D 3 He HA tokamak device for experiments and power generations


 Mercy Fletcher
 1 years ago
 Views:
Transcription
1 D He HA tokamak device for experiments and power generations USJapan Fusion Power Plant Studies Contents University of Tokyo, Japan January , 5 O.Mitarai (Kyushu Tokai University).Motivation.Formalism, control algorithm, and hot ion mode criterion.calculated results 4.Summary and further issues in collaboration with H.Matsuura (Kyushu University), Y.Tomita (NIFS)
2 . Motivation ST has a large potential for D He fusion. Although the large plasma current required for ignition can be ramped up by the vertical field and heating power even without the central solenoid, the following concerns may appear: []the plasma current itself is very large, []the plasma current changes when the plasma energy changes. []the current hole produced in the initial phase does not shrink due to long resistive decay time, leading to the high energy particle confinement problems, and q min = limitation of the plasma current. Purpose of this Using the central solenoid in the high aspect ratio tokamak, disadvantageous point of ST is removed. Namely, the current hole is removed in the initial low temperature phase, leading to improving the high energy particle confinement, q min limit, and the plasma current Feasibility of D He HA
3 . Formalism, Control algorithm, and Hot ion mode criterion.. dimensional particle and power balance equations Deuterium dn D () = ( +α n )S D (t) n D () τ D * [ ] ( +α n ) n D ()n T () σv DT (x) + n D () { σv DDPT (x) + σv DDHEN (x)}+ n D ()n He () σv DHE (x) Helium dn HE () = ( +α n )S HE (t) + (+ α n ) n () D σv DDHEN (x) n D ()n He () σv DHE (x) n () He * τ HE Tritium dn T () = ( +α n ) n D() σv DDPT (x) n D ()n T () σv DT (x) n T () * τ T Alpha ash dn α () = ( + α n ){ n D ()n T () σv DT (x) + n D ()n He () σv DHE (x)} n α () τ α * Proton ash dn p () = (+ α n ) n D () σv DDPT (x) + n D ()n He () σv DHE (x) n P () * τ P
4 Electron density n e () = n D () + n T () + n He () + n α () + n p () + ( + α n )Zn imp Power balance (T i /T e =.5) dt i () +α = n + α T.5e( f D + f T +/γ i + f He + f α + f P )n e () [{ P EXT /V o + P oh + P DHE + P DDPT + P DDHEN + P DT } { P L + P b + P s }] T i () ( ) f D + f T +/γ i + f He + f α + f P + γ i ( +α n )Zf imp ( ) n e () dn D () + dn T () where T i (x)/t i () = T e (x)/t e () = (x ) α T n(x)/n() = n α (x)/n α () = (x ) α n + dn P () + + γ i ( ( + α n )Zf imp ) n e () dn α () + dn He() Tokamak:.9.9 τ IPB (y,) =.56A i I p [MA]n.4 9 [ 9 m.97 ]R o [m]ε κ.78 B.5 to [T]/P.69 HT [MW ] τ AUX = γ HH τ IPB (y,) IPB98(y,) confinement law with τ E = min{τ NA, τ AUX } where the mass factor : 4
5 A i = {n D () + n HE () + n T ()}/{ n D () + n HE () + n T ()}.. Hot ion mode criterion. Energy transfer from ion to electron: ( ) P ie [ W / m ]=.4 5 n e ()[m ]/ f D + 4 f He + α n.5α T A D A He + f p A p + 4 f He4 A He4 + f T ln Λ j A T T i () T e () T e ()[kev].5 Ion power balance P f f i =P ie + P Li Electron power balance P f (f i )+P ie =P b +(P sw +P sv )+ P Lie where f i is the energy transfer fraction of the fusion power to ion. P f f i >P ie must be satisfied to have ion and electron power balances. The contour map of (P f f i  P ie ) is drawn on the nt i plane with MW. [] T i /T e =.5, f i =.8, f D =.54,f HE =.8,f T =.5,f p =.,f HE4 =.88, lnλ= T i >9 kev is necessasry 5
6 []Critical ion temperature vs ion energy fraction f i for T i /T e =.5 Higher temperature is required for the hot ion mode..5 5 Ticritical (ev) Fi 6
7 7
8 Even when the global power balance analysis gives us the answer, it is sometimes rejected by this criterion. [] Improper case: R eff =.9 Fusion power P f =6 MW(neutron)=6 MW Brems rad. P b =95 MW Synchrotron rad. P s =5+ MW Plasma conduction P L =865 MW n()=.6x m  T i = 8.5 kev, T e = 55.6 kev, T i T e = 7.9 kev P ie =8 MW 6f i =8 + 6(f i )+8 = f i > Impossible [] Proper case R eff =.99 Fusion power P f =6 MW(neutron)=7 MW Brems rad. P b =79 MW Synchrotron rad. P s = = MW Plasma conduction P L =69 MW n()=.8x m  T i =98 kev, T e =65. kev, T i T e =.7 kev P ie =798 MW 7 f i = (f i )+788 = For the limit of P Li =, f i >.8 is obtained. This criterion with f i =.8 gives us n() <.x m , 8
9 T i () > 98 kev for HA D He fusion reactor. 9
10 .. External heating power: P EXT HL [W] = M HL (t)x 6 P thresh  P oh +P F P b P s V o where P thresh [MW] =.84 n.58 [ m  ] B t.8 [T] R. [m] a.8 /A i.4. Fueling Total fueling is controlled by the minimum error between the three signals e DHE ( p f ) = ( P f / P fo ) e DHE (n) = ( n() / n() GW ) e DHE (< β >) = ( <β > / < β > MAX ) { } e DHE (min) = min e DHE (p f ),e DHE (n),e DHE (< β >) S DHE = S DHE e DHE (min) + T INT e DHE (min) + T d de DHE (min) where Integration time: T int = sec, Derivative time: T d =, D He Fuel ratio is controlled by n S D (t) = D () n D () + n He () + G NDHE e(n D / n He ) + o n S HE (t) = He () n D () + n He () + G NDHE e(n He / n D ) + o n where e(n D / n He ) = D () n D () + n He () o n e(n He / n D ) = He () n D () + n He () o T DHE int T DHE int n D () n D () + n He () n He () n D () + n He () t e(n D / n He ) S (t) DHE t e(n He / n D ) S (t) The fuel ratio: n D : n He = : ~.4 particle confinement time ratio : τ D */τ E = τ HE */τ E = τ T */τ E = τ p */τ E = τ α */τ E = ~ prompt loss of fusion products is to be zero.
11 .5. Plasma circuit equation: Plasma circuit equation: L p di p di + R p (I p I CD I BS ) = M V PV and the vertical field + M Psh di sh + M Pdiv di div + V OH () B VE = B zov I V  B zodiv I div + B zosh I sh () provides the equivalent circuit equation with α div = I div /I p and α sh = I sh /I V, di p L peff = R peff I p M PV + M Psh α sh db VE + V B zov + B zosh α sh OH () where L peff = L p + M Pdiv M PV + M Psh α sh B zov + B zosh α sh B zodiv α div R peff = R p ( f CD f BS ) f BS = I BS / I p = C BS εβ p C BS =.5 α div =.,α sh = Feedback controlled OH by V OH =(I p /I po ) As the vertical field drives the plasma current, the OH contribution is reduced during the fusion power riseup phase.
12
13 .6. D He Tokamak device (5m,.5m) BL (.5m, 6.5m) BT ITER FEAT (4m, m) 6 m m 8 m 6 m 4 m ITERFEAT Cross section of D He ST "Thermonuclear Boiler Plant" Final ST D He HAT Although machine sizes of D He HAT are slightly larger than the present ITER, it may be constructed with the present technology in spite of the larger plasma parameters. Radial build: R=7.5 m, a=. m, SO =. m, BL =.8 m, SP =. m, BT =. m, OH =.8m (total gap =.4 m) OH coil:r OH =R a  SO  BL  SP  BT  OH / =.7 m B OH =. T, Φ OH = πr OH (B OH )=9.7x(B OH ) = 7 Vs
14 . Calculated results of temporal evolution.. Power generation plant without parameter constraints [] Wall reflection R eff =.95, n/n GW =.8, β max =.7%, T i /T e =.5,τ p * /τ E =, D: He=.46:.54, f ash =5.7%, P f =. GW, Ignition, P n =75 MW, P e = MW [4%] n()=.4x m , T i ()=99.9 kev, P f f i =4 MW>P ie =5 MW n() (m  ) f ash NE FASH PF PF T T i () (ev) P f BETAP. P n I p P EXT β p τ E (s) Flux(Vs) PNV IP BVFLUX OHFLUX PEXT TAUE (g) BETAA MHLI BV ICD IBS SSDD SSHE β t M HL B v (T) Time (s) TOTFLUX I CD S D.S He (m  /s ) 4
15 [] Worse wall reflection R eff =.9, n/n GW =.65, β max =.9% T i /T e =.5,τ * p /τ E =, D: He=.6:.4, f ash =5.9%,,P f =. GW, Ignition, P n =4MW, P e = MW [4%] n()=.7x m , T i ()= kev, P f f i =89 MW>P ie =76 MW 5
16 n() (m  ) f ash NE FASH TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT Flux(Vs) β p PNV IP BVFLUX OHFLUX PEXT (h) (g) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX [] Good wall reflection R eff =.99, n/n GW =.85, β max =4.%, T i /T e =.5,τ * p /τ E =, D: He=.4:.58, f ash =5.4%, P f =. GW, Ignition, P n =6MW, P e = MW [4%], I CD S D.S He (m  /s ) 6
17 n()=.46x m , T i ()= kev, P f f ion =5 MW>P ie =9 MW If a wall reflection is good, the neutron power can be further reduced. n() (m  ) f ash NE FASH (b) TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (g) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX.. Possible power generation experiments with parameter constraints : [4] The beta limit: β max =.%, n/n GW =.6, I CD S D.S He (m  /s ) 7
18 R eff =.95, T i /T e =.5,τ p * /τ E =, D: He=.5:.5, f ash =5.5%, P f =.4 GW, Ignition, P n =74MW, P e =877 MW [4%] n()=.x m , T i ()=98.5 kev, P f f i =887 MW>P ie =79 MW n() (m  ) f ash NE FASH (b) TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (h) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX [5] Additional density limit : n/n GW =.5, β max =.%, R eff =.95, T i /T e =.5,τ p * /τ E =, D: He=.5:.48, f ash =5.5%, P f =. I CD S D.S He (m  /s ) 8
19 GW, Ignition, P n =7W, P e =755 MW [4%] n()=.79x m , T i ()=97 kev, P f f i =64 MW >P ie =58 MW n() (m  ) f ash NE FASH (b) TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (g) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX [6] The beta limit : β max =.%, n/n GW =.4, I CD S D.S He (m  /s ) 9
20 R eff =.95, T i /T e =.5,τ * p /τ E =, D: He=.54:.46, f ash =5.9%, P f =.8 GW, Ignition, P n =68MW, P e =6 MW [4%] n()=.59x m , T i ()=94 kev, P f f i =7 MW>P ie =7 MW n() (m  ) f ash NE FASH (a) (b) TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (h) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX I CD S D.S He (m  /s )
21 [7] Additional density limit : n/n GW =., β max =6.8% R eff =.95, T i /T e =.5,τ p * /τ E =, D: He=.6:.4, f ash =6%, P f =.87 GW, SubIgnition, P n =47MW, P e = MW [4%], Q E =.7 n()=.86x m , T i ()=87 kev, P f f ion =78 MW>P ie =696 MW n() (m  ) f ash NE FASH TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (g) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX I CD S D.S He (m  /s )
22 [8] Long particle confinement time : τ * p /τ E =, f ash =8.5% R eff =.95, T i /T e =.5,D: He=.58:.4, n/n GW =.6, β max =.8%, P f =.7 GW, Ignition, P n =MW, P e =88 MW [4%] n()=.98x m , T i ()=95 kev, P f f i =795 MW>P ie =674 MW
23 n() (m  ) f ash NE (a) FASH (b) PF PF T T i () (ev) P f BETAP (c). P n I p P EXT β p τ E (s) Flux(Vs) PNV TAUE (e) IP BVFLUX OHFLUX PEXT (h) (f) (g) (d) BETAA MHLI BV ICD IBS SSDD SSHE β t M HL B v (T) Time (s) TOTFLUX I CD S D.S He (m  /s )
24 [9] He rich operation (Possibly He plasma +Dbeam with E> MeV),τ * p /τ E =4, D: He=.:.7, f ash =.67%, Hmode operation,p f =44 MW, P n =.5 W, P EXT = MW, P e =8 MW[4%], Q E =.4,n()=6.x 9 m , T i ()=7 kev, P f f i =97 MW>P ie =9 MW 4
25 n() (m  ) 4 NE T T i () (ev) f ash FASH TAUE (c) PF PF P f τ E (s) 5 MHLI. M HL BETAP (d). β p BETAA. β t P n I p P EXT Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (g) (e) BV ICD IBS SSDD SSHE.5.5 B v (T) Time (s) TOTFLUX I CD S D.S He (m  /s ) 5
26 .. Parameters of D He HAT: No Limit Beta limit Density limit Beta limit β % n/n GW.5 β % Major radius: R 7.5 m Minor radius: a. m... Toroidal field: B o T Maximum field: B max. T... Radius B t coil : BT.8m.8m.8m.8m Plasma Current: I p 4 MA Safety factor: Q MHD Internal inductance l i Plasma inductance: L p 7.4 µh Heating power: P EXT > MW > >.6 >.7 Plasma volume: V m Confinement factor over IPB(y,) scaling : γ HH.... Confinement time: τ E 7. s Ash density fraction: f ash 5.7% Be impurity fraction: f Be % Effective charge: Z eff Particle confinement time ratio: τ α */τ E =τ p */τ E Fuel ratio: n D :n He.46:.54.5:.5.5:.48.54:.46 Fusion product heating efficiency: η α = η p =.. Wall reflectivity: R eff Hole fraction ; f H.... Density profile: α n.... Temperature profile: α T.... Electron density: n().4x m .87x.8x.8x Greenwald factor n()/n() GW Ion temperature: T i () kev Tmperature ratio: T i ()/T e () Toroidal beta value: <β >.7%... Poloidal beta value: Normalized beta value: <β p > β Fusion power: P f MW 4 78 Neutron power: P n 75 MW Bremsstrahlung loss: P b 958MW Synchrotron radiation loss to the wall: P s 47 MW 89 for energy conv.: P s Plasma conduction loss: P L 48 MW Electric power (η c =4%) P e Average neutron wall loading Γ n.47 MW/m Average heat flux: Γ h.94 MW/m Divertor heat load Γ div.5mw/m P L /(πrx m) Energy multiplication Q F
27 Density limit Worse He rich n/n GW. p/e ratio operation Major radius: R 7.5 m Minor radius: a. m... Toroidal field: B o T Maximum field: B max. T... Radius B t coil : BT.8m.8m.8m.8m Plasma Current: I p 4 MA Safety factor: Q MHD Internal inductance l i Plasma inductance: L p 7.4 µh Heating power: P EXT >85. MW > >.5 > Plasma volume: V m Confinement factor over IPB(y,) scaling : γ HH.... Confinement time: τ E 5. s Ash density fraction: f ash 6.% Be impurity fraction: f Be % Effective charge: Z eff Particle confinement time ratio: τ α */τ E =τ p */τ E 4 4 Fuel ratio: n D :n He.6:.4.6:.4.58:.4.:.7 Fusion product heating efficiency: η α = η p =.. Wall reflectivity: R eff Hole fraction ; f H.... Density profile: α n.... Temperature profile: α T.... Electron density: n().86x m .x.98x.6x Greenwald factor n()/n() GW Ion temperature: T i () 87 kev Tmperature ratio: T i ()/T e () Toroidal beta value: Poloidal beta value: <β > <β p > Normalized beta value: β Ν Fusion power: P f 66 MW Neutron power: P n 47 MW Bremsstrahlung loss: P b 45 MW Synchrotron radiation loss to the wall: P s 5 MW for energy conv.: P s Plasma conduction loss: P L 4 MW Electric power (η c =4%) P e MW Average neutron wall loading Γ n. MW/m.8.7. Average heat flux: Γ h.6 MW/m.6.7. Divertor heat load Γ div 7. MW/m P L /(πrx m) Energy multiplication Q E
28 4. Summary and issues [] D He HA Tokmak device is proposed with R= 7.5 m, a=.m, B to = 5~6.5 T, (5.5 T in Plasma current of ~4MA (7 MA in IPB98y confinement factor γ HH =. (. in Wall Low ash confinement ratio of >low neutron power of 75 MW Ash confinement time ratio of 4 is Neutron wall loading.4 Heat flux=.87 MW/m (. MW/m Greenwald factor<.8 (.5 in β=. % (.8%) (β=.6 % in DIIID) A D He tokamak reactor would be possible within small extension of the present data base. *For reference D He ST reactor GW power 5.6 m, a=.4m, B to = 4.4 power and vertical field ramp to 9 MA (NSTX <.5 confinement factor γ HH =.5 ~.8 (NSTX flux =.99 MW/m (. MW/m factor=.9 (.5 in DIIID,ASDEX heating power MW (β=8 % in toroidal field B max =.5 T(Bihigh temperature superconductor B max = T) 8
29 @ash confinement time ratio up to 5 (4 at wall reflection (R ash confinement time ratio down to >low neutron power of 5 MW, low neutron wall loading of. MW/m. [] Common issues in D He reactors () A large fraction (8 %) of the fusion power should go to ions to keep the hot ion mode of T i /T e =.5. [] Nuclear elastic scattering (Nakao and Matsuura) may provide 4 %. [] The rest of 4 % should be provided by the stochastic ion heating (D.Gates et al ) as observed in NSTX, NSTX: T i /T e = for V NBI ~ 4V A D He ST reactor: V α ~.8V A,V p ~ 7.5V A D He HA tokamak reactor: V α ~.7V A, V p ~ 5.5V A and gyrostream cyclotron instability as proposed by Cheng. () Divertor heat flux is very large Pebble divertor by Nishikawa Ga Liquid divertor 9
Introduction to Fusion Physics
Introduction to Fusion Physics Hartmut Zohm MaxPlanckInstitut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction
More informationFusion Nuclear Science  Pathway Assessment
Fusion Nuclear Science  Pathway Assessment C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD July 29, 2010 Basic Flow of FNSPathways Assessment 1. Determination of DEMO/power plant parameters and requirements,
More informationDesign window analysis of LHDtype Heliotron DEMO reactors
Design window analysis of LHDtype Heliotron DEMO reactors Fusion System Research Division, Department of Helical Plasma Research, National Institute for Fusion Science Takuya GOTO, Junichi MIYAZAWA, Teruya
More informationRecent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science
Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant
More informationInnovative fabrication method of superconducting magnets using high T c superconductors with joints
Innovative fabrication method of superconducting magnets using high T c superconductors with joints (for huge and/or complicated coils) Nagato YANAGI LHD & FFHR Group National Institute for Fusion Science,
More informationFusion Nuclear Science (FNS) Mission & High Priority Research
Fusion Nuclear Science (FNS) Mission & High Priority Research Topics Martin Peng, Aaron Sontag, Steffi Diem, John Canik, HM Park, M. Murakami, PJ Fogarty, Mike Cole ORNL 15 th International Spherical Torus
More informationTokamak Fusion Basics and the MHD Equations
MHD Simulations for Fusion Applications Lecture 1 Tokamak Fusion Basics and the MHD Equations Stephen C. Jardin Princeton Plasma Physics Laboratory CEMRACS 1 Marseille, France July 19, 21 1 Fusion Powers
More informationChapter 12. Magnetic Fusion Toroidal Machines: Principles, results, perspective
Chapter 12 Magnetic Fusion Toroidal Machines: Principles, results, perspective S. Atzeni May 10, 2010; rev.: May 16, 2012 English version: May 17, 2017 1 Magnetic confinement fusion plasmas low density
More informationIntroduction to Fusion Physics
Introduction to Fusion Physics J. W. Haverkort October 15, 2009 Abstract This is a summary of the first eight chapters from the book Plasma Physics and Fusion Energy by Jeffrey P. Freidberg. Contents 2
More informationDirect drive by cyclotron heating can explain spontaneous rotation in tokamaks
Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.J. Zheng Institute for Fusion Studies University of Texas at Austin 12th USEU Transport Task Force Annual
More informationResearch of Basic Plasma Physics Toward Nuclear Fusion in LHD
Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Akio KOMORI and LHD experiment group National Institute for Fusion Science, Toki, Gifu 5095292, Japan (Received 4 January 2010 / Accepted
More informationGA A23736 EFFECTS OF CROSSSECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT
GA A3736 EFFECTS OF CROSSSECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an
More informationTRANSP Simulations of ITER Plasmas
PPPL3152  Preprint Date: December 1995, UC420, 421, 427 TRANSP Simulations of ITER Plasmas R. V. Budny, D. C. McCune, M. H. Redi, J. Schivell, and R. M. Wieland Princeton University Plasma Physics Laboratory
More informationImpact of neutral atoms on plasma turbulence in the tokamak edge region
Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint VarennaLausanne International
More informationTokamak operation at low q and scaling toward a fusion machine. R. Paccagnella^
Tokamak operation at low q and scaling toward a fusion machine R. Paccagnella^ Consorzio RFX, Associazione EuratomENEA sulla Fusione, Padova, Italy ^ and Istituto Gas Ionizzati del Consiglio Nazionale
More informationTungsten impurity transport experiments in Alcator CMod to address high priority R&D for ITER
Tungsten impurity transport experiments in Alcator CMod to address high priority R&D for ITER M.L. Reinke 1, A. Loarte 2, M. Chilenski 3, N. Howard 3, F. Köchl 4, A. Polevoi 2, A. Hubbard 3, J.W. Hughes
More informationThe RFP: Plasma Confinement with a Reversed Twist
The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of WisconsinMadison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed
More informationA THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS
A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS Presented by D.P. SCHISSEL Presented to APS Centennial Meeting March 20 26, 1999 Atlanta, Georgia
More informationFUSION and PLASMA PHYSICS
FUSION and PLASMA PHYSICS My objectives: to explain why Nuclear Fusion is worth pursuing to describe some basic concepts behind magnetic confinement to summarize the history of fusion to describe some
More informationStability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye
Stability Properties of Toroidal Alfvén Modes Driven by Fast Particles Λ N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton,
More informationITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model
1 THC/33 ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model J.E. Kinsey, G.M. Staebler, J. Candy, and R.E. Waltz General Atomics, P.O. Box 8608, San Diego, California
More informationMHD instability driven by suprathermal electrons in TJII stellarator
MHD instability driven by suprathermal electrons in TJII stellarator K. Nagaoka 1, S. Yamamoto 2, S. Ohshima 2, E. Ascasíbar 3, R. JiménezGómez 3, C. Hidalgo 3, M.A. Pedrosa 3, M. Ochando 3, A.V. Melnikov
More informationPerspective on Fusion Energy
Perspective on Fusion Energy Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology (UCLA) President, Council of Energy Research
More informationCharacterization of neoclassical tearing modes in highperformance I mode plasmas with ICRF mode conversion flow drive on Alcator CMod
1 EX/P422 Characterization of neoclassical tearing modes in highperformance I mode plasmas with ICRF mode conversion flow drive on Alcator CMod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.
More informationPhysics of the detached radiative divertor regime in DIIID
Plasma Phys. Control. Fusion 41 (1999) A345 A355. Printed in the UK PII: S7413335(99)972998 Physics of the detached radiative divertor regime in DIIID M E Fenstermacher, J Boedo, R C Isler, A W Leonard,
More informationSTABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK
GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This
More informationPlasma impurity composition in Alcator CMod tokamak.
Plasma impurity composition in Alcator CMod tokamak. I. O. Bespamyatnov a, W. L. Rowan a, K. T. Liao a, M. Brookman a, M. L. Reinke b, E. S. Marmar b, M. J. Greenwald b a Institute for Fusion Studies,
More informationReferences and Figures from:  Basdevant, Fundamentals in Nuclear Physics
Lecture 22 Fusion Experimental Nuclear Physics PHYS 741 heeger@wisc.edu References and Figures from:  Basdevant, Fundamentals in Nuclear Physics 1 Reading for Next Week Phys. Rev. D 57, 38733889 (1998)
More informationA kinetic neutral atom model for tokamak scrapeoff layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva
A kinetic neutral atom model for tokamak scrapeoff layer tubulence simulations Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva CRPP  EPFL SPS Annual Meeting 2014 02.07.2014 CRPP The tokamak
More informationEffects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal
Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.
More informationWhere are we with laser fusion?
Where are we with laser fusion? R. Betti Laboratory for Laser Energetics Fusion Science Center Dept. Mechanical Engineering and Physics & Astronomy University of Rochester HEDSA HEDP Summer School August
More informationBrazilian Journal of Physics ISSN: Sociedade Brasileira de Física Brasil
Brazilian Journal of Physics ISSN: 01039733 luizno.bjp@gmail.com Sociedade Brasileira de Física Brasil Araújo, Arione; Pereira, Claubia; Fortini Veloso, Maria Auxiliadora; Lombardi Costa, Antonella; Moura
More informationA Passion for Plasma Physics and Nuclear Fusion Research. K. A. Connor Plasma Dynamics Laboratory ECSE Department RPI
A Passion for Plasma Physics and Nuclear Fusion Research K. A. Connor Plasma Dynamics Laboratory ECSE Department RPI 1 Topics Quick Intro to magnetic confinement fusion energy What is a plasma? Demos Diagnostic
More informationW.M. Solomon 1. Presented at the 54th Annual Meeting of the APS Division of Plasma Physics Providence, RI October 29November 2, 2012
Impact of Torque and Rotation in High Fusion Performance Plasmas by W.M. Solomon 1 K.H. Burrell 2, R.J. Buttery 2, J.S.deGrassie 2, E.J. Doyle 3, A.M. Garofalo 2, G.L. Jackson 2, T.C. Luce 2, C.C. Petty
More informationPROGRESS IN STEADYSTATE SCENARIO DEVELOPMENT IN THE DIIID TOKAMAK
PROGRESS IN STEADYSTATE SCENARIO DEVELOPMENT IN THE DIIID TOKAMAK by T.C. LUCE, J.R. FERRON, C.T. HOLCOMB, F. TURCO, P.A. POLITZER, and T.W. PETRIE GA A26981 JANUARY 2011 DISCLAIMER This report was prepared
More informationThe International MultiTokamak Profile Database
The International MultiTokamak Profile Database The ITER 1D Modelling Working Group: D. Boucher a, J.W. Connor b, W.A. Houlberg c,m.f.turner b, G. Bracco d, A. Chudnovskiy a,e,j.g.cordey b, M.J. Greenwald
More informationβ and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of βdecay Beta decay Y + e # Y'+e +
β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Last Lecture: Radioactivity, Nuclear decay Radiation damage This lecture: nuclear physics in medicine and fusion and fission Final
More informationDisruption Mitigation on Tore Supra
1 EX/16Rc Disruption Mitigation on Tore Supra G. Martin, F. Sourd, F. SaintLaurent, J. Bucalossi, L.G. Eriksson Association EuratomCEA, DRFC/STEP, CEA/Cadarache F1318 SAINT PAUL LEZ DURANCE / FRANCE
More informationGA A26874 ITER PREDICTIONS USING THE GYRO VERIFIED AND EXPERIMENTALLY VALIDATED TGLF TRANSPORT MODEL
GA A26874 ITER PREDICTIONS USING THE GYRO VERIFIED AND EXPERIMENTALLY VALIDATED TGLF TRANSPORT MODEL by J.E. KINSEY, G.M. STAEBLER, J. CANDY and R.E. WALTZ NOVEMBER 20 DISCLAIMER This report was prepared
More informationpurposes is highly encouraged.
The following slide show is a compilation of slides from many previous similar slide shows that have been produced by different members of the fusion and plasma physics education community. We realize
More informationITER  the decisive step towards Fusion Energy. DPG  Bonn  March 15 th Guenter Janeschitz
ITER  the decisive step towards Fusion Energy DPG Bonn March 15 th 2010 Guenter Janeschitz Senior Scientific Advisor for Technical Integration (SSATI) to the PDDG ITER Organization, Route de Vinon, CS
More informationPhysicsmodelbased Optimization and Feedback Control of the Current Profile Dynamics in Fusion Tokamak Reactors
Lehigh University Lehigh Preserve Theses and Dissertations 215 Physicsmodelbased Optimization and Feedback Control of the Current Profile Dynamics in Fusion Tokamak Reactors Justin Edwin Barton Lehigh
More informationJ. Kesner. April Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts USA
PFC/JA8838 Effect of Local Shear on Drift Fluctuation Driven T'ransport in Tokamaks J. Kesner April 1989 Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts 2139 USA Submitted
More informationStatistical analysis of fluctuations in the Alcator CMod scrapeoff layer
FACULTY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF PHYSICS AND TECHNOLOGY Statistical analysis of fluctuations in the Alcator CMod scrapeoff layer Sindre Markus Fritzner FYS39 Master s Thesis in Physics
More informationToroidal confinement of nonneutral plasma. Martin Droba
Toroidal confinement of nonneutral plasma Martin Droba Contents Experiments with toroidal nonneutral plasma Magnetic surfaces CNT and IAPhigh current ring Conclusion 2. Experiments with toroidal nonneutral
More informationIon beam analysis methods in the studies of plasma facing materials in controlled fusion devices
Vacuum 70 (2003) 423 428 Ion beam analysis methods in the studies of plasma facing materials in controlled fusion devices M. Rubel a, *, P. Wienhold b, D. Hildebrandt c a Alfv!en Laboratory, Royal Institute
More informationQTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team*
ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 38th APS/DPP Meeting NOVEMBER 11 15, 1996 Denver, Colorado
More informationGA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME
GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME by R. NAZIKIAN, M.E. AUSTIN, R.V. BUDNY, M.S. CHU, W.W. HEIDBRINK, M.A. MAKOWSKI, C.C. PETTY, P.A. POLITZER, W.M. SOLOMON, M.A.
More informationConfinement and Transport Research in Alcator CMod
PSFC/JA0532. Confinement and Transport Research in Alcator CMod M. Greenwald, N. Basse, P. Bonoli, R. Bravenec 1, E. Edlund, D. Ernst, C. Fiore, R. Granetz, A. Hubbard, J. Hughes, I. Hutchinson, J.
More informationImportant problems of future thermonuclear reactors*
NUKLEONIKA 2015;60(2):331 338 doi: 10.1515/nuka20150001 ORIGINAL PAPER Important problems of future thermonuclear reactors* Marek J. Sadowski Abstract. This paper concerns important and difficult problems
More information(a) (b) Fig. 1  The LEP/LHC tunnel map and (b) the CERN accelerator system.
Introduction One of the main events in the field of particle physics at the beginning of the next century will be the construction of the Large Hadron Collider (LHC). This machine will be installed into
More informationSTATUS OF DEMOFNS DEVELOPMENT
FNS/11 NATIONAL RESEARCH CENTER KURCHATOV INSTITUTE НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР «КУРЧАТОВСКИЙ ИНСТИТУТ» STATUS OF DEMOFNS DEVELOPMENT B.V. Kuteev, Yu.S. Shpanskiy and DEMOFNS Team Shpanskiy_YS@nrcki.ru
More informationEvolution of the ITER program and prospect for the nextstep fusion DEMO reactors: status of the fusion energy R&D as ultimate source of energy
Journal of Nuclear Science and Technology ISSN: 00223131 (Print) 18811248 (Online) Journal homepage: http://www.tandfonline.com/loi/tnst20 Evolution of the ITER program and prospect for the nextstep
More informationSupported by. Role of plasma edge in global stability and control*
NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U
More informationComparison of tungsten fuzz growth in Alcator CMod and linear plasma devices
Comparison of tungsten fuzz growth in Alcator CMod and linear plasma devices G.M. Wright 1, D. Brunner 1, M.J. Baldwin 2, K. Bystrov 3, R. Doerner 2, B. LaBombard 1, B. Lipschultz 1, G. de Temmerman 3,
More informationThe Future of Boundary Plasma and Material Science
The Future of Boundary Plasma and Material Science Dennis Whyte Plasma Science & Fusion Center, MIT, Cambridge USA Director, Plasma Surface Interaction Science Center (psisc.org) APS Sherwood Meeting of
More informationPrinceton University, Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey , USA. Abstract
PPPL3151  Preprint Date: December 1995, UC420,426 Enhanced Loss of Fast Ions During Mode Conversion Ion Bernstein Wave Heating in TFTR D. S. Darrow, R. Majeski, N. J. Fisch, R. F. Heeter, H. W. Herrmann,
More informationProduction of Overdense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device
Production of Overdense Plasmas by Launching 2.45GHz Electron Cyclotron Waves in a Helical Device R. Ikeda a, M. Takeuchi a, T. Ito a, K. Toi b, C. Suzuki b, G. Matsunaga c, S. Okamura b, and CHS Group
More informationAlfvén Cascade modes at high β in NSTX*
Supported by Office of Science Alfvén Cascade modes at high β in NSTX* College W&M Colorado Sch Mines Columbia U CompX FIU General Atomics INL Johns Hopkins U Lehigh U LANL LLNL Lodestar MIT Nova Photonics
More informationSuperconducting Magnets for Fusion and the ITER Project
Superconducting Magnets for Fusion and the ITER Project Presented by Joseph V. Minervini Massachusetts Institute of Technology Plasma Science and Fusion Center Cambridge, MA American Nuclear Society Northeast
More informationTH/P614 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a)
1 TH/P614 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 Chang, C.S., 1 Ku, S., 2 Adams M., 3 D Azevedo, G., 4 Chen, Y., 5 Cummings,
More informationIntrinsic rotation reversal, nonlocal transport, and turbulence transition in KSTAR Lmode plasmas
1 Nuclear Fusion Intrinsic rotation reversal, nonlocal transport, and turbulence transition in KSTAR Lmode plasmas Y.J.Shi 1, J.M. Kwon 2, P.H.Diamond 3, W.H.Ko 2, M.J.Choi 2, S.H.Ko 2, S.H.Hahn 2, D.H.Na
More informationNonlinear Diffusion in Magnetized Discharges. Francis F. Chen. Electrical Engineering Department
Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical Engineering Department PPG1579 January, 1998 Revised April, 1998 Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical
More informationNJCTL.org 2015 AP Physics 2 Nuclear Physics
AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?
More informationHard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C Mod
Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C Mod J. Liptac, J. Decker, R. Parker, V. Tang, P. Bonoli MIT PSFC Y. Peysson CEA Cadarache APS 3 Albuquerque, NM Abstract A Lower Hybrid
More informationRadiation Detection for the Beta Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons
Radiation Detection for the Beta Delayed Alpha and Gamma Decay of 20 Na Ellen Simmons 1 Contents Introduction Review of the Types of Radiation Charged Particle Radiation Detection Review of Semiconductor
More informationStellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK
Stellarators Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 6 th February 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously... Toroidal devices
More informationOverview of FRCrelated modeling (July 2014present)
Overview of FRCrelated modeling (July 2014present) Artan Qerushi AFRLUCLA Basic Research Collaboration Workshop January 20th, 2015 AFTC PA Release# 15009, 16 Jan 2015 Artan Qerushi (AFRL) FRC modeling
More informationSimulations of HMode Plasmas in Tokamak Using a Complete CoreEdge Modeling in the BALDUR Code
Plasma Science and Technology, Vol.14, No.9, Sep. 2012 Simulations of HMode Plasmas in Tokamak Using a Complete CoreEdge Modeling in the BALDUR Code Y. PIANROJ, T. ONJUN School of Manufacturing Systems
More informationICRH Experiments on the Spherical Tokamak GlobusM
1 Experiments on the Spherical Tokamak GlobusM V.K.Gusev 1), F.V.Chernyshev 1), V.V.Dyachenko 1), Yu.V.Petrov 1), N.V.Sakharov 1), O.N.Shcherbinin 1), V.L.Vdovin 2) 1) A.F.Ioffe PhysicoTechnical Institute,
More informationVariation of Turbulence and Transport with the Te/Ti Ratio in HMode Plasmas
Variation of Turbulence and Transport with the Te/Ti Ratio in HMode Plasmas by G.R. McKee with C.H. Holland, C.C. Petty, H. Reimerdes,5, T.R. Rhodes6,L. Schmitz6, S. Smith, I.U. UzunKaymak, G. Wang6,
More informationNUCLEAR MISSIONS FOR FUSION (TRANSMUTATION, FISSILE BREEDING & Pu DISPOSITION) W. M. Stacey June 18, 2003
NUCLEAR MISSIONS FOR FUSION (TRANSMUTATION, FISSILE BREEDING & Pu DISPOSITION) W. M. Stacey June 18, 2003 SUMMARY There are potential applications of fusion neutron sources to drive subcritical fission
More informationWhat place for mathematicians in plasma physics
What place for mathematicians in plasma physics Eric Sonnendrücker IRMA Université Louis Pasteur, Strasbourg projet CALVI INRIA Nancy Grand Est 1519 September 2008 Eric Sonnendrücker (U. Strasbourg) Math
More informationDivertor power deposition and target current asymmetries during typei ELMs in ASDEX Upgrade and JET
Journal of Nuclear Materials 363 365 (2007) 989 993 www.elsevier.com/locate/jnucmat Divertor power deposition and target current asymmetries during typei ELMs in ASDEX Upgrade and JET T. Eich a, *, A.
More informationThe Design and Fabrication of a 6 Tesla EBIT Solenoid
LBNL40462 SCMAG593 The Design and Fabrication of a 6 Tesla EBIT Solenoid 1. Introduction M. A. Green a, S. M. Dardin a, R. E. Marrs b, E. Magee b, S. K. Mukhergee a a Lawrence Berkeley National Laboratory,
More informationTRANSMUTATION OF CESIUM135 WITH FAST REACTORS
TRANSMUTATION OF CESIUM3 WITH FAST REACTORS Shigeo Ohki and Naoyuki Takaki Oarai Engineering Center Japan Nuclear Cycle Development Institute (JNC) 42, Naritacho, Oaraimachi, HigashiIbarakigun,
More informationDemountable Superconducting Magnet Coils
FESAC TEC Report 1 Demountable Superconducting Magnet Coils A strategic technology to address key nuclear materials, construction, and maintenance issues Brandon Sorbom, Bob Mumgaard, Joseph Minervini,
More informationGA A27849 APPLICATION OF ELECTRON CYCLOTRON HEATING TO THE STUDY OF TRANSPORT IN ITER BASELINE SCENARIOLIKE DISCHARGES IN DIIID
GA A27849 APPLICATION OF ELECTRON CYCLOTRON HEATING TO THE STUDY OF TRANSPORT IN ITER BASELINE by R.I. PINSKER, M.E. AUSTIN, D.R. ERNST, A.M. GAROFALO, B.A. GRIERSON, J.C. HOSEA, T.C. LUCE, A. MARINONI,
More informationPresentation by Herb Berk University of Texas at Austin Institute for Fusion Studies in Vienna, Austria Sept. 14, 2015
Review of Theory Papers at 14 th IAEA technical meeting on Engertic Particles in Magnetic Confinement systems Presentation by Herb Berk University of Texas at Austin Institute for Fusion Studies in Vienna,
More informationAluminum HalfLife Experiment
Aluminum HalfLife Experiment Definition of halflife (t ½ ): The halflife of any declining population is the time required for the population to decrease by a factor of 50%. Radioactive isotopes represent
More informationLecture 20: Fusion as a Future Energy Source?
Lecture 20: Fusion as a Future Energy Source? Photo by NASA Visible Earth, Goddard Space Flight Center Scientific Visualization Studio. Dr. John C. Wright MIT Plasma Science & Fusion Center 28 Oct 2010
More informationCore Design. Derek Sutherland, Cale Kasten Choongki Sung, Tim Palmer Paul Bonoli, Dennis Whyte
Core Design Derek Sutherland, Cale Kasten Choongki Sung, Tim Palmer Paul Bonoli, Dennis Whyte 22.63  May 17, 2012 Primary Design Goals Qp ~ 25 and Qe > 3, with thermal output of ~ 500 MW. Develop a robust,
More informationPoS(FNDA2006)093. Fusion neutronics experiments
*,1, M. Angelone 2, P. Batistoni 2, U. Fischer 3, H. Freiesleben 1, A. Klix 1, D. Leichtle 3, M. Pillon 2, E. Pönitz 1+, I. Schäfer 4, S. Unholzer 1 1 TU Dresden, Institut für Kern und Teilchenphysik,
More informationNuclear Fission. Q for 238 U + n 239 U is 4.??? MeV. E A for 239 U 6.6 MeV MeV neutrons are needed.
Q for 235 U + n 236 U is 6.54478 MeV. Table 13.11 in Krane: Activation energy E A for 236 U 6.2 MeV (Liquid drop + shell) 235 U can be fissioned with zeroenergy neutrons. Q for 238 U + n 239 U is 4.???
More informationDEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS
DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 66 NUCLEAR PHYSICS IB Assessment Statements Topic 13.2, Nuclear Physics 13.2.1. Explain how the radii of nuclei may be estimated from
More information1 EX/P59 International Stellarator/Heliotron Database Activities on HighBeta Confinement and Operational Boundaries
1 International Stellarator/Heliotron Database Activities on HighBeta Confinement and Operational Boundaries A. Weller 1), K.Y. Watanabe 2), S. Sakakibara 2), A. Dinklage 1), H. Funaba 2), J. Geiger 1),
More informationNuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building.
Nuclear Physics PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html Periodic table of elements We saw that the periodic table of elements can
More informationPhase ramping and modulation of reflectometer signals
4th Intl. Reflectometry Workshop  IRW4, Cadarache, March 22nd  24th 1999 1 Phase ramping and modulation of reflectometer signals G.D.Conway, D.V.Bartlett, P.E.Stott JET Joint Undertaking, Abingdon, Oxon,
More informationIntroduction to Nuclear Physics Physics 124 Solution Set 6
Introduction to Nuclear Physics Physics 124 Solution Set 6 J.T. Burke January 18, 2000 1 Problem 22 In order to thermalize a neutron it must undergo multiple elastic collisions. Upon each interaction it
More informationMagneticallyChanneled SIEC Array (MCSA) Fusion Device for Interplanetary Missions
MagneticallyChanneled SIEC Array (MCSA) Fusion Device for Interplanetary Missions G. H. Miley, R. Stubbers, J. Webber, H. Momota University of Illinois, UC,Department of Nuclear, Plasma and Radiological
More informationDivertor Detachment on TCV
Divertor Detachment on TCV R. A. Pitts, Association EURATOMConfédération Suisse,, CH LAUSANNE, Switzerland thanks to A. Loarte a, B. P. Duval, J.M. Moret, J. A. Boedo b, L. Chousal b, D. Coster c, G.
More informationSolid State Physics FREE ELECTRON MODEL. Lecture 17. A.H. Harker. Physics and Astronomy UCL
Solid State Physics FREE ELECTRON MODEL Lecture 17 A.H. Harker Physics and Astronomy UCL Magnetic Effects 6.7 Plasma Oscillations The picture of a free electron gas and a positive charge background offers
More informationFrancesco Paolo Orsitto
DEMO design and Diagnostics : a short summary of studies in EU Francesco Paolo Orsitto Columbia University 10042015 Outline 1. Short Introduction on present status of tokamak plasma scenarios Aims :
More informationSignificance of MHD Effects in Stellarator Confinement
Significance of MHD Effects in Stellarator Confinement A. Weller 1, S. Sakakibara 2, K.Y. Watanabe 2, K. Toi 2, J. Geiger 1, M.C. Zarnstorff 3, S.R. Hudson 3, A. Reiman 3, A. Werner 1, C. Nührenberg 1,
More informationarxiv: v1 [physics.plasmph] 11 Mar 2016
1 Effect of magnetic perturbations on the 3D MHD selforganization of shaped tokamak plasmas arxiv:1603.03572v1 [physics.plasmph] 11 Mar 2016 D. Bonfiglio 1, S. Cappello 1, M. Veranda 1, L. Chacón 2 and
More informationGCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. Journeys. GCSE OCR Revision Physics
Matter, Models and Density What is a typical size of an atom? Choose from the following. 10 15 m 10 12 m 10 10 m Matter, Models and Density The size of an atom is of the order of 10 10 m. 1 1 Temperature
More informationInteraction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e 
Interaction of the radiation with a molecule knocks an electron from the molecule. radiation a. Molecule ¾ ¾ ¾ ion + e  This can destroy the delicate balance of chemical reactions in living cells. The
More informationGlobusM Results Toward with enhanced
1 GlobusM Results Toward with enhanced V.K. Gusev, N.N. Bakharev, A.A. Berezutskii, V.V. Bulanin, A.S. Bykov, S.E. Bender, F.V. Chernyshev, I.N. Chugunov, V.V. Dyachenko, A.D. Iblyaminova, M.A. Irzak,
More informationGA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIIID
GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIIID by C.C. PETTY, P.A. POLITZER, R.J. JAYAKUMAR, T.C. LUCE, M.R. WADE, M.E. AUSTIN, D.P. BRENNAN, T.A. CASPER, M.S. CHU, J.C. DeBOO, E.J. DOYLE,
More informationPHYS 352. Charged Particle Interactions with Matter. Intro: Cross Section. dn s. = F dω
PHYS 352 Charged Particle Interactions with Matter Intro: Cross Section cross section σ describes the probability for an interaction as an area flux F number of particles per unit area per unit time dσ
More information