions and Game-Changing Issues

Spherical Torus Fusion Contributions and Game-Changing Issues Spherical Torus Fusion Contributions and Game-Changing Issues Spherical Torus (ST) research contributes to advancing fusion, and leverages on several game-changing issues 1) What is ST? 2) How does research

More information

Fusion Energy: Pipe Dream or Panacea

Fusion Energy: Pipe Dream or Panacea Fusion Energy: Pipe Dream or Panacea Mike Mauel Columbia University Energy Options & Paths to Climate Stabilization Aspen, 9 July 2003 Fusion Energy: Pipe Dream or Panacea Promise, Progress, and the Challenge

More information

Plasma Wall Interactions in Tokamak

Plasma Wall Interactions in Tokamak Plasma Wall Interactions in Tokamak Dr. C Grisolia, Association Euratom/CEA sur la fusion, CEA/Cadarache Outline 1. Conditions for Fusion in Tokamaks 2. Consequences of plasma operation on in vessel materials:

More information

ITER DIAGNOSTIC PORT PLUG DESIGN. N H Balshaw, Y Krivchenkov, G Phillips, S Davis, R Pampin-Garcia

ITER DIAGNOSTIC PORT PLUG DESIGN. N H Balshaw, Y Krivchenkov, G Phillips, S Davis, R Pampin-Garcia N H Balshaw, Y Krivchenkov, G Phillips, S Davis, R Pampin-Garcia UKAEA, Culham Science Centre, Abingdon, Oxon,OX14 3DB, UK, nick.balshaw@jet.uk Many of the ITER diagnostic systems will be mounted in the

More information

Role of Magnetic Configuration and Heating Power in ITB Formation in JET.

Role of Magnetic Configuration and Heating Power in ITB Formation in JET. Role of Magnetic Configuration and Heating Power in ITB Formation in JET. The JET Team (presented by V. Parail 1 ) JET Joint Undertaking, Abingdon, Oxfordshire, United Kingdom 1 present address: EURATOM/UKAEA

More information

Controlled Thermonuclear Fusion

Controlled Thermonuclear Fusion Controlled Thermonuclear Fusion Roscoe White Plasma Physics Laboratory, Princeton University The promise of cheap clean energy Consistently twenty years off, for the last 60 years Research began at Princeton

More information

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology

More information

The Spherical Tokamak as a Compact Fusion Reactor Concept

The Spherical Tokamak as a Compact Fusion Reactor Concept The Spherical Tokamak as a Compact Fusion Reactor Concept R. Kaita Princeton Plasma Physics Laboratory ENN Symposium on Compact Fusion Technologies April 19 20, 2018 *This work supported by US DOE Contract

More information

Microwave Spherical Torus Experiment and Prospect for Compact Fusion Reactor

Microwave Spherical Torus Experiment and Prospect for Compact Fusion Reactor Microwave Spherical Torus Experiment and Prospect for Compact Fusion Reactor Takashi Maekawa 1,*, Hitoshi Tanaka 1, Masaki Uchida 1, Tomokazu Yoshinaga 1, Satoshi Nishio 2 and Masayasu Sato 2 1 Graduate

More information

Polywell Fusion J A E YO UNG PA R K E NN F USION SYMPOSIUM, A P R I L

Polywell Fusion J A E YO UNG PA R K E NN F USION SYMPOSIUM, A P R I L Polywell Fusion J A E YO UNG PA R K E NERGY MAT T E R CONVERSION CORPORATION E NN F USION SYMPOSIUM, A P R I L 20 20 1 8 History of EMC2 1985 Energy Matter Conversion Corporation is a US-incorporated,

More information

Quasi-Symmetric Stellarators as a Strategic Element in the US Fusion Energy Research Plan

Quasi-Symmetric Stellarators as a Strategic Element in the US Fusion Energy Research Plan Quasi-Symmetric Stellarators as a Strategic Element in the US Fusion Energy Research Plan Quasi-Symmetric Stellarator Research The stellarator offers ready solutions to critical challenges for toroidal

More information

Double Null Merging Start-up Experiments in the University of Tokyo Spherical Tokamak

Double Null Merging Start-up Experiments in the University of Tokyo Spherical Tokamak 1 EXS/P2-19 Double Null Merging Start-up Experiments in the University of Tokyo Spherical Tokamak T. Yamada 1), R. Imazawa 2), S. Kamio 1), R. Hihara 1), K. Abe 1), M. Sakumura 1), Q. H. Cao 1), H. Sakakita

More information

History of Mechanical Engineering for Fusion Research at Princeton

History of Mechanical Engineering for Fusion Research at Princeton History of Mechanical Engineering for Fusion Research at Princeton ASME Historic Mechanical Engineering Landmark Presenta8on Phil Heitzenroeder and Dale Meade October 5, 2018 Project MaJerhorn/PPL/PPPL

More information

Generating of fusion plasma neutron source with AFSI for Serpent MC neutronics computing Serpent UGM 2015 Knoxville, TN,

Generating of fusion plasma neutron source with AFSI for Serpent MC neutronics computing Serpent UGM 2015 Knoxville, TN, Generating of fusion plasma neutron source with AFSI for Serpent MC neutronics computing Serpent UGM 2015 Knoxville, TN, 14.10.2015 Paula Sirén VTT Technical Research Centre of Finland, P.O Box 1000, 02044

More information

The Power of the Stars How Nuclear Fusion Could Power the Future

The Power of the Stars How Nuclear Fusion Could Power the Future Western Oregon University Digital Commons@WOU Academic Excellence Showcase Proceedings Student Scholarship 2018-06-01 The Power of the Stars How Nuclear Fusion Could Power the Future Ted Jones Western

More information

ESS and the UK share. Justin Greenhalgh Senior programme manager, UK-ESS

ESS and the UK share. Justin Greenhalgh Senior programme manager, UK-ESS ESS and the UK share Justin Greenhalgh Senior programme manager, UK-ESS 1 Contents What is the European Spallation Source? And why do neutrons matter? The UK s role Brief history UK contribution UK In-kind

More information

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011 Tokamak Divertor System Concept and the Design for ITER Chris Stoafer April 14, 2011 Presentation Overview Divertor concept and purpose Divertor physics General design considerations Overview of ITER divertor

More information

Nuclear Energy in the Future. The ITER Project. Brad Nelson. Chief Engineer, US ITER. Presentation for NE-50 Symposium on the Future of Nuclear Energy

Nuclear Energy in the Future. The ITER Project. Brad Nelson. Chief Engineer, US ITER. Presentation for NE-50 Symposium on the Future of Nuclear Energy Nuclear Energy in the Future The ITER Project Brad Nelson Chief Engineer, US ITER Presentation for NE-50 Symposium on the Future of Nuclear Energy November 1, 2012 Fusion research is ready for the next

More information

How Is Nuclear Fusion Going?

How Is Nuclear Fusion Going? How Is Nuclear Fusion Going? Kehan Chen 2017/7/16 Math 190S Duke Summer College 1.Introduction In nuclear physics, nuclear fusion is a reaction in which two or more atomic nuclei come close enough to form

More information

Developing a Robust Compact Tokamak Reactor by Exploiting New Superconducting Technologies and the Synergistic Effects of High Field D.

Developing a Robust Compact Tokamak Reactor by Exploiting New Superconducting Technologies and the Synergistic Effects of High Field D. Developing a Robust Compact Tokamak Reactor by Exploiting ew Superconducting Technologies and the Synergistic Effects of High Field D. Whyte, MIT Steady-state tokamak fusion reactors would be substantially

More information

On tokamak plasma rotation without the neutral beam torque

On tokamak plasma rotation without the neutral beam torque On tokamak plasma rotation without the neutral beam torque Antti Salmi (VTT) With contributions from T. Tala (VTT), C. Fenzi (CEA) and O. Asunta (Aalto) 2 Motivation: Toroidal rotation Plasma rotation

More information

A FUSION DEVELOPMENT FACILITY BASED ON THE SPHERICAL TORUS

A FUSION DEVELOPMENT FACILITY BASED ON THE SPHERICAL TORUS A FUSION DEVELOPMENT FACILITY BASED ON THE SPHERICAL TORUS by R.D. STAMBAUGH, D.E. BALDWIN, and V.S. CHAN Presented at Workshop on Cost-Effective Steps to Fusion Power Fusion Power Associates Annual Meeting

More information

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén Current density modelling in JET and JT-60U identity plasma experiments Paula Sirén 1/12 1/16 Euratom-TEKES Euratom-Tekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET

More information

ITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK

ITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK ITER operation Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 14 th March 2014 Ben Dudson Magnetic Confinement Fusion (1 of 18) ITER Some key statistics for ITER are:

More information

Plasma formation in MAST by using the double null merging technique

Plasma formation in MAST by using the double null merging technique 1 Plasma formation in MAST by using the double null merging technique P. Micozzi 1, F. Alladio 1, P. Costa 1, A. Mancuso 1, A. Sykes 2, G. Cunningham 2, M. Gryaznevich 2, J. Hicks 2, M. Hood 2, G. McArdle

More information

APPLICATIONS OF HIGH POWER MILLIMETER WAVES IN THE Dlll-D FU'SION PROGRAM

APPLICATIONS OF HIGH POWER MILLIMETER WAVES IN THE Dlll-D FU'SION PROGRAM G A-A22442 APPLICATIONS OF HIGH POWER MILLIMETER WAVES IN THE Dlll-D FU'SION PROGRAM RECEI v ED JAN 3 t t997 OSTt by R.L. FREEMAN AUGUST 1996 GENERLlL ATOM8CS DECLAIMER Portions of this document may be

More information

Communique. International Superconductivity Industry Summit (ISIS)-20 Gonjiam Resort, Korea October 2011

Communique. International Superconductivity Industry Summit (ISIS)-20 Gonjiam Resort, Korea October 2011 Communique International Superconductivity Industry Summit (ISIS)-20 Gonjiam Resort, Korea October 2011 The 20 th International Superconductivity Industrial Summit (ISIS-20) which had approximately 50

More information

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO by C.P.C. WONG and R.D. STAMBAUGH JULY 1999 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United

More information

Nuclear Fusion Energy Research at AUB Ghassan Antar. Physics Department American University of Beirut

Nuclear Fusion Energy Research at AUB Ghassan Antar. Physics Department American University of Beirut Nuclear Fusion Energy Research at AUB Ghassan Antar Physics Department American University of Beirut Laboratory for Plasma and Fluid Dynamics [LPFD) Students: - R. Hajjar [Physics] - L. Moubarak [Physics]

More information

Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE

Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE In the beginning In the late fifties, alternative applications of nuclear explosions were being considered the number one suggestion

More information

Study of Current drive efficiency and its correlation with photon temperature in the HT-7 tokomak

Study of Current drive efficiency and its correlation with photon temperature in the HT-7 tokomak Study of Current drive efficiency and its correlation with photon temperature in the HT-7 tokomak Dr. Jawad Younis Senior Scientist Pakistan Atomic Energy Commission, P. O. Box, 2151,Islamabad Institute

More information

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant Implementation of a long leg X-point target divertor in the ARC fusion pilot plant A.Q. Kuang, N.M. Cao, A.J. Creely, C.A. Dennett, J. Hecla, H. Hoffman, M. Major, J. Ruiz Ruiz, R.A. Tinguely, E.A. Tolman

More information

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Lecture 14, 8/9/2017 Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Nuclear Reactions and the Transmutation of Elements A nuclear reaction takes place

More information

DT Fusion Power Production in ELM-free H-modes in JET

DT Fusion Power Production in ELM-free H-modes in JET JET C(98)69 FG Rimini and e JET Team DT Fusion ower roduction in ELM-free H-modes in JET This document is intended for publication in e open literature. It is made available on e understanding at it may

More information

Chapter 12. Magnetic Fusion Toroidal Machines: Principles, results, perspective

Chapter 12. Magnetic Fusion Toroidal Machines: Principles, results, perspective Chapter 12 Magnetic Fusion Toroidal Machines: Principles, results, perspective S. Atzeni May 10, 2010; rev.: May 16, 2012 English version: May 17, 2017 1 Magnetic confinement fusion plasmas low density

More information

purposes is highly encouraged.

purposes is highly encouraged. The following slide show is a compilation of slides from many previous similar slide shows that have been produced by different members of the fusion and plasma physics education community. We realize

More information

Q, Break-even and the nτ E Diagram for Transient Fusion Plasmas

Q, Break-even and the nτ E Diagram for Transient Fusion Plasmas Q, Break-even and the nτ E Diagram for Transient Plasmas Dale M. Meade Princeton University P.O. Box 451, Princeton, N. J. 08543 Abstract - Q, break-even and the nτe diagram are well defined and understood

More information

Whatever became of Nuclear Fusion?

Whatever became of Nuclear Fusion? Alfred Nobel Symposium Energy in Cosmos, Molecules and Life Whatever became of Nuclear Fusion? Robert Aymar 18-22 June 2005 Stockholm Table of Contents Whatever became of Nuclear Fusion? Introduction Nuclear

More information

10.4 Fission and Fusion

10.4 Fission and Fusion This painting of an alchemist s laboratory was made around 1570. For centuries, these early scientists, known as alchemists, tried to use chemical reactions to make gold. The alchemists failed in their

More information

ITER A/M/PMI Data Requirements and Management Strategy

ITER A/M/PMI Data Requirements and Management Strategy ITER A/M/PMI Data Requirements and Management Strategy Steven Lisgo, R. Barnsley, D. Campbell, A. Kukushkin, M. Hosokawa, R. A. Pitts, M. Shimada, J. Snipes, A. Winter ITER Organisation with contributions

More information

Green Solutions for the 21st Century Sustainable Development

Green Solutions for the 21st Century Sustainable Development Sprachenpreis 2008 Green Solutions for the 2st Century Sustainable Development Nuclear Fusion A Future Energy Source? Patric Sherif Medieninformatik Master S748648 Patric.sherif@gmail.com 06342050 24.09.2008

More information

Focus On : JET Plasma Heating and Current Drive

Focus On : JET Plasma Heating and Current Drive Focus On : JET Plasma Heating and Current Drive Contents: Ohmic Heating Neutral Beam Injection Plasma and electromagnetic waves Ion Cyclotron Resonant Heating Lower Hybrid Current Drive The goal of fusion

More information

1. Four different processes are described in List A. The names of these processes are given in List B.

1. Four different processes are described in List A. The names of these processes are given in List B. Nuclear fission and nuclear fusion 1. Four different processes are described in List A. The names of these processes are given in List B. Draw a line to link each description in List A to its correct name

More information

Fusion research programme in India

Fusion research programme in India Sādhanā Vol. 38, Part 5, October 2013, pp. 839 848. c Indian Academy of Sciences Fusion research programme in India SHISHIR DESHPANDE and PREDHIMAN KAW Institute for Plasma Research, Bhat village, Gandhinagar

More information

Physics 30 Modern Physics Unit: Fission and Fusion

Physics 30 Modern Physics Unit: Fission and Fusion Physics 30 Modern Physics Unit: Fission and Fusion Nuclear Energy For years and years scientists struggled to describe where energy came from. They could see the uses of energy and the results of energy

More information

An introduction to Nuclear Physics

An introduction to Nuclear Physics An introduction to Nuclear Physics Jorge Pereira pereira@nscl.msu.edu National Superconducting Cyclotron Laboratory Joint Institute for Nuclear Astrophysics The Origin of Everything Layout The Nucleus.

More information

PHYSICS OF CFETR. Baonian Wan for CFETR physics group Institute of Plasma Physcis, Chinese Academy of Sciences, Hefei, China.

PHYSICS OF CFETR. Baonian Wan for CFETR physics group Institute of Plasma Physcis, Chinese Academy of Sciences, Hefei, China. PHYSICS OF CFETR Baonian Wan for CFETR physics group Institute of Plasma Physcis, Chinese Academy of Sciences, Hefei, China Dec 4, 2013 Mission of CFETR Complementary with ITER Demonstration of fusion

More information

Helium Catalyzed D-D Fusion in a Levitated Dipole

Helium Catalyzed D-D Fusion in a Levitated Dipole Helium Catalyzed D-D Fusion in a Levitated Dipole Jay Kesner, L. Bromberg, MIT D.T. Garnier, A. Hansen, M.E. Mauel Columbia University APS 2003 DPP Meeting, Albuquerque October 27, 2003 Columbia University

More information

Conceptual Design of CFETR Tokamak Machine

Conceptual Design of CFETR Tokamak Machine Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies February 26-28, 2013 at Kyoto University in Uji, JAPAN Conceptual Design of CFETR Tokamak Machine Yuntao Song for CFETR Design

More information