D 3 He HA tokamak device for experiments and power generations


 Mercy Fletcher
 1 years ago
 Views:
Transcription
1 D He HA tokamak device for experiments and power generations USJapan Fusion Power Plant Studies Contents University of Tokyo, Japan January , 5 O.Mitarai (Kyushu Tokai University).Motivation.Formalism, control algorithm, and hot ion mode criterion.calculated results 4.Summary and further issues in collaboration with H.Matsuura (Kyushu University), Y.Tomita (NIFS)
2 . Motivation ST has a large potential for D He fusion. Although the large plasma current required for ignition can be ramped up by the vertical field and heating power even without the central solenoid, the following concerns may appear: []the plasma current itself is very large, []the plasma current changes when the plasma energy changes. []the current hole produced in the initial phase does not shrink due to long resistive decay time, leading to the high energy particle confinement problems, and q min = limitation of the plasma current. Purpose of this Using the central solenoid in the high aspect ratio tokamak, disadvantageous point of ST is removed. Namely, the current hole is removed in the initial low temperature phase, leading to improving the high energy particle confinement, q min limit, and the plasma current Feasibility of D He HA
3 . Formalism, Control algorithm, and Hot ion mode criterion.. dimensional particle and power balance equations Deuterium dn D () = ( +α n )S D (t) n D () τ D * [ ] ( +α n ) n D ()n T () σv DT (x) + n D () { σv DDPT (x) + σv DDHEN (x)}+ n D ()n He () σv DHE (x) Helium dn HE () = ( +α n )S HE (t) + (+ α n ) n () D σv DDHEN (x) n D ()n He () σv DHE (x) n () He * τ HE Tritium dn T () = ( +α n ) n D() σv DDPT (x) n D ()n T () σv DT (x) n T () * τ T Alpha ash dn α () = ( + α n ){ n D ()n T () σv DT (x) + n D ()n He () σv DHE (x)} n α () τ α * Proton ash dn p () = (+ α n ) n D () σv DDPT (x) + n D ()n He () σv DHE (x) n P () * τ P
4 Electron density n e () = n D () + n T () + n He () + n α () + n p () + ( + α n )Zn imp Power balance (T i /T e =.5) dt i () +α = n + α T.5e( f D + f T +/γ i + f He + f α + f P )n e () [{ P EXT /V o + P oh + P DHE + P DDPT + P DDHEN + P DT } { P L + P b + P s }] T i () ( ) f D + f T +/γ i + f He + f α + f P + γ i ( +α n )Zf imp ( ) n e () dn D () + dn T () where T i (x)/t i () = T e (x)/t e () = (x ) α T n(x)/n() = n α (x)/n α () = (x ) α n + dn P () + + γ i ( ( + α n )Zf imp ) n e () dn α () + dn He() Tokamak:.9.9 τ IPB (y,) =.56A i I p [MA]n.4 9 [ 9 m.97 ]R o [m]ε κ.78 B.5 to [T]/P.69 HT [MW ] τ AUX = γ HH τ IPB (y,) IPB98(y,) confinement law with τ E = min{τ NA, τ AUX } where the mass factor : 4
5 A i = {n D () + n HE () + n T ()}/{ n D () + n HE () + n T ()}.. Hot ion mode criterion. Energy transfer from ion to electron: ( ) P ie [ W / m ]=.4 5 n e ()[m ]/ f D + 4 f He + α n.5α T A D A He + f p A p + 4 f He4 A He4 + f T ln Λ j A T T i () T e () T e ()[kev].5 Ion power balance P f f i =P ie + P Li Electron power balance P f (f i )+P ie =P b +(P sw +P sv )+ P Lie where f i is the energy transfer fraction of the fusion power to ion. P f f i >P ie must be satisfied to have ion and electron power balances. The contour map of (P f f i  P ie ) is drawn on the nt i plane with MW. [] T i /T e =.5, f i =.8, f D =.54,f HE =.8,f T =.5,f p =.,f HE4 =.88, lnλ= T i >9 kev is necessasry 5
6 []Critical ion temperature vs ion energy fraction f i for T i /T e =.5 Higher temperature is required for the hot ion mode..5 5 Ticritical (ev) Fi 6
7 7
8 Even when the global power balance analysis gives us the answer, it is sometimes rejected by this criterion. [] Improper case: R eff =.9 Fusion power P f =6 MW(neutron)=6 MW Brems rad. P b =95 MW Synchrotron rad. P s =5+ MW Plasma conduction P L =865 MW n()=.6x m  T i = 8.5 kev, T e = 55.6 kev, T i T e = 7.9 kev P ie =8 MW 6f i =8 + 6(f i )+8 = f i > Impossible [] Proper case R eff =.99 Fusion power P f =6 MW(neutron)=7 MW Brems rad. P b =79 MW Synchrotron rad. P s = = MW Plasma conduction P L =69 MW n()=.8x m  T i =98 kev, T e =65. kev, T i T e =.7 kev P ie =798 MW 7 f i = (f i )+788 = For the limit of P Li =, f i >.8 is obtained. This criterion with f i =.8 gives us n() <.x m , 8
9 T i () > 98 kev for HA D He fusion reactor. 9
10 .. External heating power: P EXT HL [W] = M HL (t)x 6 P thresh  P oh +P F P b P s V o where P thresh [MW] =.84 n.58 [ m  ] B t.8 [T] R. [m] a.8 /A i.4. Fueling Total fueling is controlled by the minimum error between the three signals e DHE ( p f ) = ( P f / P fo ) e DHE (n) = ( n() / n() GW ) e DHE (< β >) = ( <β > / < β > MAX ) { } e DHE (min) = min e DHE (p f ),e DHE (n),e DHE (< β >) S DHE = S DHE e DHE (min) + T INT e DHE (min) + T d de DHE (min) where Integration time: T int = sec, Derivative time: T d =, D He Fuel ratio is controlled by n S D (t) = D () n D () + n He () + G NDHE e(n D / n He ) + o n S HE (t) = He () n D () + n He () + G NDHE e(n He / n D ) + o n where e(n D / n He ) = D () n D () + n He () o n e(n He / n D ) = He () n D () + n He () o T DHE int T DHE int n D () n D () + n He () n He () n D () + n He () t e(n D / n He ) S (t) DHE t e(n He / n D ) S (t) The fuel ratio: n D : n He = : ~.4 particle confinement time ratio : τ D */τ E = τ HE */τ E = τ T */τ E = τ p */τ E = τ α */τ E = ~ prompt loss of fusion products is to be zero.
11 .5. Plasma circuit equation: Plasma circuit equation: L p di p di + R p (I p I CD I BS ) = M V PV and the vertical field + M Psh di sh + M Pdiv di div + V OH () B VE = B zov I V  B zodiv I div + B zosh I sh () provides the equivalent circuit equation with α div = I div /I p and α sh = I sh /I V, di p L peff = R peff I p M PV + M Psh α sh db VE + V B zov + B zosh α sh OH () where L peff = L p + M Pdiv M PV + M Psh α sh B zov + B zosh α sh B zodiv α div R peff = R p ( f CD f BS ) f BS = I BS / I p = C BS εβ p C BS =.5 α div =.,α sh = Feedback controlled OH by V OH =(I p /I po ) As the vertical field drives the plasma current, the OH contribution is reduced during the fusion power riseup phase.
12
13 .6. D He Tokamak device (5m,.5m) BL (.5m, 6.5m) BT ITER FEAT (4m, m) 6 m m 8 m 6 m 4 m ITERFEAT Cross section of D He ST "Thermonuclear Boiler Plant" Final ST D He HAT Although machine sizes of D He HAT are slightly larger than the present ITER, it may be constructed with the present technology in spite of the larger plasma parameters. Radial build: R=7.5 m, a=. m, SO =. m, BL =.8 m, SP =. m, BT =. m, OH =.8m (total gap =.4 m) OH coil:r OH =R a  SO  BL  SP  BT  OH / =.7 m B OH =. T, Φ OH = πr OH (B OH )=9.7x(B OH ) = 7 Vs
14 . Calculated results of temporal evolution.. Power generation plant without parameter constraints [] Wall reflection R eff =.95, n/n GW =.8, β max =.7%, T i /T e =.5,τ p * /τ E =, D: He=.46:.54, f ash =5.7%, P f =. GW, Ignition, P n =75 MW, P e = MW [4%] n()=.4x m , T i ()=99.9 kev, P f f i =4 MW>P ie =5 MW n() (m  ) f ash NE FASH PF PF T T i () (ev) P f BETAP. P n I p P EXT β p τ E (s) Flux(Vs) PNV IP BVFLUX OHFLUX PEXT TAUE (g) BETAA MHLI BV ICD IBS SSDD SSHE β t M HL B v (T) Time (s) TOTFLUX I CD S D.S He (m  /s ) 4
15 [] Worse wall reflection R eff =.9, n/n GW =.65, β max =.9% T i /T e =.5,τ * p /τ E =, D: He=.6:.4, f ash =5.9%,,P f =. GW, Ignition, P n =4MW, P e = MW [4%] n()=.7x m , T i ()= kev, P f f i =89 MW>P ie =76 MW 5
16 n() (m  ) f ash NE FASH TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT Flux(Vs) β p PNV IP BVFLUX OHFLUX PEXT (h) (g) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX [] Good wall reflection R eff =.99, n/n GW =.85, β max =4.%, T i /T e =.5,τ * p /τ E =, D: He=.4:.58, f ash =5.4%, P f =. GW, Ignition, P n =6MW, P e = MW [4%], I CD S D.S He (m  /s ) 6
17 n()=.46x m , T i ()= kev, P f f ion =5 MW>P ie =9 MW If a wall reflection is good, the neutron power can be further reduced. n() (m  ) f ash NE FASH (b) TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (g) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX.. Possible power generation experiments with parameter constraints : [4] The beta limit: β max =.%, n/n GW =.6, I CD S D.S He (m  /s ) 7
18 R eff =.95, T i /T e =.5,τ p * /τ E =, D: He=.5:.5, f ash =5.5%, P f =.4 GW, Ignition, P n =74MW, P e =877 MW [4%] n()=.x m , T i ()=98.5 kev, P f f i =887 MW>P ie =79 MW n() (m  ) f ash NE FASH (b) TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (h) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX [5] Additional density limit : n/n GW =.5, β max =.%, R eff =.95, T i /T e =.5,τ p * /τ E =, D: He=.5:.48, f ash =5.5%, P f =. I CD S D.S He (m  /s ) 8
19 GW, Ignition, P n =7W, P e =755 MW [4%] n()=.79x m , T i ()=97 kev, P f f i =64 MW >P ie =58 MW n() (m  ) f ash NE FASH (b) TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (g) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX [6] The beta limit : β max =.%, n/n GW =.4, I CD S D.S He (m  /s ) 9
20 R eff =.95, T i /T e =.5,τ * p /τ E =, D: He=.54:.46, f ash =5.9%, P f =.8 GW, Ignition, P n =68MW, P e =6 MW [4%] n()=.59x m , T i ()=94 kev, P f f i =7 MW>P ie =7 MW n() (m  ) f ash NE FASH (a) (b) TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (h) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX I CD S D.S He (m  /s )
21 [7] Additional density limit : n/n GW =., β max =6.8% R eff =.95, T i /T e =.5,τ p * /τ E =, D: He=.6:.4, f ash =6%, P f =.87 GW, SubIgnition, P n =47MW, P e = MW [4%], Q E =.7 n()=.86x m , T i ()=87 kev, P f f ion =78 MW>P ie =696 MW n() (m  ) f ash NE FASH TAUE PF PF T MHLI T i () (ev) P f τ E (s) 5 M HL. BETAP. P n I p P EXT β p Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (g) BETAA BV ICD IBS SSDD SSHE..5.5 β t B v (T) Time (s) TOTFLUX I CD S D.S He (m  /s )
22 [8] Long particle confinement time : τ * p /τ E =, f ash =8.5% R eff =.95, T i /T e =.5,D: He=.58:.4, n/n GW =.6, β max =.8%, P f =.7 GW, Ignition, P n =MW, P e =88 MW [4%] n()=.98x m , T i ()=95 kev, P f f i =795 MW>P ie =674 MW
23 n() (m  ) f ash NE (a) FASH (b) PF PF T T i () (ev) P f BETAP (c). P n I p P EXT β p τ E (s) Flux(Vs) PNV TAUE (e) IP BVFLUX OHFLUX PEXT (h) (f) (g) (d) BETAA MHLI BV ICD IBS SSDD SSHE β t M HL B v (T) Time (s) TOTFLUX I CD S D.S He (m  /s )
24 [9] He rich operation (Possibly He plasma +Dbeam with E> MeV),τ * p /τ E =4, D: He=.:.7, f ash =.67%, Hmode operation,p f =44 MW, P n =.5 W, P EXT = MW, P e =8 MW[4%], Q E =.4,n()=6.x 9 m , T i ()=7 kev, P f f i =97 MW>P ie =9 MW 4
25 n() (m  ) 4 NE T T i () (ev) f ash FASH TAUE (c) PF PF P f τ E (s) 5 MHLI. M HL BETAP (d). β p BETAA. β t P n I p P EXT Flux(Vs) PNV IP BVFLUX OHFLUX PEXT (g) (e) BV ICD IBS SSDD SSHE.5.5 B v (T) Time (s) TOTFLUX I CD S D.S He (m  /s ) 5
26 .. Parameters of D He HAT: No Limit Beta limit Density limit Beta limit β % n/n GW.5 β % Major radius: R 7.5 m Minor radius: a. m... Toroidal field: B o T Maximum field: B max. T... Radius B t coil : BT.8m.8m.8m.8m Plasma Current: I p 4 MA Safety factor: Q MHD Internal inductance l i Plasma inductance: L p 7.4 µh Heating power: P EXT > MW > >.6 >.7 Plasma volume: V m Confinement factor over IPB(y,) scaling : γ HH.... Confinement time: τ E 7. s Ash density fraction: f ash 5.7% Be impurity fraction: f Be % Effective charge: Z eff Particle confinement time ratio: τ α */τ E =τ p */τ E Fuel ratio: n D :n He.46:.54.5:.5.5:.48.54:.46 Fusion product heating efficiency: η α = η p =.. Wall reflectivity: R eff Hole fraction ; f H.... Density profile: α n.... Temperature profile: α T.... Electron density: n().4x m .87x.8x.8x Greenwald factor n()/n() GW Ion temperature: T i () kev Tmperature ratio: T i ()/T e () Toroidal beta value: <β >.7%... Poloidal beta value: Normalized beta value: <β p > β Fusion power: P f MW 4 78 Neutron power: P n 75 MW Bremsstrahlung loss: P b 958MW Synchrotron radiation loss to the wall: P s 47 MW 89 for energy conv.: P s Plasma conduction loss: P L 48 MW Electric power (η c =4%) P e Average neutron wall loading Γ n.47 MW/m Average heat flux: Γ h.94 MW/m Divertor heat load Γ div.5mw/m P L /(πrx m) Energy multiplication Q F
27 Density limit Worse He rich n/n GW. p/e ratio operation Major radius: R 7.5 m Minor radius: a. m... Toroidal field: B o T Maximum field: B max. T... Radius B t coil : BT.8m.8m.8m.8m Plasma Current: I p 4 MA Safety factor: Q MHD Internal inductance l i Plasma inductance: L p 7.4 µh Heating power: P EXT >85. MW > >.5 > Plasma volume: V m Confinement factor over IPB(y,) scaling : γ HH.... Confinement time: τ E 5. s Ash density fraction: f ash 6.% Be impurity fraction: f Be % Effective charge: Z eff Particle confinement time ratio: τ α */τ E =τ p */τ E 4 4 Fuel ratio: n D :n He.6:.4.6:.4.58:.4.:.7 Fusion product heating efficiency: η α = η p =.. Wall reflectivity: R eff Hole fraction ; f H.... Density profile: α n.... Temperature profile: α T.... Electron density: n().86x m .x.98x.6x Greenwald factor n()/n() GW Ion temperature: T i () 87 kev Tmperature ratio: T i ()/T e () Toroidal beta value: Poloidal beta value: <β > <β p > Normalized beta value: β Ν Fusion power: P f 66 MW Neutron power: P n 47 MW Bremsstrahlung loss: P b 45 MW Synchrotron radiation loss to the wall: P s 5 MW for energy conv.: P s Plasma conduction loss: P L 4 MW Electric power (η c =4%) P e MW Average neutron wall loading Γ n. MW/m.8.7. Average heat flux: Γ h.6 MW/m.6.7. Divertor heat load Γ div 7. MW/m P L /(πrx m) Energy multiplication Q E
28 4. Summary and issues [] D He HA Tokmak device is proposed with R= 7.5 m, a=.m, B to = 5~6.5 T, (5.5 T in Plasma current of ~4MA (7 MA in IPB98y confinement factor γ HH =. (. in Wall Low ash confinement ratio of >low neutron power of 75 MW Ash confinement time ratio of 4 is Neutron wall loading.4 Heat flux=.87 MW/m (. MW/m Greenwald factor<.8 (.5 in β=. % (.8%) (β=.6 % in DIIID) A D He tokamak reactor would be possible within small extension of the present data base. *For reference D He ST reactor GW power 5.6 m, a=.4m, B to = 4.4 power and vertical field ramp to 9 MA (NSTX <.5 confinement factor γ HH =.5 ~.8 (NSTX flux =.99 MW/m (. MW/m factor=.9 (.5 in DIIID,ASDEX heating power MW (β=8 % in toroidal field B max =.5 T(Bihigh temperature superconductor B max = T) 8
29 @ash confinement time ratio up to 5 (4 at wall reflection (R ash confinement time ratio down to >low neutron power of 5 MW, low neutron wall loading of. MW/m. [] Common issues in D He reactors () A large fraction (8 %) of the fusion power should go to ions to keep the hot ion mode of T i /T e =.5. [] Nuclear elastic scattering (Nakao and Matsuura) may provide 4 %. [] The rest of 4 % should be provided by the stochastic ion heating (D.Gates et al ) as observed in NSTX, NSTX: T i /T e = for V NBI ~ 4V A D He ST reactor: V α ~.8V A,V p ~ 7.5V A D He HA tokamak reactor: V α ~.7V A, V p ~ 5.5V A and gyrostream cyclotron instability as proposed by Cheng. () Divertor heat flux is very large Pebble divertor by Nishikawa Ga Liquid divertor 9
Plasma and Fusion Research: Regular Articles Volume 10, (2015)
Possibility of QuasiSteadyState Operation of LowTemperature LHDType DeuteriumDeuterium (DD) Reactor Using Impurity Hole Phenomena DD Reactor Controlled by Solid Boron Pellets ) Tsuguhiro WATANABE
More informationThe high density ignition in FFHR helical reactor by NBI heating
The high density ignition in FFHR helical reactor by NBI heating JapanUS Workshop on Fusion Power Plants and Related Advanced Technologies with participations of EU and Korea February , at NIFS in Toki,
More informationOverview of Pilot Plant Studies
Overview of Pilot Plant Studies and contributions to FNST Jon Menard, Rich Hawryluk, Hutch Neilson, Stewart Prager, Mike Zarnstorff Princeton Plasma Physics Laboratory Fusion Nuclear Science and Technology
More informationSTELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT
STELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT J. F. Lyon, ORNL ARIES Meeting October 24, 2002 TOPICS Stellarator Reactor Optimization 0D Spreadsheet Examples 1D POPCON Examples 1D Systems Optimization
More informationBurn Stabilization of a Tokamak Power Plant with OnLine Estimations of Energy and Particle Confinement Times
Burn Stabilization of a Tokamak Power Plant with OnLine Estimations of Energy and Particle Confinement Times Javier E. Vitela vitela@nucleares.unam.mx Instituto de Ciencias Nucleares Universidad Nacional
More informationA SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR
A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR A.N. Mauer, W.M. Stacey, J. Mandrekas and E.A. Hoffman Fusion Research Center Georgia Institute of Technology Atlanta, GA 30332 1. INTRODUCTION
More informationComputational Study of NonInductive Current Buildup in Compact DEMO Plant with Slim Center Solenoid
1st IAEA TM, First Generation of Fusion Power Plants Design and Technology , Vienna, July 57, 25 Computational Study of NonInductive Current Buildup in Compact DEMO Plant with Slim Center Solenoid Y.
More informationDesign concept of near term DEMO reactor with high temperature blanket
Design concept of near term DEMO reactor with high temperature blanket JapanUS Workshop on Fusion Power Plants and Related Advanced Technologies March 1618, 2009 Tokyo Univ. Mai Ichinose, Yasushi Yamamoto
More informationEvolution of BootstrapSustained Discharge in JT60U
EX14 Evolution of BootstrapSustained Discharge in JT60U Y. Takase, a S. Ide, b Y. Kamada, b H. Kubo, b O. Mitarai, c H. Nuga, a Y. Sakamoto, b T. Suzuki, b H. Takenaga, b and the JT60 Team a University
More informationINTRODUCTION TO MAGNETIC NUCLEAR FUSION
INTRODUCTION TO MAGNETIC NUCLEAR FUSION S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK With acknowledgments to B.Alper for use of his transparencies
More informationPhysics of fusion power. Lecture 14: Anomalous transport / ITER
Physics of fusion power Lecture 14: Anomalous transport / ITER Thursday.. Guest lecturer and international celebrity Dr. D. Gericke will give an overview of inertial confinement fusion.. Instabilities
More informationDT Fusion Ignition of LHDType Helical Reactor by Joule Heating Associated with Magnetic Axis Shift )
DT Fusion Ignition of LHDType Helical Reactor by Joule Heating Associated with Magnetic Axis Shift ) Tsuguhiro WATANABE National Institute for Fusion Science, 3226 Oroshicho, Toki 5095292, Japan (Received
More informationExhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France
Exhaust scenarios Alberto Loarte Plasma Operation Directorate ITER Organization Route de Vinon sur Verdon, 13067 St Paul lez Durance, France Acknowledgements: Members of ITER Organization (especially R.
More informationStudies of NextStep Spherical Tokamaks Using HighTemperature Superconductors Jonathan Menard (PPPL)
Studies of NextStep Spherical Tokamaks Using HighTemperature Superconductors Jonathan Menard (PPPL) 22 nd Topical Meeting on the Technology of Fusion Energy (TOFE) Philadelphia, PA August 2225, 2016
More informationIntroduction to Fusion Physics
Introduction to Fusion Physics Hartmut Zohm MaxPlanckInstitut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction
More informationUSJapan workshop on Fusion Power Reactor Design and Related Advanced Technologies, March at UCSD.
USJapan workshop on Fusion Power Reactor Design and Related Advanced Technologies, March 57 28 at UCSD. Overview Overview of of Design Design Integration Integration toward toward Optimization type
More informationPossibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets
PFC/JA915 Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets E. A. Chaniotakis L. Bromberg D. R. Cohn April 25, 1991 Plasma Fusion Center Massachusetts Institute of Technology
More informationToward the Realization of Fusion Energy
Toward the Realization of Fusion Energy Nuclear fusion is the energy source of the sun and stars, in which light atomic nuclei fuse together, releasing a large amount of energy. Fusion power can be generated
More informationEvolution of BootstrapSustained Discharge in JT60U
1 Evolution of BootstrapSustained Discharge in JT60U Y. Takase 1), S. Ide 2), Y. Kamada 2), H. Kubo 2), O. Mitarai 3), H. Nuga 1), Y. Sakamoto 2), T. Suzuki 2), H. Takenaga 2), and the JT60 Team 1)
More informationAspects of Advanced Fuel FRC Fusion Reactors
Aspects of Advanced Fuel FRC Fusion Reactors John F Santarius and Gerald L Kulcinski Fusion Technology Institute Engineering Physics Department CT2016 Irvine, California August 2224, 2016 santarius@engr.wisc.edu;
More informationSimulation of alpha particle current drive and heating in spherical tokamaks
Simulation of alpha particle current drive and heating in spherical tokamaks R. Farengo 1, M. Zarco 1, H. E. Ferrari 1, 1 Centro Atómico Bariloche and Instituto Balseiro, Argentina. Consejo Nacional de
More informationJoint ITERIAEAICTP Advanced Workshop on Fusion and Plasma Physics October Introduction to Fusion Leading to ITER
22671 Joint ITERIAEAICTP Advanced Workshop on Fusion and Plasma Physics 314 October 2011 Introduction to Fusion Leading to ITER SNIPES Joseph Allan Directorate for Plasma Operation Plasma Operations
More informationTokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011
Tokamak Divertor System Concept and the Design for ITER Chris Stoafer April 14, 2011 Presentation Overview Divertor concept and purpose Divertor physics General design considerations Overview of ITER divertor
More informationNonohmic ignition scenarios in Ignitor
Nonohmic ignition scenarios in Ignitor Augusta Airoldi IFP, EURATOMENEACNR Association, Milano, Italy Francesca Bombarda, Giovanna Cenacchi Ignitor Group, ENEA, Italy Bruno Coppi MIT, USA DPP1 APS Meeting
More informationPHYSICS OF CFETR. Baonian Wan for CFETR physics group Institute of Plasma Physcis, Chinese Academy of Sciences, Hefei, China.
PHYSICS OF CFETR Baonian Wan for CFETR physics group Institute of Plasma Physcis, Chinese Academy of Sciences, Hefei, China Dec 4, 2013 Mission of CFETR Complementary with ITER Demonstration of fusion
More informationFusion Nuclear Science  Pathway Assessment
Fusion Nuclear Science  Pathway Assessment C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD July 29, 2010 Basic Flow of FNSPathways Assessment 1. Determination of DEMO/power plant parameters and requirements,
More informationHighDensity, Low Temperature Ignited Operations in FFHR
HighDensity, Low Temperature Ignited Operations in FFHR Osamu MITARAI, Akio SAGARA 1), Ryuichi SAKAMOTO 1), Nobuyoshi OHYABU 1), Akio KOMORI 1) and Osamu MOTOJIMA 1) Liberal Arts Education Center, Kumamoto
More informationTHE OPTIMAL TOKAMAK CONFIGURATION NEXTSTEP IMPLICATIONS
THE OPTIMAL TOKAMAK CONFIGURATION NEXTSTEP IMPLICATIONS by R.D. STAMBAUGH Presented at the Burning Plasma Workshop San Diego, California *Most calculations reported herein were done by YR. LinLiu. Work
More informationEnergetic Particle Physics in Tokamak Burning Plasmas
Energetic Particle Physics in Tokamak Burning Plasmas presented by C. Z. (Frank) Cheng in collaboration with N. N. Gorelenkov, G. J. Kramer, R. Nazikian, E. Fredrickson, Princeton Plasma Physics Laboratory
More informationDesign window analysis of LHDtype Heliotron DEMO reactors
Design window analysis of LHDtype Heliotron DEMO reactors Fusion System Research Division, Department of Helical Plasma Research, National Institute for Fusion Science Takuya GOTO, Junichi MIYAZAWA, Teruya
More informationReal Plasma with n, T ~ p Equilibrium: p = j B
Real Plasma with n, T ~ p Equilibrium: p = j B B lines must lie in isobaric surfaces. Since B = 0, only possible if isobaric surfaces are topological tori. Magnetic field lines must form nested tori. Equilibrium
More informationSpherical Torus Fusion Contributions and GameChanging Issues
Spherical Torus Fusion Contributions and GameChanging Issues Spherical Torus (ST) research contributes to advancing fusion, and leverages on several gamechanging issues 1) What is ST? 2) How does research
More informationDer Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk
MaxPlanckInstitut für Plasmaphysik Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Robert Wolf robert.wolf@ipp.mpg.de www.ipp.mpg.de Contents Magnetic confinement The stellarator
More informationPhysical Design of MWclass Steadystate Spherical Tokamak, QUEST
Physical Design of MWclass Steadystate Spherical Tokamak, QUEST FT/P325 K.Hanada 1), K.N.Sato 1), H.Zushi 1), K.Nakamura 1), M.Sakamoto 1), H.Idei 1), M.Hasegawa 1), Y.Takase 2), O.Mitarai 3), T.Maekawa
More informationHIGH PERFORMANCE EXPERIMENTS IN JT60U REVERSED SHEAR DISCHARGES
HIGH PERFORMANCE EXPERIMENTS IN JTU REVERSED SHEAR DISCHARGES IAEACN9/EX/ T. FUJITA, Y. KAMADA, S. ISHIDA, Y. NEYATANI, T. OIKAWA, S. IDE, S. TAKEJI, Y. KOIDE, A. ISAYAMA, T. FUKUDA, T. HATAE, Y. ISHII,
More informationRecent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science
Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant
More informationDivertor Requirements and Performance in ITER
Divertor Requirements and Performance in ITER M. Sugihara ITER International Team 1 th International Toki Conference Dec. 1114, 001 Contents Overview of requirement and prediction for divertor performance
More information0 Magnetically Confined Plasma
0 Magnetically Confined Plasma 0.1 Particle Motion in Prescribed Fields The equation of motion for species s (= e, i) is written as d v ( s m s dt = q s E + vs B). The motion in a constant magnetic field
More information(Inductive tokamak plasma initial startup)
(Inductive tokamak plasma initial startup) 24. 6. 7. (tapl1.kaist.ac.kr) Outline Conventional inductive tokamak plasma startup Inductive outer PF coilonly plasma startup Inductive plasma startup in
More informationStudy on supporting structures of magnets and blankets for a heliotrontype type fusion reactors
JAUS Workshop on Fusion Power Plants and Related Advanced Technologies with participation of EU, Jan. 1113, 2005, Tokyo, Japan. Study on supporting structures of magnets and blankets for a heliotrontype
More informationGA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO
GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO by C.P.C. WONG and R.D. STAMBAUGH JULY 1999 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United
More informationHydrogen and Helium EdgePlasmas
Hydrogen and Helium EdgePlasmas Comparison of high and low recycling T.D. Rognlien and M.E. Rensink Lawrence Livermore National Lab Presented at the ALPS/APEX Meeting Argonne National Lab May 812, 2
More informationCritical Physics Issues for DEMO
MaxPlanckInstitut für Plasmaphysik Critical Physics Issues for DEMO L.D. Horton with thanks to the contributors to the EFDA DEMO physics tasks in 2006 and to D.J. Campbell, who organized this effort
More informationInnovative fabrication method of superconducting magnets using high T c superconductors with joints
Innovative fabrication method of superconducting magnets using high T c superconductors with joints (for huge and/or complicated coils) Nagato YANAGI LHD & FFHR Group National Institute for Fusion Science,
More informationINTRODUCTION TO BURNING PLASMA PHYSICS
INTRODUCTION TO BURNING PLASMA PHYSICS Gerald A. Navratil Columbia University American Physical Society  Division of Plasma Physics 2001 Annual Meeting, Long Beach, CA 1 November 2001 THANKS TO MANY PEOPLE
More informationSTEADYSTATE EXHAUST OF HELIUM ASH IN THE WSHAPED DIVERTOR OF JT60U
Abstract STEADYSTATE EXHAUST OF HELIUM ASH IN THE WSHAPED DIVERTOR OF JT6U A. SAKASAI, H. TAKENAGA, N. HOSOGANE, H. KUBO, S. SAKURAI, N. AKINO, T. FUJITA, S. HIGASHIJIMA, H. TAMAI, N. ASAKURA, K. ITAMI,
More information1. Motivation power exhaust in JT60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT60SA. 4. Results. 5.
1. Motivation power exhaust in JT60SA tokamak 2. Tool COREDIV code 3. Operational scenarios of JT60SA 4. Results 5. Conclusions K. Gałązka Efficient power exhaust in JT60SA by COREDIV Page 2 The Institute
More informationDEMO Concept Development and Assessment of Relevant Technologies. Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor
FIP/34Rb FIP/34Ra DEMO Concept Development and Assessment of Relevant Technologies Y. Sakamoto, K. Tobita, Y. Someya, H. Utoh, N. Asakura, K. Hoshino, M. Nakamura, S. Tokunaga and the DEMO Design Team
More informationThe GDTbased fusion neutron source as a driver of subcritical nuclear fuel systems
The GDTbased fusion neutron source as a driver of subcritical nuclear fuel systems Presented by A.A.Ivanov Budker Institute, FZD Rossendorf, Joint Institute for Nuclear,, VNIITF, Snejinsk Layout of the
More informationFusion Development Facility (FDF) Mission and Concept
Fusion Development Facility (FDF) Mission and Concept Presented by R.D. Stambaugh PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION University of California Los Angeles FNST Workshop
More informationEU PPCS Models C & D Conceptual Design
Institut für Materialforschung III EU PPCS Models C & D Conceptual Design Presented by P. Norajitra, FZK 1 PPCS Design Studies Strategy definition [D. Maisonnier] 2 models with limited extrapolations Model
More informationHelium Catalyzed DD Fusion in a Levitated Dipole
Helium Catalyzed DD Fusion in a Levitated Dipole Jay Kesner, L. Bromberg, MIT D.T. Garnier, A. Hansen, M.E. Mauel Columbia University APS 2003 DPP Meeting, Albuquerque October 27, 2003 Columbia University
More informationDesign of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system
Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system J.M. Ané 1, V. Grandgirard, F. Albajar 1, J.Johner 1 1EuratomCEA Association, Cadarache, France EuratomEPFL
More informationAbstract. The Pegasus Toroidal Experiment is an ultralow aspect ratio (A < 1.2) spherical tokamak (ST) capable of operating in the high I N
Abstract The Pegasus Toroidal Experiment is an ultralow aspect ratio (A < 1.2) spherical tokamak (ST) capable of operating in the high I N regime (I N > 12). Access to this regime requires a small centerpost
More informationJET and Fusion Energy for the Next Millennia
JET and Fusion Energy for the Next Millennia JET Joint Undertaking Abingdon, Oxfordshire OX14 3EA JG99.294/1 Talk Outline What is Nuclear Fusion? How can Fusion help our Energy needs? Progress with Magnetic
More informationAdvanced Tokamak Research in JT60U and JT60SA
I07 Advanced Tokamak Research in and JT60SA A. Isayama for the JT60 team 18th International Toki Conference (ITC18) December 912, 2008 Ceratopia Toki, Toki Gifu JAPAN Contents Advanced tokamak development
More informationEvaluation of Anomalous FastIon Losses in Alcator CMod
Evaluation of Anomalous FastIon Losses in Alcator CMod S. D. Scott Princeton Plasma Physics Laboratory In collaboration with R. Granetz, D. Beals, M. Greenwald MIT PLASMA Science and Fusion Center W.
More informationCharacteristics of the Hmode H and Extrapolation to ITER
Characteristics of the Hmode H Pedestal and Extrapolation to ITER The Hmode Pedestal Study Group of the International Tokamak Physics Activity presented by T.Osborne 19th IAEA Fusion Energy Conference
More informationRadiative typeiii ELMy Hmode in alltungsten ASDEX Upgrade
Radiative typeiii ELMy Hmode in alltungsten ASDEX Upgrade J. Rapp 1, A. Kallenbach 2, R. Neu 2, T. Eich 2, R. Fischer 2, A. Herrmann 2, S. Potzel 2, G.J. van Rooij 3, J.J. Zielinski 3 and ASDEX Upgrade
More informationDependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D SteadyState Scenario Discharges
Dependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D SteadyState Scenario Discharges by J.R. Ferron with T.C. Luce, P.A. Politzer, R. Jayakumar, * and M.R. Wade *Lawrence Livermore
More informationCompact, spheromakbased pilot plants for the demonstration of netgain fusion power
Compact, spheromakbased pilot plants for the demonstration of netgain fusion power Derek Sutherland HITSI Research Group University of Washington July 25, 2017 D.A. Sutherland  EPR 2017, Vancouver,
More informationMagnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan
The Sun Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan 2017 CNS Conference Niagara Falls, June 47, 2017 Tokamak Outline Fusion
More informationGA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES
GA A311 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES by C.C. PETTY, M.R. WADE, J.E. KINSEY, R.J. GROEBNER, T.C. LUCE, and G.M. STAEBLER AUGUST 1999 This report
More informationIntegrated Transport Modeling of HighField Tokamak Burning Plasma Devices
Integrated Transport Modeling of HighField Tokamak Burning Plasma Devices Arnold H. Kritz, T.Onjun,C.Nguyen,P.Zhu,G.Bateman Lehigh University Physics Department 16 Memorial Drive East, Bethlehem, PA 1815
More informationCONFINEMENT TUNING OF A 0D PLASMA DYNAMICS MODEL
CONFINEMENT TUNING OF A D PLASMA DYNAMICS MODEL A Thesis Presented to The Academic Faculty by Maxwell D. Hill In Partial Fulfillment of the Requirements for the Degree Master of Science in the Department
More informationPlasma Breakdown Analysis in JFT2M without the Use of Center Solenoid
3st EPS Conference on Plasma Physics 28th June 2nd July, 24, Imperial College, London Plasma Breakdown Analysis in without the Use of Center Solenoid H. Tsutsui, S. TsujiIio, R. Shimada, M. Sato, K. Tsuzuki,
More informationD.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin  Madison 1500 Engineering Drive Madison, WI 53706
D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin  Madison 1500 Engineering Drive Madison, WI 53706 Concept Overview Implementation on PEGASUS Results Current
More informationRipple Loss of Alpha Particles in a LowAspectRatio Tokamak Reactor
P Ripple Loss of Alpha Particles in a LowAspectRatio Tokamak Reactor K. TANI, S. NISHIO, K. TOBITA, H. TSUTSUI *, H. MIMATA *, S. TSUJIIIO *, T. AOKI * Japan Atomic Energy Agency, tani.keiji@jaea.go.jp
More informationASSESSMENT AND MODELING OF INDUCTIVE AND NONINDUCTIVE SCENARIOS FOR ITER
ASSESSMENT AND MODELING OF INDUCTIVE AND NONINDUCTIVE SCENARIOS FOR ITER D. BOUCHER 1, D. MOREAU 2, G. VAYAKIS 1, I. VOITSEKHOVITCH 3, J.M. ANÉ 2, X. GARBET 2, V. GRANDGIRARD 2, X. LITAUDON 2, B. LLOYD
More informationThe Dynomak Reactor System
The Dynomak Reactor System An economically viable path to fusion power Derek Sutherland HITSI Research Group University of Washington November 7, 2013 Outline What is nuclear fusion? Why do we choose
More informationPlasma Physics Performance. Rebecca Cottrill Vincent Paglioni
Plasma Physics Performance Rebecca Cottrill Vincent Paglioni Objectives Ensure adequate plasma power and Hmode operation with a reasonable confinement time. Maintain plasma stability against various magnetohydrodynamic
More informationCalculations of Energy Losses due to Atomic Processes in Tokamaks with Applications to the ITER Divertor
Calculations of Energy Losses due to Atomic Processes in Tokamaks with Applications to the ITER Divertor D. Post 1, J. Abdallah, R. E. H. Clark, and N. Putvinskaya 1 1 ITER Joint Central Team, San Diego,
More informationFusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options
Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options A.M. Garofalo, T. Petrie, J. Smith, V. Chan, R. Stambaugh (General Atomics) J. Canik, A. Sontag, M. Cole (Oak Ridge National Laboratory)
More informationª 10 KeV. In 2XIIB and the tandem mirrors built to date, in which the plug radius R p. ª r Li
Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies R. F. Post, T. K. Fowler*, R. Bulmer, J. Byers, D. Hua, L. Tung Lawrence Livermore National Laboratory *Consultant, Presenter This talk
More informationChapter IX: Nuclear fusion
Chapter IX: Nuclear fusion 1 Summary 1. General remarks 2. Basic processes 3. Characteristics of fusion 4. Solar fusion 5. Controlled fusion 2 General remarks (1) Maximum of binding energy per nucleon
More informationMHD. Jeff Freidberg MIT
MHD Jeff Freidberg MIT 1 What is MHD MHD stands for magnetohydrodynamics MHD is a simple, selfconsistent fluid description of a fusion plasma Its main application involves the macroscopic equilibrium
More informationTokamak Fusion Basics and the MHD Equations
MHD Simulations for Fusion Applications Lecture 1 Tokamak Fusion Basics and the MHD Equations Stephen C. Jardin Princeton Plasma Physics Laboratory CEMRACS 1 Marseille, France July 19, 21 1 Fusion Powers
More informationInfluence of Beta, Shape and Rotation on the Hmode Pedestal Height
Influence of Beta, Shape and Rotation on the Hmode Pedestal Height by A.W. Leonard with R.J. Groebner, T.H. Osborne, and P.B. Snyder Presented at FortyNinth APS Meeting of the Division of Plasma Physics
More informationNonSolenoidal Plasma Startup in
NonSolenoidal Plasma Startup in the A.C. Sontag for the Pegasus Research Team A.C. Sontag, 5th APSDPP, Nov. 2, 28 1 PointSource DC Helicity Injection Provides Viable NonSolenoidal Startup Technique
More informationPlasma Wall Interactions in Tokamak
Plasma Wall Interactions in Tokamak Dr. C Grisolia, Association Euratom/CEA sur la fusion, CEA/Cadarache Outline 1. Conditions for Fusion in Tokamaks 2. Consequences of plasma operation on in vessel materials:
More informationReduction of Turbulence and Transport in the Alcator CMod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection
Reduction of Turbulence and Transport in the Alcator CMod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection M. Porkolab, P. C. Ennever, S. G. Baek, E. M. Edlund, J. Hughes, J. E.
More informationFusion Nuclear Science (FNS) Mission & High Priority Research
Fusion Nuclear Science (FNS) Mission & High Priority Research Topics Martin Peng, Aaron Sontag, Steffi Diem, John Canik, HM Park, M. Murakami, PJ Fogarty, Mike Cole ORNL 15 th International Spherical Torus
More informationFormation of An Advanced Tokamak Plasma without the Use of Ohmic Heating Solenoid in JT60U
1 Formation of An Advanced Tokamak Plasma without the Use of Ohmic Heating Solenoid in JT60U Y. Takase, 1) S. Ide, 2) S. Itoh, 3) O. Mitarai, 4) O. Naito, 2) T. Ozeki, 2) Y. Sakamoto, 2) S. Shiraiwa,
More informationFeedback control of the heating power to access the thermally unstable ignition regime in FFHR
Feedback control o the heating power to access the thermally unstable ignition regime in FFHR USJapan Fusion ower lant Studies and Related Advanced technologies with participation rom China and Korea,
More informationToroidal confinement devices
Toroidal confinement devices Dr Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 24 th January 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 20) Last time... Power
More informationSelfconsistent modeling of ITER with BALDUR integrated predictive modeling code
Selfconsistent modeling of ITER with BALDUR integrated predictive modeling code Thawatchai Onjun Sirindhorn International Institute of Technology, Thammasat University, Klong Luang, Pathumthani, 12121,
More informationSimple examples of MHD equilibria
Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will
More informationCritical Gaps between Tokamak Physics and Nuclear Science. Clement P.C. Wong General Atomics
Critical Gaps between Tokamak Physics and Nuclear Science (Step 1: Identifying critical gaps) (Step 2: Options to fill the critical gaps initiated) (Step 3: Success not yet) Clement P.C. Wong General Atomics
More informationEF2200 Plasma Physics: Fusion plasma physics
EF2200 Plasma Physics: Fusion plasma physics Guest lecturer: Thomas Jonsson, johnso@kth.se Department for Fusion Plasma Physics School of Electrical Engineering 1 ITER (EU, China, India, Japan, Russia,
More informationThe Levitated Dipole Experiment: Towards Fusion Without Tritium
The Levitated Dipole Experiment: Towards Fusion Without Tritium Jay Kesner MIT M.S. Davis, J.E. Ellsworth, D.T. Garnier, M.E. Mauel, P.C. Michael, P.P. Woskov MCP I3.110 Presented at the EPS Meeting, Dublin,
More informationMission and Design of the Fusion Ignition Research Experiment (FIRE)
Mission and Design of the Fusion Ignition Research Experiment (FIRE) D. M. Meade 1), S. C. Jardin 1), J. A. Schmidt 1), R. J. Thome 2), N. R. Sauthoff 1), P. Heitzenroeder 1), B. E. Nelson 3), M. A. Ulrickson
More informationThe Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory
The Path to Fusion Energy creating a star on earth S. Prager Princeton Plasma Physics Laboratory The need for fusion energy is strong and enduring Carbon production (Gton) And the need is time urgent Goal
More informationImplementation of a long leg Xpoint target divertor in the ARC fusion pilot plant
Implementation of a long leg Xpoint target divertor in the ARC fusion pilot plant A.Q. Kuang, N.M. Cao, A.J. Creely, C.A. Dennett, J. Hecla, H. Hoffman, M. Major, J. Ruiz Ruiz, R.A. Tinguely, E.A. Tolman
More informationNeutronic Activation Analysis for ITER Fusion Reactor
Neutronic Activation Analysis for ITER Fusion Reactor Barbara Caiffi 100 Congresso Nazionale SIF 1 Outlook Nuclear Fusion International Thermonuclear Experimental Reactor (ITER) Neutronics Computational
More information Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation 
15TH WORKSHOP ON MHD STABILITY CONTROL: "USJapan Workshop on 3D Magnetic Field Effects in MHD Control" U. Wisconsin, Madison, Nov 1517, 17, 2010 LHD experiments relevant to Tokamak MHD control  Effect
More informationCORSICA Modelling of ITER Hybrid Operation Scenarios
1 CORSICA Modelling of ITER Hybrid Operation Scenarios S.H. Kim 1, T.A. Casper 1, D.J. Campbell 1, J.A. Snipes 1, R.H. Bulmer 2, L.L. LoDestro 2, W.H. Meyer 2 and L.D. Pearlstein 2 1 ITER Organization,
More informationHeating and Current Drive by Electron Cyclotron Waves in JT60U
EX/W Heating and Current Drive by Electron Cyclotron Waves in JT6U T. Suzuki ), S. Ide ), C. C. Petty ), Y. Ikeda ), K. Kajiwara ), A. Isayama ), K. Hamamatsu ), O. Naito ), M. Seki ), S. Moriyama )
More informationOverview of edge modeling efforts for advanced divertor configurations in NSTXU with magnetic perturbation fields
Overview of edge modeling efforts for advanced divertor configurations in NSTXU with magnetic perturbation fields H. Frerichs, O. Schmitz, I. Waters, G. P. Canal, T. E. Evans, Y. Feng and V. Soukhanovskii
More informationMultifarious Physics Analyses of the Core Plasma Properties in a Helical DEMO Reactor FFHRd1
1 FTP/P734 Multifarious Physics Analyses of the Core Plasma Properties in a Helical DEMO Reactor FFHRd1 J. Miyazawa 1, M. Yokoyama 1, Y. Suzuki 1, S. Satake 1, R. Seki 1, Y. Masaoka 2, S. Murakami 2,
More informationTOKAMAK EXPERIMENTS  Summary 
17 th IAEA Fusion Energy Conference, Yokohama, October, 1998 TOKAMAK EXPERIMENTS  Summary  H. KISHIMOTO Japan Atomic Energy Research Institute 22 UchisaiwaiCho, ChiyodaKu, Tokyo, Japan 1. Introduction
More information