D- 3 He HA tokamak device for experiments and power generations

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "D- 3 He HA tokamak device for experiments and power generations"

Transcription

1 D- He HA tokamak device for experiments and power generations US-Japan Fusion Power Plant Studies Contents University of Tokyo, Japan January -, 5 O.Mitarai (Kyushu Tokai University).Motivation.Formalism, control algorithm, and hot ion mode criterion.calculated results 4.Summary and further issues in collaboration with H.Matsuura (Kyushu University), Y.Tomita (NIFS)

2 . Motivation ST has a large potential for D- He fusion. Although the large plasma current required for ignition can be ramped up by the vertical field and heating power even without the central solenoid, the following concerns may appear: []the plasma current itself is very large, []the plasma current changes when the plasma energy changes. []the current hole produced in the initial phase does not shrink due to long resistive decay time, leading to the high energy particle confinement problems, and q min = limitation of the plasma current. Purpose of this Using the central solenoid in the high aspect ratio tokamak, disadvantageous point of ST is removed. Namely, the current hole is removed in the initial low temperature phase, leading to improving the high energy particle confinement, q min limit, and the plasma current Feasibility of D- He HA

3 . Formalism, Control algorithm, and Hot ion mode criterion.. -dimensional particle and power balance equations Deuterium dn D () = ( +α n )S D (t) n D () τ D * [ ] ( +α n ) n D ()n T () σv DT (x) + n D () { σv DDPT (x) + σv DDHEN (x)}+ n D ()n He () σv DHE (x) Helium- dn HE () = ( +α n )S HE (t) + (+ α n ) n () D σv DDHEN (x) n D ()n He () σv DHE (x) n () He * τ HE Tritium dn T () = ( +α n ) n D() σv DDPT (x) n D ()n T () σv DT (x) n T () * τ T Alpha ash dn α () = ( + α n ){ n D ()n T () σv DT (x) + n D ()n He () σv DHE (x)} n α () τ α * Proton ash dn p () = (+ α n ) n D () σv DDPT (x) + n D ()n He () σv DHE (x) n P () * τ P

4 Electron density n e () = n D () + n T () + n He () + n α () + n p () + ( + α n )Zn imp Power balance (T i /T e =.5) dt i () +α = n + α T.5e( f D + f T +/γ i + f He + f α + f P )n e () [{ P EXT /V o + P oh + P DHE + P DDPT + P DDHEN + P DT } { P L + P b + P s }] T i () ( ) f D + f T +/γ i + f He + f α + f P + γ i ( +α n )Zf imp ( ) n e () dn D () + dn T () where T i (x)/t i () = T e (x)/t e () = (-x ) α T n(x)/n() = n α (x)/n α () = (-x ) α n + dn P () + + γ i ( ( + α n )Zf imp ) n e () dn α () + dn He() Tokamak:.9.9 τ IPB (y,) =.56A i I p [MA]n.4 9 [ 9 m.97 ]R o [m]ε κ.78 B.5 to [T]/P.69 HT [MW ] τ AUX = γ HH τ IPB (y,) IPB98(y,) confinement law with τ E = min{τ NA, τ AUX } where the mass factor : 4

5 A i = {n D () + n HE () + n T ()}/{ n D () + n HE () + n T ()}.. Hot ion mode criterion. Energy transfer from ion to electron: ( ) P ie [ W / m ]=.4 5 n e ()[m ]/ f D + 4 f He + α n.5α T A D A He + f p A p + 4 f He4 A He4 + f T ln Λ j A T T i () T e () T e ()[kev].5 Ion power balance P f f i =P ie + P Li Electron power balance P f (-f i )+P ie =P b +(P sw +P sv )+ P Lie where f i is the energy transfer fraction of the fusion power to ion. P f f i >P ie must be satisfied to have ion and electron power balances. The contour map of (P f f i - P ie ) is drawn on the n-t i plane with MW. [] T i /T e =.5, f i =.8, f D =.54,f HE =.8,f T =.5,f p =.,f HE4 =.88, lnλ= T i >9 kev is necessasry 5

6 []Critical ion temperature vs ion energy fraction f i for T i /T e =.5 Higher temperature is required for the hot ion mode..5 5 Ti-critical (ev) Fi 6

7 7

8 Even when the global power balance analysis gives us the answer, it is sometimes rejected by this criterion. [] Improper case: R eff =.9 Fusion power P f =-6 MW(neutron)=6 MW Brems rad. P b =95 MW Synchrotron rad. P s =5+ MW Plasma conduction P L =865 MW n()=.6x m - T i = 8.5 kev, T e = 55.6 kev, T i -T e = 7.9 kev P ie =8 MW 6f i =8 + 6(-f i )+8 = f i > Impossible [] Proper case R eff =.99 Fusion power P f =-6 MW(neutron)=7 MW Brems rad. P b =79 MW Synchrotron rad. P s = = MW Plasma conduction P L =69 MW n()=.8x m - T i =98 kev, T e =65. kev, T i -T e =.7 kev P ie =798 MW 7 f i = (-f i )+788 = For the limit of P Li =, f i >.8 is obtained. This criterion with f i =.8 gives us n() <.x m -, 8

9 T i () > 98 kev for HA D- He fusion reactor. 9

10 .. External heating power: P EXT HL [W] = M HL (t)x 6 P thresh - P oh +P F -P b -P s V o where P thresh [MW] =.84 n.58 [ m - ] B t.8 [T] R. [m] a.8 /A i.4. Fueling Total fueling is controlled by the minimum error between the three signals e DHE ( p f ) = ( P f / P fo ) e DHE (n) = ( n() / n() GW ) e DHE (< β >) = ( <β > / < β > MAX ) { } e DHE (min) = min e DHE (p f ),e DHE (n),e DHE (< β >) S DHE = S DHE e DHE (min) + T INT e DHE (min) + T d de DHE (min) where Integration time: T int = sec, Derivative time: T d =, D- He Fuel ratio is controlled by n S D (t) = D () n D () + n He () + G NDHE e(n D / n He ) + o n S HE (t) = He () n D () + n He () + G NDHE e(n He / n D ) + o n where e(n D / n He ) = D () n D () + n He () o n e(n He / n D ) = He () n D () + n He () o T DHE int T DHE int n D () n D () + n He () n He () n D () + n He () t e(n D / n He ) S (t) DHE t e(n He / n D ) S (t) The fuel ratio: n D : n He = : ~.4 particle confinement time ratio : τ D */τ E = τ HE */τ E = τ T */τ E = τ p */τ E = τ α */τ E = ~ prompt loss of fusion products is to be zero.

11 .5. Plasma circuit equation: Plasma circuit equation: L p di p di + R p (I p I CD I BS ) = M V PV and the vertical field + M Psh di sh + M Pdiv di div + V OH () B VE = B zov I V - B zodiv I div + B zosh I sh () provides the equivalent circuit equation with α div = I div /I p and α sh = I sh /I V, di p L peff = R peff I p M PV + M Psh α sh db VE + V B zov + B zosh α sh OH () where L peff = L p + M Pdiv M PV + M Psh α sh B zov + B zosh α sh B zodiv α div R peff = R p ( f CD f BS ) f BS = I BS / I p = C BS εβ p C BS =.5 α div =.,α sh = Feedback controlled OH by V OH =(-I p /I po ) As the vertical field drives the plasma current, the OH contribution is reduced during the fusion power rise-up phase.

12

13 .6. D- He Tokamak device (5m,.5m) BL (.5m, 6.5m) BT ITER FEAT (4m, m) 6 m m 8 m 6 m 4 m ITER-FEAT Cross section of D- He ST "Thermonuclear Boiler Plant" Final ST D- He HAT Although machine sizes of D- He HAT are slightly larger than the present ITER, it may be constructed with the present technology in spite of the larger plasma parameters. Radial build: R=7.5 m, a=. m, SO =. m, BL =.8 m, SP =. m, BT =. m, OH =.8m (total gap =.4 m) OH coil:r OH =R a - SO - BL - SP - BT - OH / =.7 m B OH =. T, Φ OH = πr OH (B OH )=9.7x(B OH ) = 7 Vs

14 . Calculated results of temporal evolution.. Power generation plant without parameter constraints [] Wall reflection R eff =.95, n/n GW =.8, β max =.7%, T i /T e =.5,τ p * /τ E =, D: He=.46:.54, f ash =5.7%, P f =. GW, Ignition, P n =75 MW, P e = MW [4%] n()=.4x m -, T i ()=99.9 kev, P f f i =4 MW>P ie =5 MW n() (m - ) f ash NE FASH PF PF T T i () (ev) P f BETAP. P n I p P EXT β p τ E (s) Flux(Vs) PNV IP BVFLUX OHFLUX PEXT TAUE (g) BETAA MHLI BV ICD IBS SSDD SSHE β t M HL B v (T) Time (s) TOTFLUX I CD S D.S He (m - /s ) 4

15 [] Worse wall reflection R eff =.9, n/n GW =.65, β max =.9% T i /T e =.5,τ * p /τ E =, D: He=.6:.4, f ash =5.9%,,P f =. GW, Ignition, P n =4MW, P e = MW [4%] n()=.7x m -, T i ()= kev, P f f i =89 MW>P ie =76 MW 5

16 n() (m - ) f ash NE FASH TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT Flux(Vs) β p PNV IP BVFLUX OHFLUX PEXT (h) (g) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX [] Good wall reflection R eff =.99, n/n GW =.85, β max =4.%, T i /T e =.5,τ * p /τ E =, D: He=.4:.58, f ash =5.4%, P f =. GW, Ignition, P n =6MW, P e = MW [4%], I CD S D.S He (m - /s ) 6

17 n()=.46x m -, T i ()= kev, P f f ion =5 MW>P ie =9 MW If a wall reflection is good, the neutron power can be further reduced. n() (m - ) f ash NE FASH (b) TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (g) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX.. Possible power generation experiments with parameter constraints : [4] The beta limit: β max =.%, n/n GW =.6, I CD S D.S He (m - /s ) 7

18 R eff =.95, T i /T e =.5,τ p * /τ E =, D: He=.5:.5, f ash =5.5%, P f =.4 GW, Ignition, P n =74MW, P e =877 MW [4%] n()=.x m -, T i ()=98.5 kev, P f f i =887 MW>P ie =79 MW n() (m - ) f ash NE FASH (b) TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (h) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX [5] Additional density limit : n/n GW =.5, β max =.%, R eff =.95, T i /T e =.5,τ p * /τ E =, D: He=.5:.48, f ash =5.5%, P f =. I CD S D.S He (m - /s ) 8

19 GW, Ignition, P n =7W, P e =755 MW [4%] n()=.79x m -, T i ()=97 kev, P f f i =64 MW >P ie =58 MW n() (m - ) f ash NE FASH (b) TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (g) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX [6] The beta limit : β max =.%, n/n GW =.4, I CD S D.S He (m - /s ) 9

20 R eff =.95, T i /T e =.5,τ * p /τ E =, D: He=.54:.46, f ash =5.9%, P f =.8 GW, Ignition, P n =68MW, P e =6 MW [4%] n()=.59x m -, T i ()=94 kev, P f f i =7 MW>P ie =7 MW n() (m - ) f ash NE FASH (a) (b) TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (h) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX I CD S D.S He (m - /s )

21 [7] Additional density limit : n/n GW =., β max =6.8% R eff =.95, T i /T e =.5,τ p * /τ E =, D: He=.6:.4, f ash =6%, P f =.87 GW, Sub-Ignition, P n =47MW, P e = MW [4%], Q E =.7 n()=.86x m -, T i ()=87 kev, P f f ion =78 MW>P ie =696 MW n() (m - ) f ash NE FASH TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (g) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX I CD S D.S He (m - /s )

22 [8] Long particle confinement time : τ * p /τ E =, f ash =8.5% R eff =.95, T i /T e =.5,D: He=.58:.4, n/n GW =.6, β max =.8%, P f =.7 GW, Ignition, P n =MW, P e =88 MW [4%] n()=.98x m -, T i ()=95 kev, P f f i =795 MW>P ie =674 MW

23 n() (m - ) f ash NE (a) FASH (b) PF PF T T i () (ev) P f BETAP (c). P n I p P EXT β p τ E (s) Flux(Vs) PNV TAUE (e) IP BVFLUX OHFLUX PEXT (h) (f) (g) (d) BETAA MHLI BV ICD IBS SSDD SSHE β t M HL B v (T) Time (s) TOTFLUX I CD S D.S He (m - /s )

24 [9] He rich operation (Possibly He plasma +D-beam with E> MeV),τ * p /τ E =4, D: He=.:.7, f ash =.67%, H-mode operation,p f =44 MW, P n =.5 W, P EXT = MW, P e =8 MW[4%], Q E =.4,n()=6.x 9 m -, T i ()=7 kev, P f f i =97 MW>P ie =9 MW 4

25 n() (m - ) 4 NE T T i () (ev) f ash FASH TAUE (c) PF PF P f τ E (s) 5 MHLI. M HL BETAP (d). β p BETAA. β t P n I p P EXT Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (g) (e) BV ICD IBS SSDD SSHE.5.5 B v (T) Time (s) TOTFLUX I CD S D.S He (m - /s ) 5

26 .. Parameters of D- He HAT: No Limit Beta limit Density limit Beta limit β % n/n GW.5 β % Major radius: R 7.5 m Minor radius: a. m... Toroidal field: B o T Maximum field: B max. T... Radius B t coil : BT.8m.8m.8m.8m Plasma Current: I p 4 MA Safety factor: Q MHD Internal inductance l i Plasma inductance: L p 7.4 µh Heating power: P EXT -> MW -> ->.6 ->.7 Plasma volume: V m Confinement factor over IPB(y,) scaling : γ HH.... Confinement time: τ E 7. s Ash density fraction: f ash 5.7% Be impurity fraction: f Be % Effective charge: Z eff Particle confinement time ratio: τ α */τ E =τ p */τ E Fuel ratio: n D :n He.46:.54.5:.5.5:.48.54:.46 Fusion product heating efficiency: η α = η p =.. Wall reflectivity: R eff Hole fraction ; f H.... Density profile: α n.... Temperature profile: α T.... Electron density: n().4x m -.87x.8x.8x Greenwald factor n()/n() GW Ion temperature: T i () kev Tmperature ratio: T i ()/T e () Toroidal beta value: <β >.7%... Poloidal beta value: Normalized beta value: <β p > β Fusion power: P f MW 4 78 Neutron power: P n 75 MW Bremsstrahlung loss: P b 958MW Synchrotron radiation loss to the wall: P s 47 MW 89 for energy conv.: P s Plasma conduction loss: P L 48 MW Electric power (η c =4%) P e Average neutron wall loading Γ n.47 MW/m Average heat flux: Γ h.94 MW/m Divertor heat load Γ div.5mw/m P L /(πrx m) Energy multiplication Q F

27 Density limit Worse He rich n/n GW. p/e ratio operation Major radius: R 7.5 m Minor radius: a. m... Toroidal field: B o T Maximum field: B max. T... Radius B t coil : BT.8m.8m.8m.8m Plasma Current: I p 4 MA Safety factor: Q MHD Internal inductance l i Plasma inductance: L p 7.4 µh Heating power: P EXT ->85. MW -> ->.5 -> Plasma volume: V m Confinement factor over IPB(y,) scaling : γ HH.... Confinement time: τ E 5. s Ash density fraction: f ash 6.% Be impurity fraction: f Be % Effective charge: Z eff Particle confinement time ratio: τ α */τ E =τ p */τ E 4 4 Fuel ratio: n D :n He.6:.4.6:.4.58:.4.:.7 Fusion product heating efficiency: η α = η p =.. Wall reflectivity: R eff Hole fraction ; f H.... Density profile: α n.... Temperature profile: α T.... Electron density: n().86x m -.x.98x.6x Greenwald factor n()/n() GW Ion temperature: T i () 87 kev Tmperature ratio: T i ()/T e () Toroidal beta value: Poloidal beta value: <β > <β p > Normalized beta value: β Ν Fusion power: P f 66 MW Neutron power: P n 47 MW Bremsstrahlung loss: P b 45 MW Synchrotron radiation loss to the wall: P s 5 MW for energy conv.: P s Plasma conduction loss: P L 4 MW Electric power (η c =4%) P e MW Average neutron wall loading Γ n. MW/m.8.7. Average heat flux: Γ h.6 MW/m.6.7. Divertor heat load Γ div 7. MW/m P L /(πrx m) Energy multiplication Q E

28 4. Summary and issues [] D- He HA Tokmak device is proposed with R= 7.5 m, a=.m, B to = 5~6.5 T, (5.5 T in Plasma current of ~4MA (7 MA in IPB98y confinement factor γ HH =. (. in Wall Low ash confinement ratio of -->low neutron power of 75 MW Ash confinement time ratio of 4 is Neutron wall loading.4 Heat flux=.87 MW/m (. MW/m Greenwald factor<.8 (.5 in β=. % (.8%) (β=.6 % in DIII-D) A D- He tokamak reactor would be possible within small extension of the present data base. *For reference D- He ST reactor GW power 5.6 m, a=.4m, B to = 4.4 power and vertical field ramp to 9 MA (NSTX <.5 confinement factor γ HH =.5 ~.8 (NSTX flux =.99 MW/m (. MW/m factor=.9 (.5 in DIII-D,ASDEX heating power MW (β=8 % in toroidal field B max =.5 T(Bi-high temperature superconductor B max = T) 8

29 @ash confinement time ratio up to 5 (4 at wall reflection (R ash confinement time ratio down to -->low neutron power of 5 MW, low neutron wall loading of. MW/m. [] Common issues in D- He reactors () A large fraction (8 %) of the fusion power should go to ions to keep the hot ion mode of T i /T e =.5. [] Nuclear elastic scattering (Nakao and Matsuura) may provide 4 %. [] The rest of 4 % should be provided by the stochastic ion heating (D.Gates et al ) as observed in NSTX, NSTX: T i /T e = for V NBI ~ 4V A D- He ST reactor: V α ~.8V A,V p ~ 7.5V A D- He HA tokamak reactor: V α ~.7V A, V p ~ 5.5V A and gyro-stream cyclotron instability as proposed by Cheng. () Divertor heat flux is very large Pebble divertor by Nishikawa Ga Liquid divertor 9

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

Fusion Nuclear Science - Pathway Assessment

Fusion Nuclear Science - Pathway Assessment Fusion Nuclear Science - Pathway Assessment C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD July 29, 2010 Basic Flow of FNS-Pathways Assessment 1. Determination of DEMO/power plant parameters and requirements,

More information

Design window analysis of LHD-type Heliotron DEMO reactors

Design window analysis of LHD-type Heliotron DEMO reactors Design window analysis of LHD-type Heliotron DEMO reactors Fusion System Research Division, Department of Helical Plasma Research, National Institute for Fusion Science Takuya GOTO, Junichi MIYAZAWA, Teruya

More information

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant

More information

Innovative fabrication method of superconducting magnets using high T c superconductors with joints

Innovative fabrication method of superconducting magnets using high T c superconductors with joints Innovative fabrication method of superconducting magnets using high T c superconductors with joints (for huge and/or complicated coils) Nagato YANAGI LHD & FFHR Group National Institute for Fusion Science,

More information

Fusion Nuclear Science (FNS) Mission & High Priority Research

Fusion Nuclear Science (FNS) Mission & High Priority Research Fusion Nuclear Science (FNS) Mission & High Priority Research Topics Martin Peng, Aaron Sontag, Steffi Diem, John Canik, HM Park, M. Murakami, PJ Fogarty, Mike Cole ORNL 15 th International Spherical Torus

More information

Tokamak Fusion Basics and the MHD Equations

Tokamak Fusion Basics and the MHD Equations MHD Simulations for Fusion Applications Lecture 1 Tokamak Fusion Basics and the MHD Equations Stephen C. Jardin Princeton Plasma Physics Laboratory CEMRACS 1 Marseille, France July 19, 21 1 Fusion Powers

More information

Chapter 12. Magnetic Fusion Toroidal Machines: Principles, results, perspective

Chapter 12. Magnetic Fusion Toroidal Machines: Principles, results, perspective Chapter 12 Magnetic Fusion Toroidal Machines: Principles, results, perspective S. Atzeni May 10, 2010; rev.: May 16, 2012 English version: May 17, 2017 1 Magnetic confinement fusion plasmas low density

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics J. W. Haverkort October 15, 2009 Abstract This is a summary of the first eight chapters from the book Plasma Physics and Fusion Energy by Jeffrey P. Freidberg. Contents 2

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

Research of Basic Plasma Physics Toward Nuclear Fusion in LHD

Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Research of Basic Plasma Physics Toward Nuclear Fusion in LHD Akio KOMORI and LHD experiment group National Institute for Fusion Science, Toki, Gifu 509-5292, Japan (Received 4 January 2010 / Accepted

More information

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT GA A3736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an

More information

TRANSP Simulations of ITER Plasmas

TRANSP Simulations of ITER Plasmas PPPL-3152 - Preprint Date: December 1995, UC-420, 421, 427 TRANSP Simulations of ITER Plasmas R. V. Budny, D. C. McCune, M. H. Redi, J. Schivell, and R. M. Wieland Princeton University Plasma Physics Laboratory

More information

Impact of neutral atoms on plasma turbulence in the tokamak edge region

Impact of neutral atoms on plasma turbulence in the tokamak edge region Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint Varenna-Lausanne International

More information

Tokamak operation at low q and scaling toward a fusion machine. R. Paccagnella^

Tokamak operation at low q and scaling toward a fusion machine. R. Paccagnella^ Tokamak operation at low q and scaling toward a fusion machine R. Paccagnella^ Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova, Italy ^ and Istituto Gas Ionizzati del Consiglio Nazionale

More information

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER M.L. Reinke 1, A. Loarte 2, M. Chilenski 3, N. Howard 3, F. Köchl 4, A. Polevoi 2, A. Hubbard 3, J.W. Hughes

More information

The RFP: Plasma Confinement with a Reversed Twist

The RFP: Plasma Confinement with a Reversed Twist The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of Wisconsin-Madison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed

More information

A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS

A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS Presented by D.P. SCHISSEL Presented to APS Centennial Meeting March 20 26, 1999 Atlanta, Georgia

More information

FUSION and PLASMA PHYSICS

FUSION and PLASMA PHYSICS FUSION and PLASMA PHYSICS My objectives: to explain why Nuclear Fusion is worth pursuing to describe some basic concepts behind magnetic confinement to summarize the history of fusion to describe some

More information

Stability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye

Stability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Stability Properties of Toroidal Alfvén Modes Driven by Fast Particles Λ N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton,

More information

ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model

ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model 1 THC/3-3 ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model J.E. Kinsey, G.M. Staebler, J. Candy, and R.E. Waltz General Atomics, P.O. Box 8608, San Diego, California

More information

MHD instability driven by supra-thermal electrons in TJ-II stellarator

MHD instability driven by supra-thermal electrons in TJ-II stellarator MHD instability driven by supra-thermal electrons in TJ-II stellarator K. Nagaoka 1, S. Yamamoto 2, S. Ohshima 2, E. Ascasíbar 3, R. Jiménez-Gómez 3, C. Hidalgo 3, M.A. Pedrosa 3, M. Ochando 3, A.V. Melnikov

More information

Perspective on Fusion Energy

Perspective on Fusion Energy Perspective on Fusion Energy Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology (UCLA) President, Council of Energy Research

More information

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod 1 EX/P4-22 Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.

More information

Physics of the detached radiative divertor regime in DIII-D

Physics of the detached radiative divertor regime in DIII-D Plasma Phys. Control. Fusion 41 (1999) A345 A355. Printed in the UK PII: S741-3335(99)97299-8 Physics of the detached radiative divertor regime in DIII-D M E Fenstermacher, J Boedo, R C Isler, A W Leonard,

More information

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This

More information

Plasma impurity composition in Alcator C-Mod tokamak.

Plasma impurity composition in Alcator C-Mod tokamak. Plasma impurity composition in Alcator C-Mod tokamak. I. O. Bespamyatnov a, W. L. Rowan a, K. T. Liao a, M. Brookman a, M. L. Reinke b, E. S. Marmar b, M. J. Greenwald b a Institute for Fusion Studies,

More information

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics Lecture 22 Fusion Experimental Nuclear Physics PHYS 741 heeger@wisc.edu References and Figures from: - Basdevant, Fundamentals in Nuclear Physics 1 Reading for Next Week Phys. Rev. D 57, 3873-3889 (1998)

More information

A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva

A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations. Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva CRPP - EPFL SPS Annual Meeting 2014 02.07.2014 CRPP The tokamak

More information

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.

More information

Where are we with laser fusion?

Where are we with laser fusion? Where are we with laser fusion? R. Betti Laboratory for Laser Energetics Fusion Science Center Dept. Mechanical Engineering and Physics & Astronomy University of Rochester HEDSA HEDP Summer School August

More information

Brazilian Journal of Physics ISSN: Sociedade Brasileira de Física Brasil

Brazilian Journal of Physics ISSN: Sociedade Brasileira de Física Brasil Brazilian Journal of Physics ISSN: 0103-9733 luizno.bjp@gmail.com Sociedade Brasileira de Física Brasil Araújo, Arione; Pereira, Claubia; Fortini Veloso, Maria Auxiliadora; Lombardi Costa, Antonella; Moura

More information

A Passion for Plasma Physics and Nuclear Fusion Research. K. A. Connor Plasma Dynamics Laboratory ECSE Department RPI

A Passion for Plasma Physics and Nuclear Fusion Research. K. A. Connor Plasma Dynamics Laboratory ECSE Department RPI A Passion for Plasma Physics and Nuclear Fusion Research K. A. Connor Plasma Dynamics Laboratory ECSE Department RPI 1 Topics Quick Intro to magnetic confinement fusion energy What is a plasma? Demos Diagnostic

More information

W.M. Solomon 1. Presented at the 54th Annual Meeting of the APS Division of Plasma Physics Providence, RI October 29-November 2, 2012

W.M. Solomon 1. Presented at the 54th Annual Meeting of the APS Division of Plasma Physics Providence, RI October 29-November 2, 2012 Impact of Torque and Rotation in High Fusion Performance Plasmas by W.M. Solomon 1 K.H. Burrell 2, R.J. Buttery 2, J.S.deGrassie 2, E.J. Doyle 3, A.M. Garofalo 2, G.L. Jackson 2, T.C. Luce 2, C.C. Petty

More information

PROGRESS IN STEADY-STATE SCENARIO DEVELOPMENT IN THE DIII-D TOKAMAK

PROGRESS IN STEADY-STATE SCENARIO DEVELOPMENT IN THE DIII-D TOKAMAK PROGRESS IN STEADY-STATE SCENARIO DEVELOPMENT IN THE DIII-D TOKAMAK by T.C. LUCE, J.R. FERRON, C.T. HOLCOMB, F. TURCO, P.A. POLITZER, and T.W. PETRIE GA A26981 JANUARY 2011 DISCLAIMER This report was prepared

More information

The International Multi-Tokamak Profile Database

The International Multi-Tokamak Profile Database The International Multi-Tokamak Profile Database The ITER 1D Modelling Working Group: D. Boucher a, J.W. Connor b, W.A. Houlberg c,m.f.turner b, G. Bracco d, A. Chudnovskiy a,e,j.g.cordey b, M.J. Greenwald

More information

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e + β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Last Lecture: Radioactivity, Nuclear decay Radiation damage This lecture: nuclear physics in medicine and fusion and fission Final

More information

Disruption Mitigation on Tore Supra

Disruption Mitigation on Tore Supra 1 EX/1-6Rc Disruption Mitigation on Tore Supra G. Martin, F. Sourd, F. Saint-Laurent, J. Bucalossi, L.G. Eriksson Association Euratom-CEA, DRFC/STEP, CEA/Cadarache F-1318 SAINT PAUL LEZ DURANCE / FRANCE

More information

GA A26874 ITER PREDICTIONS USING THE GYRO VERIFIED AND EXPERIMENTALLY VALIDATED TGLF TRANSPORT MODEL

GA A26874 ITER PREDICTIONS USING THE GYRO VERIFIED AND EXPERIMENTALLY VALIDATED TGLF TRANSPORT MODEL GA A26874 ITER PREDICTIONS USING THE GYRO VERIFIED AND EXPERIMENTALLY VALIDATED TGLF TRANSPORT MODEL by J.E. KINSEY, G.M. STAEBLER, J. CANDY and R.E. WALTZ NOVEMBER 20 DISCLAIMER This report was prepared

More information

purposes is highly encouraged.

purposes is highly encouraged. The following slide show is a compilation of slides from many previous similar slide shows that have been produced by different members of the fusion and plasma physics education community. We realize

More information

ITER - the decisive step towards Fusion Energy. DPG - Bonn - March 15 th Guenter Janeschitz

ITER - the decisive step towards Fusion Energy. DPG - Bonn - March 15 th Guenter Janeschitz ITER - the decisive step towards Fusion Energy DPG Bonn March 15 th 2010 Guenter Janeschitz Senior Scientific Advisor for Technical Integration (SSATI) to the PDDG ITER Organization, Route de Vinon, CS

More information

Physics-model-based Optimization and Feedback Control of the Current Profile Dynamics in Fusion Tokamak Reactors

Physics-model-based Optimization and Feedback Control of the Current Profile Dynamics in Fusion Tokamak Reactors Lehigh University Lehigh Preserve Theses and Dissertations 215 Physics-model-based Optimization and Feedback Control of the Current Profile Dynamics in Fusion Tokamak Reactors Justin Edwin Barton Lehigh

More information

J. Kesner. April Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts USA

J. Kesner. April Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts USA PFC/JA-88-38 Effect of Local Shear on Drift Fluctuation Driven T'ransport in Tokamaks J. Kesner April 1989 Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts 2139 USA Submitted

More information

Statistical analysis of fluctuations in the Alcator C-Mod scrape-off layer

Statistical analysis of fluctuations in the Alcator C-Mod scrape-off layer FACULTY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF PHYSICS AND TECHNOLOGY Statistical analysis of fluctuations in the Alcator C-Mod scrape-off layer Sindre Markus Fritzner FYS-39 Master s Thesis in Physics

More information

Toroidal confinement of non-neutral plasma. Martin Droba

Toroidal confinement of non-neutral plasma. Martin Droba Toroidal confinement of non-neutral plasma Martin Droba Contents Experiments with toroidal non-neutral plasma Magnetic surfaces CNT and IAP-high current ring Conclusion 2. Experiments with toroidal non-neutral

More information

Ion beam analysis methods in the studies of plasma facing materials in controlled fusion devices

Ion beam analysis methods in the studies of plasma facing materials in controlled fusion devices Vacuum 70 (2003) 423 428 Ion beam analysis methods in the studies of plasma facing materials in controlled fusion devices M. Rubel a, *, P. Wienhold b, D. Hildebrandt c a Alfv!en Laboratory, Royal Institute

More information

QTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team*

QTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team* ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR Presented by D.P. SCHISSEL for the DIII D Team* Presented to 38th APS/DPP Meeting NOVEMBER 11 15, 1996 Denver, Colorado

More information

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME by R. NAZIKIAN, M.E. AUSTIN, R.V. BUDNY, M.S. CHU, W.W. HEIDBRINK, M.A. MAKOWSKI, C.C. PETTY, P.A. POLITZER, W.M. SOLOMON, M.A.

More information

Confinement and Transport Research in Alcator C-Mod

Confinement and Transport Research in Alcator C-Mod PSFC/JA-05-32. Confinement and Transport Research in Alcator C-Mod M. Greenwald, N. Basse, P. Bonoli, R. Bravenec 1, E. Edlund, D. Ernst, C. Fiore, R. Granetz, A. Hubbard, J. Hughes, I. Hutchinson, J.

More information

Important problems of future thermonuclear reactors*

Important problems of future thermonuclear reactors* NUKLEONIKA 2015;60(2):331 338 doi: 10.1515/nuka-2015-0001 ORIGINAL PAPER Important problems of future thermonuclear reactors* Marek J. Sadowski Abstract. This paper concerns important and difficult problems

More information

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system.

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system. Introduction One of the main events in the field of particle physics at the beginning of the next century will be the construction of the Large Hadron Collider (LHC). This machine will be installed into

More information

STATUS OF DEMO-FNS DEVELOPMENT

STATUS OF DEMO-FNS DEVELOPMENT FNS/1-1 NATIONAL RESEARCH CENTER KURCHATOV INSTITUTE НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР «КУРЧАТОВСКИЙ ИНСТИТУТ» STATUS OF DEMO-FNS DEVELOPMENT B.V. Kuteev, Yu.S. Shpanskiy and DEMO-FNS Team Shpanskiy_YS@nrcki.ru

More information

Evolution of the ITER program and prospect for the next-step fusion DEMO reactors: status of the fusion energy R&D as ultimate source of energy

Evolution of the ITER program and prospect for the next-step fusion DEMO reactors: status of the fusion energy R&D as ultimate source of energy Journal of Nuclear Science and Technology ISSN: 0022-3131 (Print) 1881-1248 (Online) Journal homepage: http://www.tandfonline.com/loi/tnst20 Evolution of the ITER program and prospect for the next-step

More information

Supported by. Role of plasma edge in global stability and control*

Supported by. Role of plasma edge in global stability and control* NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U

More information

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices G.M. Wright 1, D. Brunner 1, M.J. Baldwin 2, K. Bystrov 3, R. Doerner 2, B. LaBombard 1, B. Lipschultz 1, G. de Temmerman 3,

More information

The Future of Boundary Plasma and Material Science

The Future of Boundary Plasma and Material Science The Future of Boundary Plasma and Material Science Dennis Whyte Plasma Science & Fusion Center, MIT, Cambridge USA Director, Plasma Surface Interaction Science Center (psisc.org) APS Sherwood Meeting of

More information

Princeton University, Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey , USA. Abstract

Princeton University, Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey , USA. Abstract PPPL-3151 - Preprint Date: December 1995, UC-420,426 Enhanced Loss of Fast Ions During Mode Conversion Ion Bernstein Wave Heating in TFTR D. S. Darrow, R. Majeski, N. J. Fisch, R. F. Heeter, H. W. Herrmann,

More information

Production of Over-dense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device

Production of Over-dense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device Production of Over-dense Plasmas by Launching 2.45GHz Electron Cyclotron Waves in a Helical Device R. Ikeda a, M. Takeuchi a, T. Ito a, K. Toi b, C. Suzuki b, G. Matsunaga c, S. Okamura b, and CHS Group

More information

Alfvén Cascade modes at high β in NSTX*

Alfvén Cascade modes at high β in NSTX* Supported by Office of Science Alfvén Cascade modes at high β in NSTX* College W&M Colorado Sch Mines Columbia U Comp-X FIU General Atomics INL Johns Hopkins U Lehigh U LANL LLNL Lodestar MIT Nova Photonics

More information

Superconducting Magnets for Fusion and the ITER Project

Superconducting Magnets for Fusion and the ITER Project Superconducting Magnets for Fusion and the ITER Project Presented by Joseph V. Minervini Massachusetts Institute of Technology Plasma Science and Fusion Center Cambridge, MA American Nuclear Society Northeast

More information

TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a)

TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 TH/P6-14 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 Chang, C.S., 1 Ku, S., 2 Adams M., 3 D Azevedo, G., 4 Chen, Y., 5 Cummings,

More information

Intrinsic rotation reversal, non-local transport, and turbulence transition in KSTAR L-mode plasmas

Intrinsic rotation reversal, non-local transport, and turbulence transition in KSTAR L-mode plasmas 1 Nuclear Fusion Intrinsic rotation reversal, non-local transport, and turbulence transition in KSTAR L-mode plasmas Y.J.Shi 1, J.M. Kwon 2, P.H.Diamond 3, W.H.Ko 2, M.J.Choi 2, S.H.Ko 2, S.H.Hahn 2, D.H.Na

More information

Nonlinear Diffusion in Magnetized Discharges. Francis F. Chen. Electrical Engineering Department

Nonlinear Diffusion in Magnetized Discharges. Francis F. Chen. Electrical Engineering Department Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical Engineering Department PPG-1579 January, 1998 Revised April, 1998 Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical

More information

NJCTL.org 2015 AP Physics 2 Nuclear Physics

NJCTL.org 2015 AP Physics 2 Nuclear Physics AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C- Mod

Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C- Mod Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C- Mod J. Liptac, J. Decker, R. Parker, V. Tang, P. Bonoli MIT PSFC Y. Peysson CEA Cadarache APS 3 Albuquerque, NM Abstract A Lower Hybrid

More information

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na Ellen Simmons 1 Contents Introduction Review of the Types of Radiation Charged Particle Radiation Detection Review of Semiconductor

More information

Stellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK

Stellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK Stellarators Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 6 th February 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously... Toroidal devices

More information

Overview of FRC-related modeling (July 2014-present)

Overview of FRC-related modeling (July 2014-present) Overview of FRC-related modeling (July 2014-present) Artan Qerushi AFRL-UCLA Basic Research Collaboration Workshop January 20th, 2015 AFTC PA Release# 15009, 16 Jan 2015 Artan Qerushi (AFRL) FRC modeling

More information

Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code

Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code Plasma Science and Technology, Vol.14, No.9, Sep. 2012 Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code Y. PIANROJ, T. ONJUN School of Manufacturing Systems

More information

ICRH Experiments on the Spherical Tokamak Globus-M

ICRH Experiments on the Spherical Tokamak Globus-M 1 Experiments on the Spherical Tokamak Globus-M V.K.Gusev 1), F.V.Chernyshev 1), V.V.Dyachenko 1), Yu.V.Petrov 1), N.V.Sakharov 1), O.N.Shcherbinin 1), V.L.Vdovin 2) 1) A.F.Ioffe Physico-Technical Institute,

More information

Variation of Turbulence and Transport with the Te/Ti Ratio in H-Mode Plasmas

Variation of Turbulence and Transport with the Te/Ti Ratio in H-Mode Plasmas Variation of Turbulence and Transport with the Te/Ti Ratio in H-Mode Plasmas by G.R. McKee with C.H. Holland, C.C. Petty, H. Reimerdes,5, T.R. Rhodes6,L. Schmitz6, S. Smith, I.U. Uzun-Kaymak, G. Wang6,

More information

NUCLEAR MISSIONS FOR FUSION (TRANSMUTATION, FISSILE BREEDING & Pu DISPOSITION) W. M. Stacey June 18, 2003

NUCLEAR MISSIONS FOR FUSION (TRANSMUTATION, FISSILE BREEDING & Pu DISPOSITION) W. M. Stacey June 18, 2003 NUCLEAR MISSIONS FOR FUSION (TRANSMUTATION, FISSILE BREEDING & Pu DISPOSITION) W. M. Stacey June 18, 2003 SUMMARY There are potential applications of fusion neutron sources to drive sub-critical fission

More information

What place for mathematicians in plasma physics

What place for mathematicians in plasma physics What place for mathematicians in plasma physics Eric Sonnendrücker IRMA Université Louis Pasteur, Strasbourg projet CALVI INRIA Nancy Grand Est 15-19 September 2008 Eric Sonnendrücker (U. Strasbourg) Math

More information

Divertor power deposition and target current asymmetries during type-i ELMs in ASDEX Upgrade and JET

Divertor power deposition and target current asymmetries during type-i ELMs in ASDEX Upgrade and JET Journal of Nuclear Materials 363 365 (2007) 989 993 www.elsevier.com/locate/jnucmat Divertor power deposition and target current asymmetries during type-i ELMs in ASDEX Upgrade and JET T. Eich a, *, A.

More information

The Design and Fabrication of a 6 Tesla EBIT Solenoid

The Design and Fabrication of a 6 Tesla EBIT Solenoid LBNL-40462 SCMAG-593 The Design and Fabrication of a 6 Tesla EBIT Solenoid 1. Introduction M. A. Green a, S. M. Dardin a, R. E. Marrs b, E. Magee b, S. K. Mukhergee a a Lawrence Berkeley National Laboratory,

More information

TRANSMUTATION OF CESIUM-135 WITH FAST REACTORS

TRANSMUTATION OF CESIUM-135 WITH FAST REACTORS TRANSMUTATION OF CESIUM-3 WITH FAST REACTORS Shigeo Ohki and Naoyuki Takaki O-arai Engineering Center Japan Nuclear Cycle Development Institute (JNC) 42, Narita-cho, O-arai-machi, Higashi-Ibaraki-gun,

More information

Demountable Superconducting Magnet Coils

Demountable Superconducting Magnet Coils FESAC TEC Report 1 Demountable Superconducting Magnet Coils A strategic technology to address key nuclear materials, construction, and maintenance issues Brandon Sorbom, Bob Mumgaard, Joseph Minervini,

More information

GA A27849 APPLICATION OF ELECTRON CYCLOTRON HEATING TO THE STUDY OF TRANSPORT IN ITER BASELINE SCENARIO-LIKE DISCHARGES IN DIII-D

GA A27849 APPLICATION OF ELECTRON CYCLOTRON HEATING TO THE STUDY OF TRANSPORT IN ITER BASELINE SCENARIO-LIKE DISCHARGES IN DIII-D GA A27849 APPLICATION OF ELECTRON CYCLOTRON HEATING TO THE STUDY OF TRANSPORT IN ITER BASELINE by R.I. PINSKER, M.E. AUSTIN, D.R. ERNST, A.M. GAROFALO, B.A. GRIERSON, J.C. HOSEA, T.C. LUCE, A. MARINONI,

More information

Presentation by Herb Berk University of Texas at Austin Institute for Fusion Studies in Vienna, Austria Sept. 1-4, 2015

Presentation by Herb Berk University of Texas at Austin Institute for Fusion Studies in Vienna, Austria Sept. 1-4, 2015 Review of Theory Papers at 14 th IAEA technical meeting on Engertic Particles in Magnetic Confinement systems Presentation by Herb Berk University of Texas at Austin Institute for Fusion Studies in Vienna,

More information

Aluminum Half-Life Experiment

Aluminum Half-Life Experiment Aluminum Half-Life Experiment Definition of half-life (t ½ ): The half-life of any declining population is the time required for the population to decrease by a factor of 50%. Radioactive isotopes represent

More information

Lecture 20: Fusion as a Future Energy Source?

Lecture 20: Fusion as a Future Energy Source? Lecture 20: Fusion as a Future Energy Source? Photo by NASA Visible Earth, Goddard Space Flight Center Scientific Visualization Studio. Dr. John C. Wright MIT Plasma Science & Fusion Center 28 Oct 2010

More information

Core Design. Derek Sutherland, Cale Kasten Choongki Sung, Tim Palmer Paul Bonoli, Dennis Whyte

Core Design. Derek Sutherland, Cale Kasten Choongki Sung, Tim Palmer Paul Bonoli, Dennis Whyte Core Design Derek Sutherland, Cale Kasten Choongki Sung, Tim Palmer Paul Bonoli, Dennis Whyte 22.63 - May 17, 2012 Primary Design Goals Qp ~ 25 and Qe > 3, with thermal output of ~ 500 MW. Develop a robust,

More information

PoS(FNDA2006)093. Fusion neutronics experiments

PoS(FNDA2006)093. Fusion neutronics experiments *,1, M. Angelone 2, P. Batistoni 2, U. Fischer 3, H. Freiesleben 1, A. Klix 1, D. Leichtle 3, M. Pillon 2, E. Pönitz 1+, I. Schäfer 4, S. Unholzer 1 1 TU Dresden, Institut für Kern- und Teilchenphysik,

More information

Nuclear Fission. Q for 238 U + n 239 U is 4.??? MeV. E A for 239 U 6.6 MeV MeV neutrons are needed.

Nuclear Fission. Q for 238 U + n 239 U is 4.??? MeV. E A for 239 U 6.6 MeV MeV neutrons are needed. Q for 235 U + n 236 U is 6.54478 MeV. Table 13.11 in Krane: Activation energy E A for 236 U 6.2 MeV (Liquid drop + shell) 235 U can be fissioned with zero-energy neutrons. Q for 238 U + n 239 U is 4.???

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 6-6 NUCLEAR PHYSICS IB Assessment Statements Topic 13.2, Nuclear Physics 13.2.1. Explain how the radii of nuclei may be estimated from

More information

1 EX/P5-9 International Stellarator/Heliotron Database Activities on High-Beta Confinement and Operational Boundaries

1 EX/P5-9 International Stellarator/Heliotron Database Activities on High-Beta Confinement and Operational Boundaries 1 International Stellarator/Heliotron Database Activities on High-Beta Confinement and Operational Boundaries A. Weller 1), K.Y. Watanabe 2), S. Sakakibara 2), A. Dinklage 1), H. Funaba 2), J. Geiger 1),

More information

Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building.

Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building. Nuclear Physics PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html Periodic table of elements We saw that the periodic table of elements can

More information

Phase ramping and modulation of reflectometer signals

Phase ramping and modulation of reflectometer signals 4th Intl. Reflectometry Workshop - IRW4, Cadarache, March 22nd - 24th 1999 1 Phase ramping and modulation of reflectometer signals G.D.Conway, D.V.Bartlett, P.E.Stott JET Joint Undertaking, Abingdon, Oxon,

More information

Introduction to Nuclear Physics Physics 124 Solution Set 6

Introduction to Nuclear Physics Physics 124 Solution Set 6 Introduction to Nuclear Physics Physics 124 Solution Set 6 J.T. Burke January 18, 2000 1 Problem 22 In order to thermalize a neutron it must undergo multiple elastic collisions. Upon each interaction it

More information

Magnetically-Channeled SIEC Array (MCSA) Fusion Device for Interplanetary Missions

Magnetically-Channeled SIEC Array (MCSA) Fusion Device for Interplanetary Missions Magnetically-Channeled SIEC Array (MCSA) Fusion Device for Interplanetary Missions G. H. Miley, R. Stubbers, J. Webber, H. Momota University of Illinois, U-C,Department of Nuclear, Plasma and Radiological

More information

Divertor Detachment on TCV

Divertor Detachment on TCV Divertor Detachment on TCV R. A. Pitts, Association EURATOM-Confédération Suisse,, CH- LAUSANNE, Switzerland thanks to A. Loarte a, B. P. Duval, J.-M. Moret, J. A. Boedo b, L. Chousal b, D. Coster c, G.

More information

Solid State Physics FREE ELECTRON MODEL. Lecture 17. A.H. Harker. Physics and Astronomy UCL

Solid State Physics FREE ELECTRON MODEL. Lecture 17. A.H. Harker. Physics and Astronomy UCL Solid State Physics FREE ELECTRON MODEL Lecture 17 A.H. Harker Physics and Astronomy UCL Magnetic Effects 6.7 Plasma Oscillations The picture of a free electron gas and a positive charge background offers

More information

Francesco Paolo Orsitto

Francesco Paolo Orsitto DEMO design and Diagnostics : a short summary of studies in EU Francesco Paolo Orsitto Columbia University 10-04-2015 Outline 1. Short Introduction on present status of tokamak plasma scenarios Aims :

More information

Significance of MHD Effects in Stellarator Confinement

Significance of MHD Effects in Stellarator Confinement Significance of MHD Effects in Stellarator Confinement A. Weller 1, S. Sakakibara 2, K.Y. Watanabe 2, K. Toi 2, J. Geiger 1, M.C. Zarnstorff 3, S.R. Hudson 3, A. Reiman 3, A. Werner 1, C. Nührenberg 1,

More information

arxiv: v1 [physics.plasm-ph] 11 Mar 2016

arxiv: v1 [physics.plasm-ph] 11 Mar 2016 1 Effect of magnetic perturbations on the 3D MHD self-organization of shaped tokamak plasmas arxiv:1603.03572v1 [physics.plasm-ph] 11 Mar 2016 D. Bonfiglio 1, S. Cappello 1, M. Veranda 1, L. Chacón 2 and

More information

GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. Journeys. GCSE OCR Revision Physics

GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. Journeys. GCSE OCR Revision Physics Matter, Models and Density What is a typical size of an atom? Choose from the following. 10 15 m 10 12 m 10 10 m Matter, Models and Density The size of an atom is of the order of 10 10 m. 1 1 Temperature

More information

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e -

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e - Interaction of the radiation with a molecule knocks an electron from the molecule. radiation a. Molecule ¾ ¾ ¾ ion + e - This can destroy the delicate balance of chemical reactions in living cells. The

More information

Globus-M Results Toward with enhanced

Globus-M Results Toward with enhanced 1 Globus-M Results Toward with enhanced V.K. Gusev, N.N. Bakharev, A.A. Berezutskii, V.V. Bulanin, A.S. Bykov, S.E. Bender, F.V. Chernyshev, I.N. Chugunov, V.V. Dyachenko, A.D. Iblyaminova, M.A. Irzak,

More information

GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D

GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIII-D by C.C. PETTY, P.A. POLITZER, R.J. JAYAKUMAR, T.C. LUCE, M.R. WADE, M.E. AUSTIN, D.P. BRENNAN, T.A. CASPER, M.S. CHU, J.C. DeBOO, E.J. DOYLE,

More information

PHYS 352. Charged Particle Interactions with Matter. Intro: Cross Section. dn s. = F dω

PHYS 352. Charged Particle Interactions with Matter. Intro: Cross Section. dn s. = F dω PHYS 352 Charged Particle Interactions with Matter Intro: Cross Section cross section σ describes the probability for an interaction as an area flux F number of particles per unit area per unit time dσ

More information