Chapter 4 Imaging. Lecture 21. d (110) Chem 793, Fall 2011, L. Ma

Size: px
Start display at page:

Download "Chapter 4 Imaging. Lecture 21. d (110) Chem 793, Fall 2011, L. Ma"

Transcription

1 Chapter 4 Imaging Lecture 21 d (110)

2 Imaging Imaging in the TEM Diraction Contrast in TEM Image HRTEM (High Resolution Transmission Electron Microscopy) Imaging or phase contrast imaging STEM imaging

3 a b d (100) d (010) c (a) HRTEM image o gold oil along [001] showing atomic crystal structure (b), (c) Crystal structure model

4 Multi-wall Carbon Nano Tube

5 Imaging in the TEM What is the contrast? In microscopy, contrast is the dierence in intensity between a eature o interest (Is) and its background (I0). Contrast is usually described as a raction such as: I I I s 0 C 0 I I 0 You won t see anything on the screen or on the photograph, unless the contrast rom your specimen eceeds 5-10%.

6 In summary, BF and DF images ( or TEM and STEM ) are ormed by using the transmitted and diracted beam respectively. In order to understand and control the contrast in these images, we need to know what eatures o a specimen cause scattering and what aspects o TEM operation aect the contrast. Mechanism o Contrast or TEM/STEM image 1. Mass-thickness contrast: primary contrast source o TEM/STEM image or noncrystalline materials such as polymers and biological materials. 2. Z-contrast: High resolution STEM image 3. Diraction contrast: primary contrast source o BF/DF image especially or crystalline materials such as metals. Amplitude o eit-wave contributes to the contrast. 4. Phase contrast: High/low resolution TEM image (atomic lattice image). 5. Both the amplitude and the phase contrast: are primary contrast source o electron holography image or magnetic materials 6. In some situations, image contrast may arise rom more than one mechanism and one may dominate. 7. Crystalline sample may generate mass-thickness and diraction contrast when aperture is removed.

7 Diraction contrast Diraction contrast imaging uses the coherent elastic scattering beam to orm image Diraction contrast imaging is controlled by the Bragg diraction through variation o crystal structure and orientation o specimen. Diraction contrast is simply a special orm o amplitude contrast because the scattering occurs at Bragg angle. BF and DF image is diraction contrast image by selecting the direct or diracted beam as seen igure. Beam condition o diraction contrast imaging: the incident beam must be parallel in order to give the sharp diraction spots and thereby strong diraction contrast. So we need to underocus C2 to spread the beam. Parallel Chem 793, beam Fall 2011, condition L. Ma

8 Two-beam conditions or diraction contrast imaging BF/DF image pairs along with two-beam diraction o a series o dislocation and a stacking ault in Cu- 15at%Al.

9 (200) (b) (1-11) BF (0-22) (31-1) Only two beams are strong and others are aint due to relaation o Bragg condition (s) DF (c) (a) (a) The [001] zone-ais diraction patter showing many planes diracting with equal strength. In the smaller patterns, the specimen is tilted so there are only two strong beams, the direct [000] on-ais beam and a dierent one o the {hkl} o-ais diracted beam. (b) and (c) showing the complementary BF and DF image under two-beam conditions. In Chem (b), the 793, precipitates Fall 2011, is L. Ma diracted strongly and appears dark. In (c), it appears bright Al-Li Alloy and precipitates

10 Beam condition o Imaging HRTEM (Phase contrast )Imaging Diraction Contrast Imaging

11

12

13 HRTEM image

14 How to obtain TEM images Using the objective aperture to orm BF or DF images Using the STEM detector to orm BF and DF image HRTEM: usually without aperture To obtain meaningul TEM image Careul preparation o sample. Garbage in, and garbage out Proper setting-up the optics condition Study your materials beore TEM session Correct operation o instrument What s your question? Design the lab plan More than one session is necessary Please add more tips rom your practice, share and discuss your eperience.

15 Mathematical Preparation 1. Delta-unction and discontinuities A Dirac delta unction at a is deined by δ ( - a) and 0 or or a a - δ ( - a) d 1 It is represented by an ininitely narrow peak o ininite height at the position a, the area under the peak is equal to one.

16 The delta unction at 0, δ(), can be considered as the limit o a set o real continuous unction, such as Gaussians: δ ( ) 2 2 a lim e a a π The Fourier transorm o the constant 1 is equal to delta unction δ cδ ( ) F( 1) and dy ( ) F( c) cf( 1) c e 2πiy e 2πiy dy

17 2. Convolutions ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) a a R d R r g R r g r g dx X X g g dx X g X g C g δ δ the convolution with the Dirac delta unction The identity operation is we may use the vector orm For two or more dimensions * we ind that variable, By simple change o is deined as ) ( and ) ( two unctions, o the Convolution integral 1- D, In

18 Eamples o convolutions C ( ) ( ) g( ) ( X ) g( X ) dx...( a) R () T() T()*R () The high-requency details are suppressed by convolution with the wider point spread unction Convolutions are undamental to many dierent types o eperiments. For eample, a reerence signal, R(), is created and directed at the material to be investigated (such as electron beam, light or thermal pulse, etc). The sample then modiies this reerence signal, and ideally we would like to measure the modiied signal, R (). In practice, the detector system, which converts the modiied signal into an observable signal (e.g. visible light, or electron current), introduces its own ingerprint onto the signal, R (). In simple case, this would be a linear scaling o R (), but in many case, the relationship between the detected signal R () and modiied signal R () is nonlinear and can be described by a convolution o R () with a unction T(), known as the instrument point spread unction T: R ()T()*R () This means that the instrument impose a resolution limit, which results in blurring o the smallest details in the signal R, as shown in igure.

19 Fourier transorm o a one dimensional unction () is deined as F 2πiu [ ( ) ] F( u) ( ) e d Fourier inverse transorm is deined as 1 2πiu ( ) F [ F[ ( ) ]] F( u) e du

20 Fourier transorm o a 3-D unction (r) is: r is a vector F u r e 2πi u r d r I r has a coordinate (,y,z) and u has a coordinate o (u,v,w), then : F ( ) ( ) 2πi ( u+ vy+ zw u, v, w, y, z e ) ddydz

21 We may write Fourier transorm as F [ ( ) ] F( u) ( ) F e 2πiu d ( u) ( ) cos( 2πu) d + i ( ) sin( 2πu)d I the unction () is real and even unction, i.e. (-)(), the sine integral is zero, so that F ( u) ( ) cos( 2πu) 2 0 d ( ) cos( 2πu)d F(u) is a real unction

22 Property o Fourier transorms F F F F F [ ( ) ] F( u) ( ) [ ( ) ] F( u) [ ( a) ] 1 a F u a e 2πiu [ ( ) + g( ) ] F( u) + G( u) [ ( a) ] 2πiau e F( u) d

23 Multiplication and convolution Multiplication theorem the Fourier transorm o a product o two unctions is the convolution o their Fourier transorms. F F [ ( ) g( ) ] F( u) G( u) Convolution theorem : the Fourier transorm o the convolution o two unctions is the product o [ ( ) g( ) ] F( u) G( u) their Fourier transorms.

24 Fourier transorm and Diraction 1. The amplitude distribution o a very small source or the transmission through a very small aperture (slit) in 1-D may be described as δ(), or by δ(-a) when it is not at the origin. The Fourier transorm can be used to derive the diraction pattern (in general called Fraunhoer diraction pattern according to wave optics), F F [ δ ( ) ] 1 [ δ ( a) ] e 2πiua The amplitude o a diraction pattern will be proportional F(u), where u l / λ The intensity observed will be proportional to F( u) 2 1 to

25 2. Translation o an object Translation o the object in real space has eect o multiplying the amplitude in the Fourier transorm space (reciprocal space) by a comple eponential. The intensity distribution o the Fraunhoer diraction pattern is given by F(u) ^2. F[ ( a) ] F[ ( ) δ( a) ] ( ) 2πiua F u e

26 3. Rectangular aperture In the 2-D, the transmission unction o a rectangular aperture is a F (, y) Then ( u, v) ( u, v) a / 2 a / πiu b / 2 b / 2 ( πau) sin( πbv) 2 sin ( πau) 2 ( πau) sin ( πbv) 2 2πiuy sin ab πau πbv so or a diraction rom a rectangular aperture the intensity distribution is I 1 i < a / 2 and y < 0 elsewhere a b e d e dy ( πbv) 2 b / 2 The orm o the Fourier transorm o a rectangular aperture b

27 4. Circular aperture In the 2-D, the transmission unction o a circular aperture is ( ) ( i + y ) < ( a / 2), y Then 0 ( πau) elsewhere 2 πa J1 F( u) 2 πau u is a radial coordinate and J the irst order Bessel unction J 1 ( z) 0 k 2k (-1) z 2k k! ( k ) z ! k 1 2 () is the irst order Bessel unction.

28 Basic Imaging Theory 1.The imaging process As a irst approimation, we consider coherent image, i.e. a plane parallel, monochromatic electron wave alls in the object, and is scattered, the scattered waves interere and recombined by an electron lens (objective lens) to orm an image. 2. The process consists o two parts: (a). The interaction o the incident wave with the object, deining the eit wave rom the object; (b) the action o the objective lens in orming the image 3. The essential question: how is the images intensity distribution related to the object structure? 4. For detailed discussion o imaging and electron scattering, see Diraction Physics by John M. Cowley, North-Holland, Amsterdam, 1981, 2nd edition.

29 Phase contrast images Contrast in TEM images can arise due to the dierences in the electron waves scattered through a thin specimen. This phase contrast mechanism can be diicult to interpret because it is very sensitive to many actors such as specimen thickness, scattering actors, and properties o lens, etc. Phase contrast imaging can be eploited to image the atomic structure o thin specimens. the most obvious distinction between phase contrast imaging and other orms o TEM imaging is the number o beams collected by the objective aperture or an electron detector. or BF/DF image only requires a single beam selected by OA or imaging. A phase-contrast image requires the selections o more than one beam. In general, the more beams collected, the higher the resolution o the image. 7 spots are used or imaging the lattice

30

31 Only two diraction spots were used or imaging the GaAS lattice showing one set o ringes rom the (111) plane (horizontal). Only (111) diraction contributed the image. The vertical crystal planes are invisible. The inormation retracted by image is not complete. Incorrect operation

32 Many beams were selected by an aperture (ring) to orm image showing more inormation about the structure o specimen. the question is where are the atoms with respect to the bright and dark contrast dots? Do the dark spots or bright spot correspond what atoms (Ga or As), etc.? Beautiul image sometimes is diicult to interpret. Correct operation

33 Beautiul image sometimes is diicult to interpret.

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY Regents' Professor enzeritus Arizona State University 1995 ELSEVIER Amsterdam Lausanne New York Oxford Shannon Tokyo CONTENTS Preface to the first

More information

X-ray Diffraction. Interaction of Waves Reciprocal Lattice and Diffraction X-ray Scattering by Atoms The Integrated Intensity

X-ray Diffraction. Interaction of Waves Reciprocal Lattice and Diffraction X-ray Scattering by Atoms The Integrated Intensity X-ray Diraction Interaction o Waves Reciprocal Lattice and Diraction X-ray Scattering by Atoms The Integrated Intensity Basic Principles o Interaction o Waves Periodic waves characteristic: Frequency :

More information

Chapter 4 Imaging Lecture 24

Chapter 4 Imaging Lecture 24 Chapter 4 Imaging Lecture 4 d (110) Final Exam Notice Time and Date: :30 4:30 PM, Wednesday, Dec. 10, 08. Place: Classroom CHEM-10 Coverage: All contents after midterm Open note Term project is due today

More information

HYDROGEN SPECTRUM = 2

HYDROGEN SPECTRUM = 2 MP6 OBJECT 3 HYDROGEN SPECTRUM MP6. The object o this experiment is to observe some o the lines in the emission spectrum o hydrogen, and to compare their experimentally determined wavelengths with those

More information

CHEM-E5225 :Electron Microscopy Imaging

CHEM-E5225 :Electron Microscopy Imaging CHEM-E5225 :Electron Microscopy Imaging 2016.10 Yanling Ge Outline Planar Defects Image strain field WBDF microscopy HRTEM information theory Discuss of question homework? Planar Defects - Internal Interface

More information

Weak-Beam Dark-Field Technique

Weak-Beam Dark-Field Technique Basic Idea recall bright-field contrast of dislocations: specimen close to Bragg condition, s î 0 Weak-Beam Dark-Field Technique near the dislocation core, some planes curved to s = 0 ) strong Bragg reflection

More information

Objectives. By the time the student is finished with this section of the workbook, he/she should be able

Objectives. By the time the student is finished with this section of the workbook, he/she should be able FUNCTIONS Quadratic Functions......8 Absolute Value Functions.....48 Translations o Functions..57 Radical Functions...61 Eponential Functions...7 Logarithmic Functions......8 Cubic Functions......91 Piece-Wise

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

Clicker questions. Clicker question 2. Clicker Question 1. Clicker question 2. Clicker question 1. the answers are in the lower right corner

Clicker questions. Clicker question 2. Clicker Question 1. Clicker question 2. Clicker question 1. the answers are in the lower right corner licker questions the answers are in the lower right corner question wave on a string goes rom a thin string to a thick string. What picture best represents the wave some time ater hitting the boundary?

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications In materials science, people are always interested in viewing

More information

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions 9. Graphing Functions by Plotting Points, The Domain and Range o Functions Now that we have a basic idea o what unctions are and how to deal with them, we would like to start talking about the graph o

More information

GBS765 Electron microscopy

GBS765 Electron microscopy GBS765 Electron microscopy Lecture 1 Waves and Fourier transforms 10/14/14 9:05 AM Some fundamental concepts: Periodicity! If there is some a, for a function f(x), such that f(x) = f(x + na) then function

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences W.J. Dallas PART II: CHAPTER ONE HOLOGRAPHY IN A NUTSHELL

COMPUTER GENERATED HOLOGRAMS Optical Sciences W.J. Dallas PART II: CHAPTER ONE HOLOGRAPHY IN A NUTSHELL What is a Hologram? Holography in a Nutshell: Page 1 o 1 C:\_Dallas\_Courses\3_OpSci_67 8\ MsWord\_TheCgh\1_MSWord\_1 Holography.doc Version: Wednesday, September 4, 8, 8: AM COMPUTER GENERATED HOLOGRAMS

More information

3. Several Random Variables

3. Several Random Variables . Several Random Variables. Two Random Variables. Conditional Probabilit--Revisited. Statistical Independence.4 Correlation between Random Variables. Densit unction o the Sum o Two Random Variables. Probabilit

More information

Point Spread Function of Symmetrical Optical System Apodised with Gaussian Filter

Point Spread Function of Symmetrical Optical System Apodised with Gaussian Filter International Journal o Pure and Applied Physics. ISSN 973-776 Volume 4, Number (8), pp. 3-38 Research India Publications http://www.ripublication.com Point Spread Function o Symmetrical Optical System

More information

Part I: Thin Converging Lens

Part I: Thin Converging Lens Laboratory 1 PHY431 Fall 011 Part I: Thin Converging Lens This eperiment is a classic eercise in geometric optics. The goal is to measure the radius o curvature and ocal length o a single converging lens

More information

Double-slit interference of biphotons generated in spontaneous parametric downconversion from a thick crystal

Double-slit interference of biphotons generated in spontaneous parametric downconversion from a thick crystal INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF OPTICS B: QUANTUM AND SEMICLASSICAL OPTICS J. Opt. B: Quantum Semiclass. Opt. 3 (2001 S50 S54 www.iop.org/journals/ob PII: S1464-4266(0115159-1 Double-slit intererence

More information

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Elastic and Inelastic Scattering in Electron Diffraction and Imaging Elastic and Inelastic Scattering in Electron Diffraction and Imaging Contents Introduction Symbols and definitions Part A Diffraction and imaging of elastically scattered electrons Chapter 1. Basic kinematical

More information

The Basic of Transmission Electron Microscope. Text book: Transmission electron microscopy by David B Williams & C. Barry Carter.

The Basic of Transmission Electron Microscope. Text book: Transmission electron microscopy by David B Williams & C. Barry Carter. The Basic of Transmission Electron Microscope Text book: Transmission electron microscopy by David B Williams & C. Barry Carter. 2009, Springer Background survey http://presemo.aalto.fi/tem1 Microscopy

More information

2 Frequency-Domain Analysis

2 Frequency-Domain Analysis 2 requency-domain Analysis Electrical engineers live in the two worlds, so to speak, o time and requency. requency-domain analysis is an extremely valuable tool to the communications engineer, more so

More information

9.1 The Square Root Function

9.1 The Square Root Function Section 9.1 The Square Root Function 869 9.1 The Square Root Function In this section we turn our attention to the square root unction, the unction deined b the equation () =. (1) We begin the section

More information

General theory of diffraction

General theory of diffraction General theory of diffraction X-rays scatter off the charge density (r), neutrons scatter off the spin density. Coherent scattering (diffraction) creates the Fourier transform of (r) from real to reciprocal

More information

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions RATIONAL FUNCTIONS Finding Asymptotes..347 The Domain....350 Finding Intercepts.....35 Graphing Rational Functions... 35 345 Objectives The ollowing is a list o objectives or this section o the workbook.

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

ME 328 Machine Design Vibration handout (vibrations is not covered in text)

ME 328 Machine Design Vibration handout (vibrations is not covered in text) ME 38 Machine Design Vibration handout (vibrations is not covered in text) The ollowing are two good textbooks or vibrations (any edition). There are numerous other texts o equal quality. M. L. James,

More information

Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France

Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France X-RAY ABSORPTION SPECTROSCOPY: FUNDAMENTALS AND SIMPLE MODEL OF EXAFS Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France Part I: Fundamentals o X-ray Absorption Fine Structure:

More information

SIO 211B, Rudnick. We start with a definition of the Fourier transform! ĝ f of a time series! ( )

SIO 211B, Rudnick. We start with a definition of the Fourier transform! ĝ f of a time series! ( ) SIO B, Rudnick! XVIII.Wavelets The goal o a wavelet transorm is a description o a time series that is both requency and time selective. The wavelet transorm can be contrasted with the well-known and very

More information

Transmission Electron Microscopy and Diffractometry of Materials

Transmission Electron Microscopy and Diffractometry of Materials Brent Fultz James Howe Transmission Electron Microscopy and Diffractometry of Materials Fourth Edition ~Springer 1 1 Diffraction and the X-Ray Powder Diffractometer 1 1.1 Diffraction... 1 1.1.1 Introduction

More information

Digital Image Processing. Lecture 6 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 2009

Digital Image Processing. Lecture 6 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 2009 Digital Image Processing Lecture 6 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 009 Outline Image Enhancement in Spatial Domain Spatial Filtering Smoothing Filters Median Filter

More information

AP5301/ Name the major parts of an optical microscope and state their functions.

AP5301/ Name the major parts of an optical microscope and state their functions. Review Problems on Optical Microscopy AP5301/8301-2015 1. Name the major parts of an optical microscope and state their functions. 2. Compare the focal lengths of two glass converging lenses, one with

More information

TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall Problem 1.

TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall Problem 1. TLT-5/56 COMMUNICATION THEORY, Exercise 3, Fall Problem. The "random walk" was modelled as a random sequence [ n] where W[i] are binary i.i.d. random variables with P[W[i] = s] = p (orward step with probability

More information

Basic properties of limits

Basic properties of limits Roberto s Notes on Dierential Calculus Chapter : Limits and continuity Section Basic properties o its What you need to know already: The basic concepts, notation and terminology related to its. What you

More information

1. Interference condition. 2. Dispersion A B. As shown in Figure 1, the path difference between interfering rays AB and A B is a(sin

1. Interference condition. 2. Dispersion A B. As shown in Figure 1, the path difference between interfering rays AB and A B is a(sin asic equations or astronomical spectroscopy with a diraction grating Jeremy Allington-Smith, University o Durham, 3 Feb 000 (Copyright Jeremy Allington-Smith, 000). Intererence condition As shown in Figure,

More information

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2.

Figure 3.1 Effect on frequency spectrum of increasing period T 0. Consider the amplitude spectrum of a periodic waveform as shown in Figure 3.2. 3. Fourier ransorm From Fourier Series to Fourier ransorm [, 2] In communication systems, we oten deal with non-periodic signals. An extension o the time-requency relationship to a non-periodic signal

More information

Thu June 16 Lecture Notes: Lattice Exercises I

Thu June 16 Lecture Notes: Lattice Exercises I Thu June 6 ecture Notes: attice Exercises I T. Satogata: June USPAS Accelerator Physics Most o these notes ollow the treatment in the class text, Conte and MacKay, Chapter 6 on attice Exercises. The portions

More information

An introduction to X-ray Absorption Fine Structure Spectroscopy

An introduction to X-ray Absorption Fine Structure Spectroscopy An introduction to X-ray Absorption Fine Structure Spectroscopy Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France sakura@esr.r S. Pascarelli An Introduction to XAFS - Cheiron

More information

Structure analysis: Electron diffraction LEED TEM RHEED

Structure analysis: Electron diffraction LEED TEM RHEED Structure analysis: Electron diffraction LEED: Low Energy Electron Diffraction SPA-LEED: Spot Profile Analysis Low Energy Electron diffraction RHEED: Reflection High Energy Electron Diffraction TEM: Transmission

More information

Acoustic forcing of flexural waves and acoustic fields for a thin plate in a fluid

Acoustic forcing of flexural waves and acoustic fields for a thin plate in a fluid Acoustic orcing o leural waves and acoustic ields or a thin plate in a luid Darryl MCMAHON Maritime Division, Deence Science and Technology Organisation, HMAS Stirling, WA Australia ABSTACT Consistency

More information

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009 2065-33 Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 26 October - 20 November, 2009 Introduction to two-dimensional digital signal processing Fabio Mammano University

More information

In many diverse fields physical data is collected or analysed as Fourier components.

In many diverse fields physical data is collected or analysed as Fourier components. 1. Fourier Methods In many diverse ields physical data is collected or analysed as Fourier components. In this section we briely discuss the mathematics o Fourier series and Fourier transorms. 1. Fourier

More information

Conventional Transmission Electron Microscopy. Introduction. Text Books. Text Books. EMSE-509 CWRU Frank Ernst

Conventional Transmission Electron Microscopy. Introduction. Text Books. Text Books. EMSE-509 CWRU Frank Ernst Text Books Conventional Transmission Electron Microscopy EMSE-509 CWRU Frank Ernst D. B. Williams and C. B. Carter: Transmission Electron Microscopy, New York: Plenum Press (1996). L. Reimer: Transmission

More information

Dislocation networks in graphite

Dislocation networks in graphite Dislocation networks in graphite High Resolution Microscop With Reference to Lattice Fringe Imaging in a TEM f f r Real space Specimen Reciprocal space hr Point spread function Diffraction pattern Back

More information

Gaussian Plane Waves Plane waves have flat emag field in x,y Tend to get distorted by diffraction into spherical plane waves and Gaussian Spherical

Gaussian Plane Waves Plane waves have flat emag field in x,y Tend to get distorted by diffraction into spherical plane waves and Gaussian Spherical Gauian Plane Wave Plane ave have lat ema ield in x,y Tend to et ditorted by diraction into pherical plane ave and Gauian Spherical Wave E ield intenity ollo: U ( ) x y u( x, y,r,t ) exp i ω t Kr R R here

More information

The Fourier Transform

The Fourier Transform The Fourier Transorm Fourier Series Fourier Transorm The Basic Theorems and Applications Sampling Bracewell, R. The Fourier Transorm and Its Applications, 3rd ed. New York: McGraw-Hill, 2. Eric W. Weisstein.

More information

The Deutsch-Jozsa Problem: De-quantization and entanglement

The Deutsch-Jozsa Problem: De-quantization and entanglement The Deutsch-Jozsa Problem: De-quantization and entanglement Alastair A. Abbott Department o Computer Science University o Auckland, New Zealand May 31, 009 Abstract The Deustch-Jozsa problem is one o the

More information

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function.

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function. Precalculus Notes: Unit Polynomial Functions Syllabus Objective:.9 The student will sketch the graph o a polynomial, radical, or rational unction. Polynomial Function: a unction that can be written in

More information

Lecture 13: Applications of Fourier transforms (Recipes, Chapter 13)

Lecture 13: Applications of Fourier transforms (Recipes, Chapter 13) Lecture 13: Applications o Fourier transorms (Recipes, Chapter 13 There are many applications o FT, some o which involve the convolution theorem (Recipes 13.1: The convolution o h(t and r(t is deined by

More information

Experimental methods in Physics. Electron Microscopy. Basic Techniques (MEP-I) SEM, TEM

Experimental methods in Physics. Electron Microscopy. Basic Techniques (MEP-I) SEM, TEM Experimental methods in Physics Electron Microscopy Basic Techniques (MEP-I) SEM, TEM Advanced Techniques (MEP-II) HR-TEM, STEM Analytical-TEM 3D-Microscopy Spring 2012 Experimental Methods in Physics

More information

Mat 267 Engineering Calculus III Updated on 9/19/2010

Mat 267 Engineering Calculus III Updated on 9/19/2010 Chapter 11 Partial Derivatives Section 11.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair o real numbers (, ) in a set D a unique real number

More information

Math Review and Lessons in Calculus

Math Review and Lessons in Calculus Math Review and Lessons in Calculus Agenda Rules o Eponents Functions Inverses Limits Calculus Rules o Eponents 0 Zero Eponent Rule a * b ab Product Rule * 3 5 a / b a-b Quotient Rule 5 / 3 -a / a Negative

More information

Lecture Outline. Basics of Spatial Filtering Smoothing Spatial Filters. Sharpening Spatial Filters

Lecture Outline. Basics of Spatial Filtering Smoothing Spatial Filters. Sharpening Spatial Filters 1 Lecture Outline Basics o Spatial Filtering Smoothing Spatial Filters Averaging ilters Order-Statistics ilters Sharpening Spatial Filters Laplacian ilters High-boost ilters Gradient Masks Combining Spatial

More information

Chapter 4 Image Enhancement in the Frequency Domain

Chapter 4 Image Enhancement in the Frequency Domain Chapter 4 Image Enhancement in the Frequency Domain Yinghua He School of Computer Science and Technology Tianjin University Background Introduction to the Fourier Transform and the Frequency Domain Smoothing

More information

Spatial Frequency and Transfer Function. columns of atoms, where the electrostatic potential is higher than in vacuum

Spatial Frequency and Transfer Function. columns of atoms, where the electrostatic potential is higher than in vacuum Image Formation Spatial Frequency and Transfer Function consider thin TEM specimen columns of atoms, where the electrostatic potential is higher than in vacuum electrons accelerate when entering the specimen

More information

Lecture 9: Introduction to Diffraction of Light

Lecture 9: Introduction to Diffraction of Light Lecture 9: Introduction to Diffraction of Light Lecture aims to explain: 1. Diffraction of waves in everyday life and applications 2. Interference of two one dimensional electromagnetic waves 3. Typical

More information

There and back again A short trip to Fourier Space. Janet Vonck 23 April 2014

There and back again A short trip to Fourier Space. Janet Vonck 23 April 2014 There and back again A short trip to Fourier Space Janet Vonck 23 April 2014 Where can I find a Fourier Transform? Fourier Transforms are ubiquitous in structural biology: X-ray diffraction Spectroscopy

More information

An introduction to X-ray Absorption Spectroscopy. Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France

An introduction to X-ray Absorption Spectroscopy. Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France An introduction to X-ray Absorption Spectroscopy Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France S. Pascarelli Joint ICTP-IAEA Workshop - Trieste, 14 1 Outline X-ray Absorption

More information

Signals & Linear Systems Analysis Chapter 2&3, Part II

Signals & Linear Systems Analysis Chapter 2&3, Part II Signals & Linear Systems Analysis Chapter &3, Part II Dr. Yun Q. Shi Dept o Electrical & Computer Engr. New Jersey Institute o echnology Email: shi@njit.edu et used or the course:

More information

New Functions from Old Functions

New Functions from Old Functions .3 New Functions rom Old Functions In this section we start with the basic unctions we discussed in Section. and obtain new unctions b shiting, stretching, and relecting their graphs. We also show how

More information

PHYS-E0541:Special Course in Physics Gas phase synthesis of carbon nanotubes for thin film application. Electron Microscopy. for

PHYS-E0541:Special Course in Physics Gas phase synthesis of carbon nanotubes for thin film application. Electron Microscopy. for PHYS-E0541:Special Course in Physics Gas phase synthesis of carbon nanotubes for thin film application Electron Microscopy for Introduction to Electron Microscopy Carbon Nanomaterials (nanotubes) Dr. Hua

More information

Introduction to Analog And Digital Communications

Introduction to Analog And Digital Communications Introduction to Analog And Digital Communications Second Edition Simon Haykin, Michael Moher Chapter Fourier Representation o Signals and Systems.1 The Fourier Transorm. Properties o the Fourier Transorm.3

More information

Feasibility of a Multi-Pass Thomson Scattering System with Confocal Spherical Mirrors

Feasibility of a Multi-Pass Thomson Scattering System with Confocal Spherical Mirrors Plasma and Fusion Research: Letters Volume 5, 044 200) Feasibility o a Multi-Pass Thomson Scattering System with Conocal Spherical Mirrors Junichi HIRATSUKA, Akira EJIRI, Yuichi TAKASE and Takashi YAMAGUCHI

More information

Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy

Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy N. Shibata, S.D. Findlay, H. Sasaki, T. Matsumoto, H. Sawada, Y. Kohno, S. Otomo, R. Minato and Y. Ikuhara

More information

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve.

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve. Dierentiation The main problem o dierential calculus deals with inding the slope o the tangent line at a point on a curve. deinition() : The slope o a curve at a point p is the slope, i it eists, o the

More information

between electron energy levels. Using the spectrum of electron energy (1) and the law of energy-momentum conservation for photon absorption:

between electron energy levels. Using the spectrum of electron energy (1) and the law of energy-momentum conservation for photon absorption: ENERGY MEASUREMENT O RELATIVISTIC ELECTRON BEAMS USING RESONANCE ABSORPTION O LASER LIGHT BY ELECTRONS IN A MAGNETIC IELD R.A. Melikian Yerevan Physics Institute, Yerevan ABSTRACT The possibility o a precise

More information

Math-3 Lesson 1-4. Review: Cube, Cube Root, and Exponential Functions

Math-3 Lesson 1-4. Review: Cube, Cube Root, and Exponential Functions Math- Lesson -4 Review: Cube, Cube Root, and Eponential Functions Quiz - Graph (no calculator):. y. y ( ) 4. y What is a power? vocabulary Power: An epression ormed by repeated Multiplication o the same

More information

Least-Squares Spectral Analysis Theory Summary

Least-Squares Spectral Analysis Theory Summary Least-Squares Spectral Analysis Theory Summary Reerence: Mtamakaya, J. D. (2012). Assessment o Atmospheric Pressure Loading on the International GNSS REPRO1 Solutions Periodic Signatures. Ph.D. dissertation,

More information

Scattering of Solitons of Modified KdV Equation with Self-consistent Sources

Scattering of Solitons of Modified KdV Equation with Self-consistent Sources Commun. Theor. Phys. Beijing, China 49 8 pp. 89 84 c Chinese Physical Society Vol. 49, No. 4, April 5, 8 Scattering o Solitons o Modiied KdV Equation with Sel-consistent Sources ZHANG Da-Jun and WU Hua

More information

Quadratic Functions. The graph of the function shifts right 3. The graph of the function shifts left 3.

Quadratic Functions. The graph of the function shifts right 3. The graph of the function shifts left 3. Quadratic Functions The translation o a unction is simpl the shiting o a unction. In this section, or the most part, we will be graphing various unctions b means o shiting the parent unction. We will go

More information

Lecture 11: Introduction to diffraction of light

Lecture 11: Introduction to diffraction of light Lecture 11: Introduction to diffraction of light Diffraction of waves in everyday life and applications Diffraction in everyday life Diffraction in applications Spectroscopy: physics, chemistry, medicine,

More information

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high?

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high? STM STM With a scanning tunneling microscope, images of surfaces with atomic resolution can be readily obtained. An STM uses quantum tunneling of electrons to map the density of electrons on the surface

More information

CISE-301: Numerical Methods Topic 1:

CISE-301: Numerical Methods Topic 1: CISE-3: Numerical Methods Topic : Introduction to Numerical Methods and Taylor Series Lectures -4: KFUPM Term 9 Section 8 CISE3_Topic KFUPM - T9 - Section 8 Lecture Introduction to Numerical Methods What

More information

TFY4102 Exam Fall 2015

TFY4102 Exam Fall 2015 FY40 Eam Fall 05 Short answer (4 points each) ) Bernoulli's equation relating luid low and pressure is based on a) conservation o momentum b) conservation o energy c) conservation o mass along the low

More information

High-Resolution Transmission Electron Microscopy

High-Resolution Transmission Electron Microscopy Chapter 2 High-Resolution Transmission Electron Microscopy The most fundamental imaging mode of a transmission electron microscope is realized by illuminating an electron-transparent specimen with a broad

More information

A Fourier Transform Model in Excel #1

A Fourier Transform Model in Excel #1 A Fourier Transorm Model in Ecel # -This is a tutorial about the implementation o a Fourier transorm in Ecel. This irst part goes over adjustments in the general Fourier transorm ormula to be applicable

More information

Electron Diffraction

Electron Diffraction Exp-3-Electron Diffraction.doc (TJR) Physics Department, University of Windsor Introduction 64-311 Laboratory Experiment 3 Electron Diffraction In 1924 de Broglie predicted that the wavelength of matter

More information

Systems & Signals 315

Systems & Signals 315 1 / 15 Systems & Signals 315 Lecture 13: Signals and Linear Systems Dr. Herman A. Engelbrecht Stellenbosch University Dept. E & E Engineering 2 Maart 2009 Outline 2 / 15 1 Signal Transmission through a

More information

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy Interference, Diffraction and Fourier Theory ATI 2014 Lecture 02! Keller and Kenworthy The three major branches of optics Geometrical Optics Light travels as straight rays Physical Optics Light can be

More information

Formation of the diffraction pattern in the transmision electron microscope

Formation of the diffraction pattern in the transmision electron microscope Formation of the diffraction pattern in the transmision electron microscope based on: J-P. Morniroli: Large-angle convergent-beam diffraction (LACBED), 2002 Société Française des Microscopies, Paris. Selected

More information

Transmission Electron Microscope. Experimental Instruction

Transmission Electron Microscope. Experimental Instruction Transmission Electron Microscope Experimental Instruction In advanced practical course [F-Praktikum] Date: April 2017 Contents 1 Task 3 2 Theoretical Basics 3 2.1 Bragg Diffraction......................................

More information

NANO 703-Notes. Chapter 21: Using CBED

NANO 703-Notes. Chapter 21: Using CBED 1 Chapter 21: Using CBED CBED features Common features in a CBED pattern can be seen in the example below. Excess and defect ZOLZ Kikuchi lines are fairly strong and broad. (Defect) HOLZ (Bragg) lines

More information

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question.

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question. Mth Calculus Practice Eam Questions NOTE: These questions should not be taken as a complete list o possible problems. The are merel intended to be eamples o the diicult level o the regular eam questions.

More information

MSE405 Microstructure Characterization XRD-1 Lab X-ray diffraction in crystallography

MSE405 Microstructure Characterization XRD-1 Lab X-ray diffraction in crystallography X-ray diraction in crystallography I. Goals Crystallography is the science that studies the structure (and structure-derived properties) o crystals. Among its many tools, X-ray diraction (XRD) has had

More information

Overview of scattering, diffraction & imaging in the TEM

Overview of scattering, diffraction & imaging in the TEM Overview of scattering, diffraction & imaging in the TEM Eric A. Stach Purdue University Scattering Electrons, photons, neutrons Radiation Elastic Mean Free Path (Å)( Absorption Length (Å)( Minimum Probe

More information

CHAPTER 8 ANALYSIS OF AVERAGE SQUARED DIFFERENCE SURFACES

CHAPTER 8 ANALYSIS OF AVERAGE SQUARED DIFFERENCE SURFACES CAPTER 8 ANALYSS O AVERAGE SQUARED DERENCE SURACES n Chapters 5, 6, and 7, the Spectral it algorithm was used to estimate both scatterer size and total attenuation rom the backscattered waveorms by minimizing

More information

5. LIGHT MICROSCOPY Abbe s theory of imaging

5. LIGHT MICROSCOPY Abbe s theory of imaging 5. LIGHT MICROSCOPY. We use Fourier optics to describe coherent image formation, imaging obtained by illuminating the specimen with spatially coherent light. We define resolution, contrast, and phase-sensitive

More information

Effective Fresnel-number concept for evaluating the relative focal shift in focused beams

Effective Fresnel-number concept for evaluating the relative focal shift in focused beams Martíne-Corral et al. Vol. 15, No. / February 1998/ J. Opt. Soc. Am. A 449 Eective Fresnel-number concept or evaluating the relative ocal shit in ocused beams Manuel Martíne-Corral, Carlos J. Zapata-Rodrígue,

More information

Lecture 16 February 25, 2016

Lecture 16 February 25, 2016 MTH 262/CME 372: pplied Fourier nalysis and Winter 2016 Elements of Modern Signal Processing Lecture 16 February 25, 2016 Prof. Emmanuel Candes Scribe: Carlos. Sing-Long, Edited by E. Bates 1 Outline genda:

More information

PROBE AND OBJECT FUNCTION RECONSTRUCTION IN INCOHERENT SCANNING TRANSMISSION ELECTRON MICROSCOPE IMAGING

PROBE AND OBJECT FUNCTION RECONSTRUCTION IN INCOHERENT SCANNING TRANSMISSION ELECTRON MICROSCOPE IMAGING Scanning Microscopy Vol. 11, 1997 (Pages 81-90) 0891-7035/97$5.00+.25 Scanning Microscopy International, Chicago Probe (AMF and O Hare), object IL function 60666 reconstruction USA PROBE AND OBJECT FUNCTION

More information

A Systematic Approach to Frequency Compensation of the Voltage Loop in Boost PFC Pre- regulators.

A Systematic Approach to Frequency Compensation of the Voltage Loop in Boost PFC Pre- regulators. A Systematic Approach to Frequency Compensation o the Voltage Loop in oost PFC Pre- regulators. Claudio Adragna, STMicroelectronics, Italy Abstract Venable s -actor method is a systematic procedure that

More information

Optics Optical Testing and Testing Instrumentation Lab

Optics Optical Testing and Testing Instrumentation Lab Optics 513 - Optical Testing and Testing Instrumentation Lab Lab #6 - Interference Microscopes The purpose of this lab is to observe the samples provided using two different interference microscopes --

More information

Praktikum zur. Materialanalytik

Praktikum zur. Materialanalytik Praktikum zur Materialanalytik Energy Dispersive X-ray Spectroscopy B513 Stand: 19.10.2016 Contents 1 Introduction... 2 2. Fundamental Physics and Notation... 3 2.1. Alignments of the microscope... 3 2.2.

More information

Chapter 6 SCALAR DIFFRACTION THEORY

Chapter 6 SCALAR DIFFRACTION THEORY Chapter 6 SCALAR DIFFRACTION THEORY [Reading assignment: Hect 0..4-0..6,0..8,.3.3] Scalar Electromagnetic theory: monochromatic wave P : position t : time : optical frequency u(p, t) represents the E or

More information

Physics 107 TUTORIAL ASSIGNMENT #7

Physics 107 TUTORIAL ASSIGNMENT #7 Physics 07 TUTORIL SSIGNMENT #7 Cutnell & Johnson, 7 th edition Chapter 6: Problems 5, 65, 79, 93 Chapter 7: Problems 7,, 9, 37, 48 Chapter 6 5 Suppose that sound is emitted uniormly in all directions

More information

The concept of limit

The concept of limit Roberto s Notes on Dierential Calculus Chapter 1: Limits and continuity Section 1 The concept o limit What you need to know already: All basic concepts about unctions. What you can learn here: What limits

More information

Section 1.2 Domain and Range

Section 1.2 Domain and Range Section 1. Domain and Range 1 Section 1. Domain and Range One o our main goals in mathematics is to model the real world with mathematical unctions. In doing so, it is important to keep in mind the limitations

More information

Nitride HFETs applications: Conductance DLTS

Nitride HFETs applications: Conductance DLTS Nitride HFETs applications: Conductance DLTS The capacitance DLTS cannot be used for device trap profiling as the capacitance for the gate will be very small Conductance DLTS is similar to capacitance

More information

X-ray diffraction geometry

X-ray diffraction geometry X-ray diffraction geometry Setting controls sample orientation in the diffraction plane. most important for single-crystal diffraction For any poly- (or nano-) crystalline specimen, we usually set: 1 X-ray

More information

Department of Physics and Astronomy 2 nd Year Laboratory. L2 Light Scattering

Department of Physics and Astronomy 2 nd Year Laboratory. L2 Light Scattering nd ear laborator script L Light Scattering Department o Phsics and Astronom nd Year Laborator L Light Scattering Scientiic aims and objectives To determine the densit o nano-spheres o polstrene suspended

More information