MSE405 Microstructure Characterization XRD-1 Lab X-ray diffraction in crystallography

Size: px
Start display at page:

Download "MSE405 Microstructure Characterization XRD-1 Lab X-ray diffraction in crystallography"

Transcription

1 X-ray diraction in crystallography I. Goals Crystallography is the science that studies the structure (and structure-derived properties) o crystals. Among its many tools, X-ray diraction (XRD) has had the widest historical impact in the development o crystallographic knowledge and remains one o the most widely use due to its power and versatility. In this lab you will: 1. Learn how to operate the x-ray diractometers.. Index the diraction peaks rom elements with cubic and hexagonal crystal structures. 3. Measure and understand the structure actor o simple crystals. 4. Understand how to use the measured diraction intensities to gain inormation about the structure o the basis o atoms decorating each lattice point. II. Theoretical background A crystal is a solid constituted by a three-dimensional regular arrangement o units. These units can be single, atoms, molecules, or groups o several atoms or ions. The deining property o a crystal is that the surrounding environment is the same or every repeating unit. The mathematical way o describing a crystal structure is with a lattice and a basis. The lattice is a set o points in the space that repeats periodically by translation. A position in space r belongs to the lattice (is a lattice point) i it satisies the condition: r= n a+ m b + l c, (1) where n, m, and l are integers. The vectors a, b, and c (the lattice vectors) are usually speciied by their moduli (the lattice constants) a, b, c and the three angles in between them α, β, γ. The crystal is constructed by repetition o the same unit at each lattice point. This unit (the crystal basis) is described by a list o the atoms or ions that integrate it and their positions, given in terms o the lattice vectors: r = ua+ vb+ wc, 0 u, v, w< 1. () basis For example, all the structures in the cubic group can be described by a lattice o three perpendicular vectors o the same length (a = b = c, α = β = γ = 90 ). In addition to the common lattice, dierent basis give rise to dierent crystal structures. The simple cubic (sc) structure has only one atom at the origin (u, v, w) = (0, 0, 0). The body centered cubic structure (bcc) has a two-atom basis: (0, 0, 0) and (½,, ½, ½). The ace centered cubic (cc) structure has atoms at the cube corners (0, 0, 0) and the periodic repetitions generated by the lattice, and at the ace centers: (½, ½, 0), (½, 0, ½), and (0, ½, ½). Three important structures (NaCl, diamond, and ZnS) are based on the cc structure by repeating a two-atom basis at each point. The basis or NaCl consists o one atom A at (0,0,0) and another atom at (½, ½, ½,). oth diamond and ZnS have the same basis: A at (0, 0, 0) and at (¼, ¼, ¼); in the diamond structure A and are atoms o the same element (e.g. C, Si, or Ge) while they are dierent elements in the ZnS structure. In summary:

2 Cubic structures, lattice constant a Simple cubic ody centered Face centered sc bcc cc Diamond ZnS A-(0, 0,0) A-(½, ½, ½) A-(¼, ¼, ¼) A-(¼, ¾, ¾) A-(¾. ¼, ¾) A-(¾, ¾, ¼) -(¼, ¼, ¼) -(¼, ¾, ¾) -(¾. ¼, ¾) -(¾, ¾, ¼) Another way to think about crystals is as a one-dimensional stacking o two-dimensional planes. As you know crystal structures are three-dimensional arrangements, thus this description is not unique and or each crystal there are several sets o planes that can be used to describe it. This way o thinking is useul to describe x-ray diraction by crystal considering specular relection at the planes, which gives rise to ragg's law ( ) λ= d sin θ. (3) In eq. (3), λ is the wavelength o the x-rays, * d is the spacing between () planes, and θ is ragg's diraction angle. It is not necessary to consider the order o diraction in eq. (3) as this can be accounted or by the plane indexes: (00) is the same as the second-order (001) relection. ragg's law gives the position (angle) o the diracted beams, but gives no inormation regarding the diracted intensity. For a perectly random powder, i.e. a well-mix ine powder in which all grain orientations are present with equal probability, the diracted intensity is proportional to I m F. (4) In eq. (4), m is the multiplicity actor which indicates the number o equivalent planes (e.g. (100), (010), etc.) contributing to diraction at a given angle and F, a complex number, is the structure actor, deined as the sum o the scattering actors n o all the atoms in the unit cell F N πi ( hun+ kvn+ lw n) = e. (5) n= 0 n I the atomic positions can be described in term o a cell basis and an atomic basis (e.g. ZnS is cc + two atom basis), the structure actor can be expressed as the product Ncell Nbasis cell atomic πi ( hun+ kvn+ lw n) πi( hum+ kvm+ lw m) F= F F = e ne n= 0 m= 0. (6) Note that the description o the cell lattice points with a basis involves no real atoms, thus cell calculating F involves no atomic scattering actors. (A useul discussion o the meaning and * In this lab, you will use the Cu K α line, λ = Å.

3 origin o the scattering actor can be ound in C. Hammond, The asics o Crystallography and Diraction, chapter 9) The ollowing table lists some o the relections in the cubic system and the corresponding plane spacing (in units o the lattice constant), multiplicity actor, and scattering actors or the bcc and cc lattices. () d / a m F bcc F cc (100) (110) (111) (00) (10) (11) (0) (310) (311) () (31) (400) (330) (331) (40) (33) (4) (431) (511) III. Experimental procedure Note: Measuring diraction patterns takes a lot o time. Use the acquisition time to analyze the data you have already acquired. This will save you time and allow you to detect errors and repeat your measurement i you need to.. 1. Load a Cu powder sample (cc) into the diractometer and collect a diraction spectrum 0 θ 100 at an acquisition speed o /min and step size 0.0. Please reer to the written procedure or the diractometer in your station. While you are collecting the spectrum, complete the preparations or data analysis as described in section IV.. Repeat the measurement using a bcc crystal, Mo. While you are collecting data or Mo, start analyzing the Cu data. 3. Repeat the measurement or a diamond structure crystal, Si. While you are collecting data or Si, analyze the Mo data. 4. Acquire more detailed XRD spectra o the two Si peaks with 85 θ 100. Change the step size to 0.005, decrease the scan speed, and pick adequate start and stop angles or each peak. You want to make sure o scanning the whole peak while minimizing the area

4 around it (which contains no inormation) to maximize the inormation you collect. Take into account your available time when picking the scan speed. 5. Collect a XRD spectrum o ZnS (0 θ 100, at an acquisition speed o /min, 0.0 step size). 6. Collect a XRD spectrum o a hcp material, Ti. (0 θ 100, at an acquisition speed o /min, 0.0 step size. The basis atoms or hcp structure are at 0,0,0 and /3, 1/3, 1/). IV. Data analysis A. Preliminary analysis For each o the ollowing materials Cu, Mo, Si, and Ti: Make a table listing the allowed diractions (), d-spacing, expected diraction angle θ, and θ. For Si and Ti, list also the structure actor due to the two-atom basis. Use the inormation provided in section II and the lattice constants listed in the provided periodic table. For Ti, use the ollowing ormula to calculate the d-spacings or all planes with 0 h, 0 k h, and 0 l h + hk+ k l =. d 3 + (7) a c. Diraction pattern analysis For each material, use your calculated values o the diraction angles to index (identiy) the peaks in your experimental spectra. With your report, turn in a printout o the spectra with () labels indexing the peaks. How do the experimental angles compare to the observed ones? Are there any absent or extra lines in the spectra? For each cubic material (Cu, Mo, Si, ZnS) pick the 4 tallest angle peaks and use your experimental θ values to calculate the lattice constant a or each peak. How big is the dispersion in the a value or each material? The dispersion in a arises rom small errors in the measurement o θ. Dierentiating ormula (3) it is ound that d sin θ ( ) ( ) a = = θ. (8) a d cos θ I.e. small errors in measuring θ, e.g. rom a aulty goniometer calibration, get propagated to errors in a. In order to minimize this error, it is better to determine a rom a set o peaks, rather than or each peak individually. For each cubic material (Cu, Mo, Si, ZnS), plot sin(θ ) vs. (d /a) -1 using the (given) tabulated values o d /a and the experimental θ o the 4 tallest angle peaks. Use a least squares it to determine the lattice constant or each cubic material analyzed. Note that the slope o this plot is not the lattice constant, but related to it. How do these values compare to the ones that you used to calculate θ in the irst palce?

5 C. Characterization o the Cu K α doublet Looking careully at the (more detailed) Si spectrum rom 85 to 100 you will see that the diraction peaks are doubled. The reason is that you are resolving two diraction peaks rom the two Cu-K α x-ray lines (λ 1 = Å and λ = Å). Measure the angular position o the two sub-peaks or each relection and use ragg's law to determine the ratio λ 1 / λ o the wavelengths o the two lines. How does this ratio compare with the theoretical one? Use eq (4) and the experimental sub-peak intensities (maximum values) to estimate the intensity ratio o the two Cu-K α lines? Note that you may need to do a linear background subtraction to get accurate intensity values. D. Structure actor analysis What are the dierences (in terms o relections present or absent) between Si, Cu, and ZnS spectra? Explain qualitatively why some relections are present in Cu but not in Si. Are this relections present in ZnS? Why? (Hint, reer to the structure actors that you calculated in section IV.A). A A + Use the measured intensities o the (0), and () ZnS peaks to estimate the ratio A. Use this value to calculate. Which atom (Zn or S) would you expect to have a higher atomic scattering actor? Why? (A useul discussion o the meaning and origin o the scattering actor can be ound in C. Hammond, The asics o Crystallography and Diraction, chapter 9).

X-ray Diffraction. Interaction of Waves Reciprocal Lattice and Diffraction X-ray Scattering by Atoms The Integrated Intensity

X-ray Diffraction. Interaction of Waves Reciprocal Lattice and Diffraction X-ray Scattering by Atoms The Integrated Intensity X-ray Diraction Interaction o Waves Reciprocal Lattice and Diraction X-ray Scattering by Atoms The Integrated Intensity Basic Principles o Interaction o Waves Periodic waves characteristic: Frequency :

More information

Suggested Reading. Pages in Engler and Randle

Suggested Reading. Pages in Engler and Randle The Structure Factor Suggested Reading Pages 303-312312 in DeGraef & McHenry Pages 59-61 in Engler and Randle 1 Structure Factor (F ) N i1 1 2 i( hu kv lw ) F fe i i j i Describes how atomic arrangement

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points Roberto s Notes on Dierential Calculus Chapter 8: Graphical analysis Section 1 Extreme points What you need to know already: How to solve basic algebraic and trigonometric equations. All basic techniques

More information

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid The Solid State Phase diagrams Crystals and symmetry Unit cells and packing Types of solid Learning objectives Apply phase diagrams to prediction of phase behaviour Describe distinguishing features of

More information

For this activity, all of the file labels will begin with a Roman numeral IV.

For this activity, all of the file labels will begin with a Roman numeral IV. I V. S O L I D S Name Section For this activity, all of the file labels will begin with a Roman numeral IV. A. In Jmol, open the SCS file in IV.A.1. Click the Bounding Box and Axes function keys. Use the

More information

Crystals Statics. Structural Properties. Geometry of lattices. Aug 23, 2018

Crystals Statics. Structural Properties. Geometry of lattices. Aug 23, 2018 Crystals Statics. Structural Properties. Geometry of lattices Aug 23, 2018 Crystals Why (among all condensed phases - liquids, gases) look at crystals? We can take advantage of the translational symmetry,

More information

Introduction to crystallography The unitcell The resiprocal space and unitcell Braggs law Structure factor F hkl and atomic scattering factor f zθ

Introduction to crystallography The unitcell The resiprocal space and unitcell Braggs law Structure factor F hkl and atomic scattering factor f zθ Introduction to crystallography The unitcell The resiprocal space and unitcell Braggs law Structure factor F hkl and atomic scattering factor f zθ Introduction to crystallography We divide materials into

More information

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ).

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ). X-Ray Diffraction X-ray diffraction geometry A simple X-ray diffraction (XRD) experiment might be set up as shown below. We need a parallel X-ray source, which is usually an X-ray tube in a fixed position

More information

1. Interference condition. 2. Dispersion A B. As shown in Figure 1, the path difference between interfering rays AB and A B is a(sin

1. Interference condition. 2. Dispersion A B. As shown in Figure 1, the path difference between interfering rays AB and A B is a(sin asic equations or astronomical spectroscopy with a diraction grating Jeremy Allington-Smith, University o Durham, 3 Feb 000 (Copyright Jeremy Allington-Smith, 000). Intererence condition As shown in Figure,

More information

Phys 412 Solid State Physics. Lecturer: Réka Albert

Phys 412 Solid State Physics. Lecturer: Réka Albert Phys 412 Solid State Physics Lecturer: Réka Albert What is a solid? A material that keeps its shape Can be deformed by stress Returns to original shape if it is not strained too much Solid structure

More information

Bravais Lattice + Basis = Crystal Structure

Bravais Lattice + Basis = Crystal Structure Bravais Lattice + Basis = Crystal Structure A crystal structure is obtained when identical copies of a basis are located at all of the points of a Bravais lattice. Consider the structure of Cr, a I-cubic

More information

APPENDIX 1 ERROR ESTIMATION

APPENDIX 1 ERROR ESTIMATION 1 APPENDIX 1 ERROR ESTIMATION Measurements are always subject to some uncertainties no matter how modern and expensive equipment is used or how careully the measurements are perormed These uncertainties

More information

Diamond. There are four types of solid: -Hard Structure - Tetrahedral atomic arrangement. What hybrid state do you think the carbon has?

Diamond. There are four types of solid: -Hard Structure - Tetrahedral atomic arrangement. What hybrid state do you think the carbon has? Bonding in Solids Bonding in Solids There are four types of solid: 1. Molecular (formed from molecules) - usually soft with low melting points and poor conductivity. 2. Covalent network - very hard with

More information

3.012 Structure An Introduction to X-ray Diffraction

3.012 Structure An Introduction to X-ray Diffraction 3.012 Structure An Introduction to X-ray Diffraction This handout summarizes some topics that are important for understanding x-ray diffraction. The following references provide a thorough explanation

More information

Experiment 7: Understanding Crystal Structures

Experiment 7: Understanding Crystal Structures Experiment 7: Understanding Crystal Structures To do well in this laboratory experiment you need to be familiar with the concepts of lattice, crystal structure, unit cell, coordination number, the different

More information

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A Math 13 Recitation Worksheet 1A 1 Plot these points in the y plane: A 0,0 B 5,0 C 0, 4 D 3,5 Without using a calculator, sketch a graph o each o these in the y plane: A y B 3 Consider the unction a Evaluate

More information

There are four types of solid:

There are four types of solid: Bonding in Solids There are four types of solid: 1. Molecular (formed from molecules) - usually soft with low melting points and poor conductivity. 2. Covalent network - very hard with very high melting

More information

Objectives. By the time the student is finished with this section of the workbook, he/she should be able

Objectives. By the time the student is finished with this section of the workbook, he/she should be able FUNCTIONS Quadratic Functions......8 Absolute Value Functions.....48 Translations o Functions..57 Radical Functions...61 Eponential Functions...7 Logarithmic Functions......8 Cubic Functions......91 Piece-Wise

More information

The Reciprocal Lattice

The Reciprocal Lattice 59-553 The Reciprocal Lattice 61 Because of the reciprocal nature of d spacings and θ from Bragg s Law, the pattern of the diffraction we observe can be related to the crystal lattice by a mathematical

More information

Practice Problems Set II

Practice Problems Set II P1. For the HCP crystal structure, (a) show that the ideal c/a ratio is 1.633; (b) show that the atomic packing factor for HCP is 0.74. (a) A sketch of one-third of an HCP unit cell is shown below. Consider

More information

TEP Examination of the structure of NaCl monocrystals with different orientations

TEP Examination of the structure of NaCl monocrystals with different orientations Examination of the structure of NaCl TEP Related topics Characteristic X-radiation, energy levels, crystal structures, reciprocal lattices, Miller indices, atomic form factor, structure factor, and Bragg

More information

Ram Seshadri MRL 2031, x6129, These notes complement chapter 6 of Anderson, Leaver, Leevers and Rawlings

Ram Seshadri MRL 2031, x6129, These notes complement chapter 6 of Anderson, Leaver, Leevers and Rawlings Crystals, packings etc. Ram Seshadri MRL 2031, x6129, seshadri@mrl.ucsb.edu These notes complement chapter 6 of Anderson, Leaver, Leevers and Rawlings The unit cell and its propagation Materials usually

More information

SOLID STATE 18. Reciprocal Space

SOLID STATE 18. Reciprocal Space SOLID STATE 8 Reciprocal Space Wave vectors and the concept of K-space can simplify the explanation of several properties of the solid state. They will be introduced to provide more information on diffraction

More information

Physical Chemistry I. Crystal Structure

Physical Chemistry I. Crystal Structure Physical Chemistry I Crystal Structure Crystal Structure Introduction Crystal Lattice Bravis Lattices Crytal Planes, Miller indices Distances between planes Diffraction patters Bragg s law X-ray radiation

More information

2. Diffraction as a means to determine crystal structure

2. Diffraction as a means to determine crystal structure Page 1 of 22 2. Diffraction as a means to determine crystal structure Recall de Broglie matter waves: 2 p h E = where p = 2m λ h 1 E = ( ) 2m λ hc E = hυ = ( photons) λ ( matter wave) He atoms: [E (ev)]

More information

Experiment 2a Models of the Solid State*

Experiment 2a Models of the Solid State* Experiment 2a Models of the Solid State* *This lab is adapted from solid-state labs offered at Purdue and Rice Universities. Introduction The structures of metals and simple ionic solids are prototypes

More information

Chapter 2. X-ray X. Diffraction and Reciprocal Lattice. Scattering from Lattices

Chapter 2. X-ray X. Diffraction and Reciprocal Lattice. Scattering from Lattices Chapter. X-ray X Diffraction and Reciprocal Lattice Diffraction of waves by crystals Reciprocal Lattice Diffraction of X-rays Powder diffraction Single crystal X-ray diffraction Scattering from Lattices

More information

HYDROGEN SPECTRUM = 2

HYDROGEN SPECTRUM = 2 MP6 OBJECT 3 HYDROGEN SPECTRUM MP6. The object o this experiment is to observe some o the lines in the emission spectrum o hydrogen, and to compare their experimentally determined wavelengths with those

More information

X-ray uorescence, X-ray powder diraction and Raman spectrosopy

X-ray uorescence, X-ray powder diraction and Raman spectrosopy X-ray uorescence, X-ray powder diraction and Raman spectrosopy Wubulikasimu Yibulayin, Lovro Pavleti, Kuerbannisa Muhetaer 12.05.2016. Abstract In this report we report about the experiments that were

More information

MEASUREMENT UNCERTAINTIES

MEASUREMENT UNCERTAINTIES MEASUREMENT UNCERTAINTIES What distinguishes science rom philosophy is that it is grounded in experimental observations. These observations are most striking when they take the orm o a quantitative measurement.

More information

FIRST MIDTERM EXAM Chemistry March 2011 Professor Buhro

FIRST MIDTERM EXAM Chemistry March 2011 Professor Buhro FIRST MIDTERM EXAM Chemistry 465 1 March 2011 Professor Buhro Signature Print Name Clearly ID Number: Information. This is a closed-book exam; no books, notes, other students, other student exams, or any

More information

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering Tomi Johnson Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering Please leave your work in the Clarendon laboratory s J pigeon hole by 5pm on Monday of

More information

Feasibility of a Multi-Pass Thomson Scattering System with Confocal Spherical Mirrors

Feasibility of a Multi-Pass Thomson Scattering System with Confocal Spherical Mirrors Plasma and Fusion Research: Letters Volume 5, 044 200) Feasibility o a Multi-Pass Thomson Scattering System with Conocal Spherical Mirrors Junichi HIRATSUKA, Akira EJIRI, Yuichi TAKASE and Takashi YAMAGUCHI

More information

Bragg reflection :determining the lattice constants of monocrystals

Bragg reflection :determining the lattice constants of monocrystals Bragg reflection :determining the lattice constants of monocrystals Objectives: 1-Investagating Bragg reflection at Nacl monocrystal -determinig the lattice constant a 0 of NaCl. Theory: Bragg's law of

More information

Numerical Methods - Lecture 2. Numerical Methods. Lecture 2. Analysis of errors in numerical methods

Numerical Methods - Lecture 2. Numerical Methods. Lecture 2. Analysis of errors in numerical methods Numerical Methods - Lecture 1 Numerical Methods Lecture. Analysis o errors in numerical methods Numerical Methods - Lecture Why represent numbers in loating point ormat? Eample 1. How a number 56.78 can

More information

Lab Manual: Determination of Planck s constant with x-rays

Lab Manual: Determination of Planck s constant with x-rays Lab Manual: Determination of Planck s constant with x-rays 1. Purpose: To obtain a better understanding on the production of X-rays, the bremsstrahlung radiation and the characteristic radiation of a Molybdenum

More information

2. Diffraction as a means to determine crystal structure

2. Diffraction as a means to determine crystal structure 2. Diffraction as a means to determine crystal structure Recall de Broglie matter waves: He atoms: [E (ev)] 1/2 = 0.14 / (Å) E 1Å = 0.0196 ev Neutrons: [E (ev)] 1/2 = 0.28 / (Å) E 1Å = 0.0784 ev Electrons:

More information

print first name print last name print student id grade

print first name print last name print student id grade print first name print last name print student id grade Experiment 2 X-ray fluorescence X-ray fluorescence (XRF) and X-ray diffraction (XRD) may be used to determine the constituent elements and the crystalline

More information

Strain and Stress Measurements with a Two-Dimensional Detector

Strain and Stress Measurements with a Two-Dimensional Detector Copyright ISSN (C) 97-, JCPDS-International Advances in X-ray Centre Analysis, or Volume Diraction 4 Data 999 5 Strain and Stress Measurements with a Two-Dimensional Detector Baoping Bob He and Kingsley

More information

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values.

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values. Business Calculus Lecture Notes (also Calculus With Applications or Business Math II) Chapter 3 Applications o Derivatives 31 Increasing and Decreasing Functions Inormal Deinition: A unction is increasing

More information

The structure of liquids and glasses. The lattice and unit cell in 1D. The structure of crystalline materials. Describing condensed phase structures

The structure of liquids and glasses. The lattice and unit cell in 1D. The structure of crystalline materials. Describing condensed phase structures Describing condensed phase structures Describing the structure of an isolated small molecule is easy to do Just specify the bond distances and angles How do we describe the structure of a condensed phase?

More information

PART 1 Introduction to Theory of Solids

PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:1 Trim:165 240MM TS: Integra, India PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:2

More information

Basic Crystallography Part 1. Theory and Practice of X-ray Crystal Structure Determination

Basic Crystallography Part 1. Theory and Practice of X-ray Crystal Structure Determination Basic Crystallography Part 1 Theory and Practice of X-ray Crystal Structure Determination We have a crystal How do we get there? we want a structure! The Unit Cell Concept Ralph Krätzner Unit Cell Description

More information

Physics 2B Chapter 17 Notes - First Law of Thermo Spring 2018

Physics 2B Chapter 17 Notes - First Law of Thermo Spring 2018 Internal Energy o a Gas Work Done by a Gas Special Processes The First Law o Thermodynamics p Diagrams The First Law o Thermodynamics is all about the energy o a gas: how much energy does the gas possess,

More information

LAB 01 X-RAY EMISSION & ABSORPTION

LAB 01 X-RAY EMISSION & ABSORPTION LAB 0 X-RAY EMISSION & ABSORPTION REPORT BY: TEAM MEMBER NAME: Ashley Tsai LAB SECTION No. 05 GROUP 2 EXPERIMENT DATE: Feb., 204 SUBMISSION DATE: Feb. 8, 204 Page of 3 ABSTRACT The goal of this experiment

More information

Crystal planes. Neutrons: magnetic moment - interacts with magnetic materials or nuclei of non-magnetic materials. (in Å)

Crystal planes. Neutrons: magnetic moment - interacts with magnetic materials or nuclei of non-magnetic materials. (in Å) Crystallography: neutron, electron, and X-ray scattering from periodic lattice, scattering of waves by periodic structures, Miller indices, reciprocal space, Ewald construction. Diffraction: Specular,

More information

General theory of diffraction

General theory of diffraction General theory of diffraction X-rays scatter off the charge density (r), neutrons scatter off the spin density. Coherent scattering (diffraction) creates the Fourier transform of (r) from real to reciprocal

More information

Report Form for Experiment 6: Solid State Structures

Report Form for Experiment 6: Solid State Structures Report Form for Experiment 6: Solid State Structures Note: Many of these questions will not make sense if you are not reading the accompanying lab handout. Station 1. Simple Cubic Lattice 1. How many unit

More information

Rajesh Prasad Department of Applied Mechanics Indian Institute of Technology New Delhi

Rajesh Prasad Department of Applied Mechanics Indian Institute of Technology New Delhi TEQIP WORKSHOP ON HIGH RESOLUTION X-RAY AND ELECTRON DIFFRACTION, FEB 01, 2016, IIT-K. Introduction to x-ray diffraction Peak Positions and Intensities Rajesh Prasad Department of Applied Mechanics Indian

More information

Lecture 4! ü Review on atom/ion size! ü Crystal structure (Chap 4 of Nesseʼs book)!

Lecture 4! ü Review on atom/ion size! ü Crystal structure (Chap 4 of Nesseʼs book)! Lecture 4! ü Review on atom/ion size! ü Crystal structure (Chap 4 of Nesseʼs book)! 15 C 4+ 42 Si 4+ Size of atoms! Hefferan and O Brien, 2010; Earth Materials Force balance! Crystal structure (Chap. 4)!

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

Analytical Methods for Materials

Analytical Methods for Materials Analytical Methods for Materials Lesson 15 Reciprocal Lattices and Their Roles in Diffraction Studies Suggested Reading Chs. 2 and 6 in Tilley, Crystals and Crystal Structures, Wiley (2006) Ch. 6 M. DeGraef

More information

X-ray practical: Crystallography

X-ray practical: Crystallography X-ray practical: Crystallography Aim: To familiarise oneself with the operation of Tex-X-Ometer spectrometer and to use it to determine the lattice spacing in NaCl and LiF single crystals. Background:

More information

6. X-ray Crystallography and Fourier Series

6. X-ray Crystallography and Fourier Series 6. X-ray Crystallography and Fourier Series Most of the information that we have on protein structure comes from x-ray crystallography. The basic steps in finding a protein structure using this method

More information

Digital Image Processing. Lecture 6 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 2009

Digital Image Processing. Lecture 6 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 2009 Digital Image Processing Lecture 6 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 009 Outline Image Enhancement in Spatial Domain Spatial Filtering Smoothing Filters Median Filter

More information

Experiment 3: Simulating X-Ray Diffraction CH3500: Inorganic Chemistry, Plymouth State University

Experiment 3: Simulating X-Ray Diffraction CH3500: Inorganic Chemistry, Plymouth State University Experiment 3: Simulating X-Ray Diffraction CH3500: Inorganic Chemistry, Plymouth State University Created by Jeremiah Duncan, Dept. of Atmospheric Science and Chemistry, Plymouth State University (2012).

More information

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor.

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. Lab on Taylor Polynomials This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. In this Lab we will approimate complicated unctions by simple unctions. The

More information

Solids. properties & structure

Solids. properties & structure Solids properties & structure Determining Crystal Structure crystalline solids have a very regular geometric arrangement of their particles the arrangement of the particles and distances between them is

More information

Crystal Structure. Dr Bindu Krishnan

Crystal Structure. Dr Bindu Krishnan Solid State Physics-1 Crystal Structure Dr Bindu Krishnan CRYSTAL LATTICE What is crystal (space) lattice? In crystallography, only the geometrical properties of the crystal are of interest, therefore

More information

Summary Chapter 2: Wave diffraction and the reciprocal lattice.

Summary Chapter 2: Wave diffraction and the reciprocal lattice. Summary Chapter : Wave diffraction and the reciprocal lattice. In chapter we discussed crystal diffraction and introduced the reciprocal lattice. Since crystal have a translation symmetry as discussed

More information

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions RATIONAL FUNCTIONS Finding Asymptotes..347 The Domain....350 Finding Intercepts.....35 Graphing Rational Functions... 35 345 Objectives The ollowing is a list o objectives or this section o the workbook.

More information

Analytical Methods for Materials

Analytical Methods for Materials Analytical Methods for Materials Laboratory Module # Crystal Structure Determination for Non-Cubic Crystals Suggested Reading 1. Y. Waseda, E. Matsubara, and K. Shinoda, X-ray Diffraction Crystallography,

More information

Chem 728 Introduction to Solid Surfaces

Chem 728 Introduction to Solid Surfaces Chem 728 Introduction to Solid Surfaces Solids: hard; fracture; not compressible; molecules close to each other Liquids: molecules mobile, but quite close to each other Gases: molecules very mobile; compressible

More information

X-ray, Neutron and e-beam scattering

X-ray, Neutron and e-beam scattering X-ray, Neutron and e-beam scattering Introduction Why scattering? Diffraction basics Neutrons and x-rays Techniques Direct and reciprocal space Single crystals Powders CaFe 2 As 2 an example What is the

More information

Light, Quantum Mechanics and the Atom

Light, Quantum Mechanics and the Atom Light, Quantum Mechanics and the Atom Light Light is something that is amiliar to most us. It is the way in which we are able to see the world around us. Light can be thought as a wave and, as a consequence,

More information

Interatomic potentials for monoatomic metals from experimental data and ab initio calculations

Interatomic potentials for monoatomic metals from experimental data and ab initio calculations PHYSICAL REVIEW B VOLUME 59, NUMBER 5 1 FEBRUARY 1999-I Interatomic potentials or monoatomic metals rom experimental data and ab initio calculations Y. Mishin and D. Farkas Department o Materials Science

More information

Physics 107 TUTORIAL ASSIGNMENT #7

Physics 107 TUTORIAL ASSIGNMENT #7 Physics 07 TUTORIL SSIGNMENT #7 Cutnell & Johnson, 7 th edition Chapter 6: Problems 5, 65, 79, 93 Chapter 7: Problems 7,, 9, 37, 48 Chapter 6 5 Suppose that sound is emitted uniormly in all directions

More information

Lecture Note on Crystal structures Masatsugu Sei Suzuki and Itsuko S. Suzuki Department of Physics, SUNY at Binghamton (Date: February 03, 2012)

Lecture Note on Crystal structures Masatsugu Sei Suzuki and Itsuko S. Suzuki Department of Physics, SUNY at Binghamton (Date: February 03, 2012) Lecture Note on Crystal structures Masatsugu Sei Suzuki and Itsuko S. Suzuki Department of Physics, SUNY at Binghamton (Date: February 03, 2012) This is a part of lecture note on solid state physics (Phys.472/572)

More information

Crystal Models. Figure 1.1 Section of a three-dimensional lattice.

Crystal Models. Figure 1.1 Section of a three-dimensional lattice. Crystal Models The Solid-State Structure of Metals and Ionic Compounds Objectives Understand the concept of the unit cell in crystalline solids. Construct models of unit cells for several metallic and

More information

Special types of Riemann sums

Special types of Riemann sums Roberto s Notes on Subject Chapter 4: Deinite integrals and the FTC Section 3 Special types o Riemann sums What you need to know already: What a Riemann sum is. What you can learn here: The key types o

More information

Earth Materials Lab 2 - Lattices and the Unit Cell

Earth Materials Lab 2 - Lattices and the Unit Cell Earth Materials Lab 2 - Lattices and the Unit Cell Unit Cell Minerals are crystallographic solids and therefore are made of atoms arranged into lattices. The average size hand specimen is made of more

More information

Image Enhancement (Spatial Filtering 2)

Image Enhancement (Spatial Filtering 2) Image Enhancement (Spatial Filtering ) Dr. Samir H. Abdul-Jauwad Electrical Engineering Department College o Engineering Sciences King Fahd University o Petroleum & Minerals Dhahran Saudi Arabia samara@kupm.edu.sa

More information

1.4 Crystal structure

1.4 Crystal structure 1.4 Crystal structure (a) crystalline vs. (b) amorphous configurations short and long range order only short range order Abbildungen: S. Hunklinger, Festkörperphysik, Oldenbourg Verlag represenatives of

More information

Mesa College Math SAMPLES

Mesa College Math SAMPLES Mesa College Math 6 - SAMPLES Directions: NO CALCULATOR. Write neatly, show your work and steps. Label your work so it s easy to ollow. Answers without appropriate work will receive NO credit. For inal

More information

Chapter 4 Imaging. Lecture 21. d (110) Chem 793, Fall 2011, L. Ma

Chapter 4 Imaging. Lecture 21. d (110) Chem 793, Fall 2011, L. Ma Chapter 4 Imaging Lecture 21 d (110) Imaging Imaging in the TEM Diraction Contrast in TEM Image HRTEM (High Resolution Transmission Electron Microscopy) Imaging or phase contrast imaging STEM imaging a

More information

LAB 9: EQUILIBRIUM OF NON-PARALLEL FORCES

LAB 9: EQUILIBRIUM OF NON-PARALLEL FORCES Name Date artners LAB 9: EQUILIBRIUM O NON-ARALLEL ORCES 145 OBJECTIVES OVERVIEW To study the components of forces To examine forces in static equilibrium To examine torques To study the conditions for

More information

Lecture 6 - Bonding in Crystals

Lecture 6 - Bonding in Crystals Lecture 6 onding in Crystals inding in Crystals (Kittel Ch. 3) inding of atoms to form crystals A crystal is a repeated array of atoms Why do they form? What are characteristic bonding mechanisms? How

More information

Math Review and Lessons in Calculus

Math Review and Lessons in Calculus Math Review and Lessons in Calculus Agenda Rules o Eponents Functions Inverses Limits Calculus Rules o Eponents 0 Zero Eponent Rule a * b ab Product Rule * 3 5 a / b a-b Quotient Rule 5 / 3 -a / a Negative

More information

We need to be able to describe planes and directions.

We need to be able to describe planes and directions. We need to be able to describe planes and directions. Miller Indices & XRD 1 2 Determining crystal structure and identifying materials (B) Plastic deformation Plastic deformation and mechanical properties

More information

MATHEMATICS: PAPER I TRIAL EXAMINATION 28 AUGUST 2015

MATHEMATICS: PAPER I TRIAL EXAMINATION 28 AUGUST 2015 MATHEMATICS: PAPER I TRIAL EXAMINATION 8 AUGUST 015 TIME: 3 HOURS TOTAL: 150 MARKS EXAMINATION NUMBER: PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY 1. Write your examination number on the paper.. This

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

between electron energy levels. Using the spectrum of electron energy (1) and the law of energy-momentum conservation for photon absorption:

between electron energy levels. Using the spectrum of electron energy (1) and the law of energy-momentum conservation for photon absorption: ENERGY MEASUREMENT O RELATIVISTIC ELECTRON BEAMS USING RESONANCE ABSORPTION O LASER LIGHT BY ELECTRONS IN A MAGNETIC IELD R.A. Melikian Yerevan Physics Institute, Yerevan ABSTRACT The possibility o a precise

More information

Introduction to Materials Science Graduate students (Applied Physics)

Introduction to Materials Science Graduate students (Applied Physics) Introduction to Materials Science Graduate students (Applied Physics) Prof. Michael Roth Chapter Reciprocal Lattice and X-ray Diffraction Reciprocal Lattice - 1 The crystal can be viewed as made up of

More information

X-RAY SPECTRA. Theory:

X-RAY SPECTRA. Theory: 12 Oct 18 X-ray.1 X-RAY SPECTRA In this experiment, a number of measurements involving x-rays will be made. The spectrum of x-rays emitted from a molybdenum target will be measured, and the experimental

More information

X-ray analysis. 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods

X-ray analysis. 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods X-ray analysis 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods Introduction Noble prizes associated with X-ray diffraction 1901 W. C. Roentgen (Physics) for the discovery

More information

1 Crystal Structures. of three-dimensional crystals. Here we use two-dimensional examples to illustrate the concepts.

1 Crystal Structures. of three-dimensional crystals. Here we use two-dimensional examples to illustrate the concepts. 3 1 Crystal Structures A crystal is a periodic array of atoms. Many elements and quite a few compounds are crystalline at low enough temperatures, and many of the solid materials in our everyday life (like

More information

Chapter 6 Reliability-based design and code developments

Chapter 6 Reliability-based design and code developments Chapter 6 Reliability-based design and code developments 6. General Reliability technology has become a powerul tool or the design engineer and is widely employed in practice. Structural reliability analysis

More information

Structure of Crystalline Solids

Structure of Crystalline Solids Structure of Crystalline Solids Solids- Effect of IMF s on Phase Kinetic energy overcome by intermolecular forces C 60 molecule llotropes of Carbon Network-Covalent solid Molecular solid Does not flow

More information

Crystal Structure Determination II

Crystal Structure Determination II Crystal Structure Determination II Dr. Falak Sher Pakistan Institute of Engineering and Applied Sciences 09/10/2010 Diffraction Intensities The integrated intensity, I (hkl) (peak area) of each powder

More information

Probing Atomic Crystals: Bragg Diffraction

Probing Atomic Crystals: Bragg Diffraction 1 Probing Atomic Crystals: Bragg Diffraction OBJECTIVE: To learn how scientists probe the structure of solids, using a scaled-up version of X-ray Diffraction. APPARATUS: Steel ball "crystal", microwave

More information

Additional exercises in Stationary Stochastic Processes

Additional exercises in Stationary Stochastic Processes Mathematical Statistics, Centre or Mathematical Sciences Lund University Additional exercises 8 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x)

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x) Solving Nonlinear Equations & Optimization One Dimension Problem: or a unction, ind 0 such that 0 = 0. 0 One Root: The Bisection Method This one s guaranteed to converge at least to a singularity, i not

More information

Geometry of Crystal Lattice

Geometry of Crystal Lattice 0 Geometry of Crystal Lattice 0.1 Translational Symmetry The crystalline state of substances is different from other states (gaseous, liquid, amorphous) in that the atoms are in an ordered and symmetrical

More information

STAT 801: Mathematical Statistics. Hypothesis Testing

STAT 801: Mathematical Statistics. Hypothesis Testing STAT 801: Mathematical Statistics Hypothesis Testing Hypothesis testing: a statistical problem where you must choose, on the basis o data X, between two alternatives. We ormalize this as the problem o

More information

CS220/MATH320 Applied Discrete Math Fall 2018 Instructor: Marc Pomplun. Assignment #3. Sample Solutions

CS220/MATH320 Applied Discrete Math Fall 2018 Instructor: Marc Pomplun. Assignment #3. Sample Solutions CS22/MATH2 Applied Discrete Math Fall 28 Instructor: Marc Pomplun Assignment # Sample Solutions Question : The Boston Powerlower Botanists at UMass Boston recently discovered a new local lower species

More information

3-D Crystal Lattice Images

3-D Crystal Lattice Images 3-D Crystal Lattice Images All of the following images are crossed-stereo pairs. To view them, cross your eyes and focus. Author's note this material has been expanded and updated, and can be found at

More information

XRD Intensity Calculations -Example FCC Cu (centric)

XRD Intensity Calculations -Example FCC Cu (centric) Ihkl F hkl F hkl hkl f f Cu Cu ( e (1 e XRD Intensity Calculations -Example FCC Cu (centric) Consider Copper which is F 3 with a=3.615å; atoms in positions [0,0,0] m m [½,½,0][½,0,½][0,½,½] and l=1.54å

More information

1 Review of semiconductor materials and physics

1 Review of semiconductor materials and physics Part One Devices 1 Review of semiconductor materials and physics 1.1 Executive summary Semiconductor devices are fabricated using specific materials that offer the desired physical properties. There are

More information

Phys 460 Describing and Classifying Crystal Lattices

Phys 460 Describing and Classifying Crystal Lattices Phys 460 Describing and Classifying Crystal Lattices What is a material? ^ crystalline Regular lattice of atoms Each atom has a positively charged nucleus surrounded by negative electrons Electrons are

More information