Point Spread Function of Symmetrical Optical System Apodised with Gaussian Filter

Size: px
Start display at page:

Download "Point Spread Function of Symmetrical Optical System Apodised with Gaussian Filter"

Transcription

1 International Journal o Pure and Applied Physics. ISSN Volume 4, Number (8), pp Research India Publications Point Spread Function o Symmetrical Optical System Apodised with Gaussian Filter M. Kalpana Devi*, Ch, Srinivas**, T. Venkat Reddy*** * Department o Physics, KU College o Engineering and Technology, Kakatiya University, Warangal-569, T.S., INDIA. ** Department o Physics, College o Technology, Osmania University, Hyderabad- 57, T.S., INDIA. *** Department o Physics, Kakatiya University, Warangal-569, T.S., India. Abstract In this study, symmetrical optical system is considered. Point spread unction is important parameter in the perormance o optical system. Point spread unction in the case o optical system apodised with Gaussian ilter is derived. Analytical and numerical results are computed or various cases o apodised parameter and are presented graphically. Key words: Optical system, Point spread unction, Gaussians ilter, Deocusing parameter..introduction Optical system is equipped with lenses, mirrors, and prisms that constitute the optical part o instruments such as microscope and telescope. Optical imaging is a technique that depends on illumination o light in ultraviolet, visible, and inrared regions o the electromagnetic spectrum. Optical imaging plays important role as Non Destructive Evaluation (NDE) tool in the health care domain. In optical imaging systems, the Point Spread Function (PSF) describes the response o imaging system to a point source and it plays an important role in the resolution studies o an optical system. There are two important metrics or perormance evaluation o optical systems, one is PSF and other is Optical Transer Function (OTF). The PSF and OTF are mathematically interchangeable in the sense, one is Fourier transorm o other. The diraction theory o PSF was irst studied by Airy. Airy developed expression or PSF amplitude and intensity o a perect system, which is ree rom aberrations. An apodisation unction is used to purposely change the input intensity proile o an optical system. Overviews o PSF analysis is available in the review paper [ and reerences therein]. The Leaver and

2 3 M. Kalpana Devi, Ch, Srinivas, T. Venkat Reddy Smith [] have studied radially symmetric pupil unction having properties o producing a point spread unction which decreases monotonically with the increase o radius. The PSF obtained with the above pupil is rom the secondary maxima and minima but is wider than that o a clear aperture. Magiera [] has studied the ilters which minimize the second moment o the PSF, Magiera, and Pluta [3] have used second moment as a measure o the energy scatter and evaluated the eects o optimal appraising ilters on the distribution o energy in the PSF produced by axial object point. Bareket [4] considered the second moment o the PSF to study the image quality criterion. Tschunko [5] has obtained an expression or the PSF by considering geometrical relations o the incoming and diracted wave ronts and established the diraction integral. Rayalu and Mondal [6] have evaluated the deocusing eect on the PSF o an optical system apodised with parabolic ilters and shaded apertures. Tschunko [7] has studied the PSF o optical system with annular apertures. Venkat et.al. [8] have given a general expression or the PSF with an object having a non-central phase annulus coating. Murthy and Mondal [9] have obtained the PSF o optical system in the sinusoidal amplitude ilters. Linsen and Yaghanng [] have studied the restoration o blurred images by convolution o arbitrary PSF. Chung et. al [] have investigated the inluence o apodisation on aberrated point spread unction. Nakomura and Toyoda [] have proposed an apodised annular pupil to suppress the side lobes in PSF. To the best o our knowledge, no one has analyzed the PSF o symmetrical optical system apodised with Gaussian ilter. In this paper, the same is analyzed. The rest o the paper is organized as ollows. In the section II, mathematical expression or PSF o optical system apodised with Gaussian ilter is derived. In the section III, numerical results are presented. Finally, conclusion is given in section IV.. POINT SPREAD FUNCTION (PSF) WITH GAUSSIAN AMPLITUDE FILTER ζ Q(u,v,w) x P(ξ,η,ζ) q R η a C F ξ W Figure. I. Diraction at an apodised circular aperture. The exact nature o the modiications produced in the amplitude spectrum depends on the type o ilter used. The apodisation ilter considered here is Gaussian type. The schematic representation or diraction at an apodised circular aperture o an optical system is shown in Fig. I. Consider a spherical wave ront with surace area 'W ' with

3 Point Spread Function o Symmetrical Optical System Apodised with Gaussian Filter 33 the radius emerging rom a circular aperture and converging towards to the axial ocal point F. Let G(P) be the optical disturbance at a point P (,, ) in the vicinity o the ocal plane F. Position vector o P is R. Magnitude o R is assumed to be small when compared to that o the radius o the wave ront CF. Our aim is to study the diracted image at the point P. Let x be the distance o the point P rom an arbitrary point Q( u, v, w) on the wave ront at a moment when it is incident on the aperture. Let A be the amplitude o the incident wave ront at a point Q. It is assumed that the incident light is quasi monochromatic light and the wavelength ( ) is very small compared to the radius o the aperture i.e., a. A general expression or complex amplitude at the point P is [3] i A dw G( P) exp( ik ) ( r)exp( ikx). () x W In the above expression k stands or propagation constant, and (r) is the pupil unction, where r is radial co-ordinate o P. The usual inclination actor has been omitted here, since only small angles are involved. I q denotes a unit vector in the direction QF, then rom the igure, we have The surace element dw can be expressed as x q. R () dw d, (3) where dw is the surace element which subtends solid angle d at the point F, then we have dw a rdrd d. (4) Here x can be replaced by as it does not amount any considerable error in Eq. (). Thus Eq. () is reduced to ia exp( ik ) exp( ikx) ( r) dw. Further using Eqs, () and (3), above equation can be written as W ia G ( P) ( r)exp ik q. Rd. (5) The integration extends over the solid angle subtended by the aperture at point P. For a clear aperture ( r), and the Eq. (5) reduces to the Debye integral o an Airy case.

4 34 M. Kalpana Devi, Ch, Srinivas, T. Venkat Reddy ia exp ikqr d. In the aperture plane, let (r, ) and (, ) be the polar coordinates o P and Q, respectively, then we have u a r sin, v a r cos. (7) sin, cos. (8) Since Q is on the spherical wave ront W, we have w a r, a r =, a r =.... (9) Neglecting the terms o higher powers o r, the above equation becomes Then, we have a r. () u v w q. R. From Eqs. (7), (8), and (), we have sin. ar sin cos. ar cos a r R q. Let us now introduce two dimensionless variables y and z to speciy the position o the P. That is and. (6) () a y, () a z, (3) In Eqs. () and (3), y is deocusing parameter. I y, it represents the Gaussian ocal plane. I z / y, the point P lies in the direct light beam, and i z / y, it lies

5 Point Spread Function o Symmetrical Optical System Apodised with Gaussian Filter 35 in the geometrical shadow. From Eqs, () and (3), and using k, we can have Using Eqs. (4) and (4) in Eq. (5), we get ia G( P) k( q. R) zr cos( ) y yr. (4) a ( r)exp izr cos( ) i a y iyr a d where J ( zr ) is the Bessel unction o irst kind and zero order. From the above equation, we get (5) A a iyr i exp i y ( r)exp J ( zr) a (6) A Putting exp i, y a and ater simpliication, we get iyr i a ( r)exp J( zr) (7) The term i a outside the sign o integration does not have any eect on the diraction pattern, hence it can be omitted. Now the diracted light amplitude at a point in the Gaussian ocal plane and away rom the ocusing point F is given by iyr ( r)exp J ( zr) (8) Point spread unction o the optical system can be evaluated by knowing the explicit expression o the pupil unction (r) and then taking the squared modulus o the Eq. (8) at the ocused plane o observation corresponding to y (which represents Gaussian ocal plane). In this case, we have G, Z) ( r) J ( zr) (9) ( In the case, r is normalization distance o Gaussian amplitude ilter, r ( r) e. ()

6 36 M. Kalpana Devi, Ch, Srinivas, T. Venkat Reddy In the Eq. (), is the apodisation parameter, which determines the degree o uniorm transmission with in the apodised region. Substituting Eq. () in Eq. (9), we get The intensity B(,Z) o point spread unction is given by G(, z) e J ( zr) () r B(, z) G(, z). () 3. NUMERICAL RESULTS In this section, the intensity o point spread unction is computed or a Gaussian amplitude ilter using Eqs. () and () against z in the range to ±5 in the stepping.5, and the anodization parameter is taken to be arbitrarily in the range. to. in the step o., and 3.86,,, 3. The results are depicted in Fig. II and Fig. III. From the Fig.II, we can iner that peak o the central maxima o diraction pattern increases while irst minima position decreases in the cases o =. to.4. There is no second order maxima position in this case, that is negative amplitude is zero. For the cases =.5 and.6, peak o the central maxima increases while irst order minima position decreases as in the earlier cases. But the irst order negative peak values increase. For the cases =.7 to., and other higher values, central peak values increase. and irst and second order negative peak values also increase, while minima positions decrease. From these results, it is clear that aperture shading is aecting central maxima. As increases central amplitude and intensity increase and also the radius o the irst dark rings decreases. It can be stated that, the use o ully apodised circular aperture reduces the eects o the anodization. Thus, the aperture shading eiciently sharpens the central maxima as increases. From the Fig. III., it is clearly evident that the pupil unction (r) smoothly decreases as r increases and approaches zero in the cases o. to.4, For other higher values o rom.5 to., the pupil unction (r) decreases r increases smoothly but does not touch zero. In the cases =3.86,,, 3, pupil unction (r) decreases as r increases gradually and latter three curves coincide with the line (r) =. The value o (r) increases as increases. Thus, the Gaussian pupil unction typically suppresses the side lobes but broaden the main lobe o the point spread unction (PSF). The Gaussian amplitude transmittance decreases exponentially or. to.4, and then ater decreases monotonically rom the center towards the edges o Gaussian ilters

7 Point Spread Function o Symmetrical Optical System Apodised with Gaussian Filter G(,z).. = z values Figure.II Variation o amplitude o PSF or various values o [. to., 3.867, =. =.3 =. =.5 =.4 =.6 =3.867 =.9 =. =.7 = Figure. III Pupil Transimission Curves or various values o 4. CONCLUSION First, complex amplitude in the case o Gaussian ilter is derived thereby the point spread unction is derived. The numerical values are computed or the various values o apodisation parameter. This kind o analysis is useul in the design o optical systems in domains o health care, Astronomy, and Communication Engineering, REFERENCES [] Leaver and Smith, 975, Radially symmetric pupil unction having properties o producing a point spread unction which decreases monotonically with the increase o radius, Opt. Commun, 5, 374. [] Magiera, 98, The ilters which minimize the second moment o the PSF,

8 38 M. Kalpana Devi, Ch, Srinivas, T. Venkat Reddy Optik., 56. [3] Magiera and Pluta, 98, Energy scatter and evaluated the eects o optimal appraising ilters on the distribution o energy in the Produced by an actual object point, Optik, 56, 43 [4] Bareket, 979, The second moment o the PSF has studied the image quality criterion. Journal Opt. Soc., AM., 69, 3. [5] Tschunko, 983, Geometrical relations o the incoming and diracted wave ronts and established the diraction integral, Appl. Opt.,, 33. [6] Rayalu and Mondal, 979, The deocusing eect on the PSF o an optical system apodised with parabolic ilters and shaded apertures. [7] Tschunko, 983, PSF S o optical system with annular apertures., Appl. Opt.,, 33,. [8] Venkat Reddy, Bhupal Reddy, Mondal and Clavo, 989, A general expression o the PSF with an objective having a noncentral phase annulus coating, Optica Pura Appl.,, 83. [9] Murthy and Mondal, 989, PSF o optical system in the sinusoidal amplitude ilters, Acts Ciencia Indica, (). [] Linsen and Yaghanng, 989, Restoration o blurred images by convolution o arbitrary PSF, China, Journal o Lasers, 6, 54. [] Chung, Sim, Moen, 99, Inluence o apodisation on aberrated point spread unction Price. SPIE,Intha., Soc. Opt. Eng (USA), 39, 638. [] Nakomura and Toyoda, 99, An apodised annular pupil to suppress the side lobes in point spread unction, Apply. Opt.3,34. [3] Born M., Wol E.,98, Principles o Optics. Pergamon Press.

Encircled Energy Factor as a Point-Image Quality-Assessment Parameter

Encircled Energy Factor as a Point-Image Quality-Assessment Parameter Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 11, (6):145-154 ISSN: 976-861 CODEN (USA): AASRFC Encircled Energy Factor as a Point-Image Quality-Assessment Parameter

More information

Effective Fresnel-number concept for evaluating the relative focal shift in focused beams

Effective Fresnel-number concept for evaluating the relative focal shift in focused beams Martíne-Corral et al. Vol. 15, No. / February 1998/ J. Opt. Soc. Am. A 449 Eective Fresnel-number concept or evaluating the relative ocal shit in ocused beams Manuel Martíne-Corral, Carlos J. Zapata-Rodrígue,

More information

Gaussian imaging transformation for the paraxial Debye formulation of the focal region in a low-fresnel-number optical system

Gaussian imaging transformation for the paraxial Debye formulation of the focal region in a low-fresnel-number optical system Zapata-Rodríguez et al. Vol. 7, No. 7/July 2000/J. Opt. Soc. Am. A 85 Gaussian imaging transormation or the paraxial Debye ormulation o the ocal region in a low-fresnel-number optical system Carlos J.

More information

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy Interference, Diffraction and Fourier Theory ATI 2014 Lecture 02! Keller and Kenworthy The three major branches of optics Geometrical Optics Light travels as straight rays Physical Optics Light can be

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences W.J. Dallas PART II: CHAPTER ONE HOLOGRAPHY IN A NUTSHELL

COMPUTER GENERATED HOLOGRAMS Optical Sciences W.J. Dallas PART II: CHAPTER ONE HOLOGRAPHY IN A NUTSHELL What is a Hologram? Holography in a Nutshell: Page 1 o 1 C:\_Dallas\_Courses\3_OpSci_67 8\ MsWord\_TheCgh\1_MSWord\_1 Holography.doc Version: Wednesday, September 4, 8, 8: AM COMPUTER GENERATED HOLOGRAMS

More information

Chapter 4 Imaging. Lecture 21. d (110) Chem 793, Fall 2011, L. Ma

Chapter 4 Imaging. Lecture 21. d (110) Chem 793, Fall 2011, L. Ma Chapter 4 Imaging Lecture 21 d (110) Imaging Imaging in the TEM Diraction Contrast in TEM Image HRTEM (High Resolution Transmission Electron Microscopy) Imaging or phase contrast imaging STEM imaging a

More information

Double-slit interference of biphotons generated in spontaneous parametric downconversion from a thick crystal

Double-slit interference of biphotons generated in spontaneous parametric downconversion from a thick crystal INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF OPTICS B: QUANTUM AND SEMICLASSICAL OPTICS J. Opt. B: Quantum Semiclass. Opt. 3 (2001 S50 S54 www.iop.org/journals/ob PII: S1464-4266(0115159-1 Double-slit intererence

More information

Two-photon absorption coefficient determination with a differential F-scan technique

Two-photon absorption coefficient determination with a differential F-scan technique Two-photon absorption coeicient determination with a dierential F-scan technique E RUEDA, 1 J H SERNA, A HAMAD AND H GARCIA 3,* 1 Grupo de Óptica y Fotónica, Instituto de Física, U de A, Calle 70 No. 5-1,

More information

Thu June 16 Lecture Notes: Lattice Exercises I

Thu June 16 Lecture Notes: Lattice Exercises I Thu June 6 ecture Notes: attice Exercises I T. Satogata: June USPAS Accelerator Physics Most o these notes ollow the treatment in the class text, Conte and MacKay, Chapter 6 on attice Exercises. The portions

More information

1. Interference condition. 2. Dispersion A B. As shown in Figure 1, the path difference between interfering rays AB and A B is a(sin

1. Interference condition. 2. Dispersion A B. As shown in Figure 1, the path difference between interfering rays AB and A B is a(sin asic equations or astronomical spectroscopy with a diraction grating Jeremy Allington-Smith, University o Durham, 3 Feb 000 (Copyright Jeremy Allington-Smith, 000). Intererence condition As shown in Figure,

More information

5. LIGHT MICROSCOPY Abbe s theory of imaging

5. LIGHT MICROSCOPY Abbe s theory of imaging 5. LIGHT MICROSCOPY. We use Fourier optics to describe coherent image formation, imaging obtained by illuminating the specimen with spatially coherent light. We define resolution, contrast, and phase-sensitive

More information

Numerical Calculation of Coupling Efficiency for an Elegant Hermite-Cosh-Gaussian Beams

Numerical Calculation of Coupling Efficiency for an Elegant Hermite-Cosh-Gaussian Beams International Journal o Optics and Photonics (IJOP) Vol. 6, No., Summer-Fall Numerical Calculation o Coupling Eiciency or an Elegant Hermite-Cosh-Gaussian Beams A. Keshavarz* and M. Kazempour Department

More information

New method for two-point nonuniformity correction of microbolometer detectors

New method for two-point nonuniformity correction of microbolometer detectors 10 th International Conerence on Quantitative InraRed Thermography July 27-30, 2010, Québec (Canada) New method or two-point nonuniormity correction o microbolometer detectors by R. Olbrycht*, B. Wiecek*,

More information

Scattering of light from quasi-homogeneous sources by quasi-homogeneous media

Scattering of light from quasi-homogeneous sources by quasi-homogeneous media Visser et al. Vol. 23, No. 7/July 2006/J. Opt. Soc. Am. A 1631 Scattering of light from quasi-homogeneous sources by quasi-homogeneous media Taco D. Visser* Department of Physics and Astronomy, University

More information

Clicker questions. Clicker question 2. Clicker Question 1. Clicker question 2. Clicker question 1. the answers are in the lower right corner

Clicker questions. Clicker question 2. Clicker Question 1. Clicker question 2. Clicker question 1. the answers are in the lower right corner licker questions the answers are in the lower right corner question wave on a string goes rom a thin string to a thick string. What picture best represents the wave some time ater hitting the boundary?

More information

Lecture 9: Indirect Imaging 2. Two-Element Interferometer. Van Cittert-Zernike Theorem. Aperture Synthesis Imaging. Outline

Lecture 9: Indirect Imaging 2. Two-Element Interferometer. Van Cittert-Zernike Theorem. Aperture Synthesis Imaging. Outline Lecture 9: Indirect Imaging 2 Outline 1 Two-Element Interferometer 2 Van Cittert-Zernike Theorem 3 Aperture Synthesis Imaging Cygnus A at 6 cm Image courtesy of NRAO/AUI Very Large Array (VLA), New Mexico,

More information

Vector diffraction theory of refraction of light by a spherical surface

Vector diffraction theory of refraction of light by a spherical surface S. Guha and G. D. Gillen Vol. 4, No. 1/January 007/J. Opt. Soc. Am. B 1 Vector diffraction theory of refraction of light by a spherical surface Shekhar Guha and Glen D. Gillen* Materials and Manufacturing

More information

Focal shift in vector beams

Focal shift in vector beams Focal shift in vector beams Pamela L. Greene The Institute of Optics, University of Rochester, Rochester, New York 1467-186 pgreene@optics.rochester.edu Dennis G. Hall The Institute of Optics and The Rochester

More information

Chapter 6 SCALAR DIFFRACTION THEORY

Chapter 6 SCALAR DIFFRACTION THEORY Chapter 6 SCALAR DIFFRACTION THEORY [Reading assignment: Hect 0..4-0..6,0..8,.3.3] Scalar Electromagnetic theory: monochromatic wave P : position t : time : optical frequency u(p, t) represents the E or

More information

2.71. Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET

2.71. Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET 2.71 Final examination 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS Name: PLEASE RETURN THIS BOOKLET WITH YOUR SOLUTION SHEET(S) MASSACHUSETTS INSTITUTE OF TECHNOLOGY

More information

Nature of Light Part 2

Nature of Light Part 2 Nature of Light Part 2 Fresnel Coefficients From Helmholts equation see imaging conditions for Single lens 4F system Diffraction ranges Rayleigh Range Diffraction limited resolution Interference Newton

More information

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1 Laser Optics-II 1 Outline Absorption Modes Irradiance Reflectivity/Absorption Absorption coefficient will vary with the same effects as the reflectivity For opaque materials: reflectivity = 1 - absorptivity

More information

Feasibility of a Multi-Pass Thomson Scattering System with Confocal Spherical Mirrors

Feasibility of a Multi-Pass Thomson Scattering System with Confocal Spherical Mirrors Plasma and Fusion Research: Letters Volume 5, 044 200) Feasibility o a Multi-Pass Thomson Scattering System with Conocal Spherical Mirrors Junichi HIRATSUKA, Akira EJIRI, Yuichi TAKASE and Takashi YAMAGUCHI

More information

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters Disclaimer: Chapter 29 Alternating-Current Circuits (1) This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters 29-33. LC circuit: Energy stored LC

More information

A family of closed form expressions for the scalar field of strongly focused

A family of closed form expressions for the scalar field of strongly focused Scalar field of non-paraxial Gaussian beams Z. Ulanowski and I. K. Ludlow Department of Physical Sciences University of Hertfordshire Hatfield Herts AL1 9AB UK. A family of closed form expressions for

More information

Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET

Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET 2.710 Final examination 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS Name: PLEASE RETURN THIS BOOKLET WITH YOUR SOLUTION SHEET(S) MASSACHUSETTS INSTITUTE OF TECHNOLOGY

More information

Design and Correction of Optical Systems

Design and Correction of Optical Systems Design and Correction of Optical Systems Lecture 7: PSF and Optical transfer function 017-05-0 Herbert Gross Summer term 017 www.iap.uni-jena.de Preliminary Schedule - DCS 017 1 07.04. Basics 1.04. Materials

More information

Phys102 Lecture Diffraction of Light

Phys102 Lecture Diffraction of Light Phys102 Lecture 31-33 Diffraction of Light Key Points Diffraction by a Single Slit Diffraction in the Double-Slit Experiment Limits of Resolution Diffraction Grating and Spectroscopy Polarization References

More information

Analysis of diffraction efficiency of a holographic coupler with respect to angular divergence

Analysis of diffraction efficiency of a holographic coupler with respect to angular divergence Indian J. Phys. 83 (4) 531-538 (009) Analysis of diffraction efficiency of a holographic coupler with respect to angular divergence Mihir Hota and S K Tripathy* National Institute of Science and Technology,

More information

Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee

Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee Module-04 Lecture-02 Diffraction Part - 02 In the previous lecture I discussed single slit and double

More information

774. Tribological adhesion of particles in acoustic field

774. Tribological adhesion of particles in acoustic field 774. Tribological adhesion o particles in acoustic ield Vladas Vekteris 1 Vytautas Striška Vadim Mokšin 3 Darius Ozarovskis 4 Rolandas Zaremba 5 Vilnius Gediminas Technical University Department o Machine

More information

Airy pattern reorganization and subwavelength structure in a focus

Airy pattern reorganization and subwavelength structure in a focus 884 J. Opt. Soc. Am. A/Vol. 15, No. 4/April 1998 Karman et al. Airy pattern reorganization and subwavelength structure in a focus G. P. Karman, M. W. Beijersbergen, A. van Duijl, D. Bouwmeester, and J.

More information

Generating Bessel beams by use of localized modes

Generating Bessel beams by use of localized modes 992 J. Opt. Soc. Am. A/ Vol. 22, No. 5/ May 2005 W. B. Williams and J. B. Pendry Generating Bessel beams by use of localized modes W. B. Williams and J. B. Pendry Condensed Matter Theory Group, The Blackett

More information

Introduction to aberrations OPTI518 Lecture 5

Introduction to aberrations OPTI518 Lecture 5 Introduction to aberrations OPTI518 Lecture 5 Second-order terms 1 Second-order terms W H W W H W H W, cos 2 2 000 200 111 020 Piston Change of image location Change of magnification 2 Reference for OPD

More information

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a Chapter 4 CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS Convective heat transer analysis o nanoluid lowing inside a straight tube o circular cross-section under laminar and turbulent conditions

More information

Waves Part III Electromagnetic waves

Waves Part III Electromagnetic waves Waves Part III Electromagnetic waves Electromagnetic (light) waves Transverse waves Transport energy (and momentum) Can travel through vacuum (!) and certain solids, liquids and gases Do not transport

More information

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall J. Basic. Appl. Sci. Res., 2(7)7270-7275, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal o Basic and Applied Scientiic Research www.textroad.com Controlling the Heat Flux Distribution by Changing

More information

Lecture notes 5: Diffraction

Lecture notes 5: Diffraction Lecture notes 5: Diffraction Let us now consider how light reacts to being confined to a given aperture. The resolution of an aperture is restricted due to the wave nature of light: as light passes through

More information

Optical determination of field angular correlation for transmission through three-dimensional turbid media

Optical determination of field angular correlation for transmission through three-dimensional turbid media 1040 J. Opt. Soc. Am. A/Vol. 16, No. 5/May 1999 Brian G. Hoover Optical determination o ield angular correlation or transmission through three-dimensional turbid media Brian G. Hoover Department o Electrical

More information

An Example of Telescope Resolution

An Example of Telescope Resolution An Example of Telescope Resolution J. Kielkopf September 23, 2012 1 Principles Light leaves a distant source with the properties of a spherical wave. That is, the phase of the wave is constant on the surface

More information

Simulation of Coherent Diffraction Radiation Generation by Pico-Second Electron Bunches in an Open Resonator

Simulation of Coherent Diffraction Radiation Generation by Pico-Second Electron Bunches in an Open Resonator RREPS215 Journal o Physics: Conerence Series 732 (216) 1219 doi:1.188/1742-6596/732/1/1219 Simulation o Coherent Diraction Radiation Generation by Pico-Second Electron Bunches in an Open Resonator L G

More information

Today. MIT 2.71/2.710 Optics 11/10/04 wk10-b-1

Today. MIT 2.71/2.710 Optics 11/10/04 wk10-b-1 Today Review of spatial filtering with coherent illumination Derivation of the lens law using wave optics Point-spread function of a system with incoherent illumination The Modulation Transfer Function

More information

Analytical expressions for field astigmatism in decentered two mirror telescopes and application to the collimation of the ESO VLT

Analytical expressions for field astigmatism in decentered two mirror telescopes and application to the collimation of the ESO VLT ASTRONOMY & ASTROPHYSICS MAY II 000, PAGE 57 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 44, 57 67 000) Analytical expressions or ield astigmatism in decentered two mirror telescopes and application

More information

NCERT-XII / Unit- 09 Ray Optics

NCERT-XII / Unit- 09 Ray Optics REFLECTION OF LIGHT The laws o relection are.. (i) The incident ray, relected ray and the normal to the relecting surace at the point o incidence lie in the same plane (ii) The angle o relection (i.e.,

More information

Heating Beam Pattern Optical Design CO2 Laser Thermal Compensation Bench

Heating Beam Pattern Optical Design CO2 Laser Thermal Compensation Bench LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO Laboratory / LIGO Scientific Collaboration LIGO 4//4 Heating Beam Pattern Optical Design CO Laser Thermal Compensation Bench Michael Smith, David

More information

Design and Correction of optical Systems

Design and Correction of optical Systems Design and Correction of optical Systems Part 10: Performance criteria 1 Summer term 01 Herbert Gross Overview 1. Basics 01-04-18. Materials 01-04-5 3. Components 01-05-0 4. Paraxial optics 01-05-09 5.

More information

BIOLOGICAL CELLS LIGHT SCATTERING FROM NUCLEATED. bending of the rays) due to the different relative index of refraction for the nucleus,

BIOLOGICAL CELLS LIGHT SCATTERING FROM NUCLEATED. bending of the rays) due to the different relative index of refraction for the nucleus, LIGHT SCATTERING FROM NUCLEATED BIOLOGICAL CELLS RICHARD A. MEYER and ALBERT BRUNSTING From the Johns Hopkins Applied Physics Laboratory, Silver Spring, Maryland 20910, and the Physics Department, Auburn

More information

Two-step self-tuning phase-shifting interferometry

Two-step self-tuning phase-shifting interferometry Two-step sel-tuning phase-shiting intererometry J. Vargas, 1,* J. Antonio Quiroga, T. Belenguer, 1 M. Servín, 3 J. C. Estrada 3 1 Laboratorio de Instrumentación Espacial, Instituto Nacional de Técnica

More information

X-ray Diffraction. Interaction of Waves Reciprocal Lattice and Diffraction X-ray Scattering by Atoms The Integrated Intensity

X-ray Diffraction. Interaction of Waves Reciprocal Lattice and Diffraction X-ray Scattering by Atoms The Integrated Intensity X-ray Diraction Interaction o Waves Reciprocal Lattice and Diraction X-ray Scattering by Atoms The Integrated Intensity Basic Principles o Interaction o Waves Periodic waves characteristic: Frequency :

More information

To determine the wavelengths of light emitted by a mercury vapour lamp by using a diffraction grating.

To determine the wavelengths of light emitted by a mercury vapour lamp by using a diffraction grating. 12. Diffraction grating OBJECT To determine the wavelengths of light emitted by a mercury vapour lamp by using a diffraction grating. INTRODUCTION: Consider a light beam transmitted through an aperture

More information

Assessment of a Wigner-distribution-functionbased method to compute the polychromatic axial response given by an aberrated optical system

Assessment of a Wigner-distribution-functionbased method to compute the polychromatic axial response given by an aberrated optical system Assessment of a Wigner-distribution-functionbased method to compute the polychromatic axial response given by an aberrated optical system Walter D. Furlan Genaro Saavedra Enrique Silvestre Universitat

More information

A 3D vectorial optical transfer function suitable for arbitrary pupil functions

A 3D vectorial optical transfer function suitable for arbitrary pupil functions A 3D vectorial optical transfer function suitable for arbitrary pupil functions Matthew R. Arnison, Colin J. R. Sheppard Physical Optics Laboratory, School of Physics, University of Sydney, NSW, 26, Australia

More information

nr 2 nr 4 Correct Answer 1 Explanation If mirror is rotated by anglethan beeping incident ray fixed, reflected ray rotates by 2 Option 4

nr 2 nr 4 Correct Answer 1 Explanation If mirror is rotated by anglethan beeping incident ray fixed, reflected ray rotates by 2 Option 4 Q. No. A small plane mirror is placed at the centero a spherical screen o radius R. A beam o light is alling on the mirror. I the mirror makes n revolution per second, the speed o light on the screen ater

More information

Part I. The Quad-Ridged Flared Horn

Part I. The Quad-Ridged Flared Horn 9 Part I The Quad-Ridged Flared Horn 10 Chapter 2 Key Requirements of Radio Telescope Feeds Almost all of today s radio telescopes operating above 0.5 GHz use reflector antennas consisting of one or more

More information

Modeling microlenses by use of vectorial field rays and diffraction integrals

Modeling microlenses by use of vectorial field rays and diffraction integrals Modeling microlenses by use of vectorial field rays and diffraction integrals Miguel A. Alvarez-Cabanillas, Fang Xu, and Yeshaiahu Fainman A nonparaxial vector-field method is used to describe the behavior

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

Imaging Metrics. Frequency response Coherent systems Incoherent systems MTF OTF Strehl ratio Other Zemax Metrics. ECE 5616 Curtis

Imaging Metrics. Frequency response Coherent systems Incoherent systems MTF OTF Strehl ratio Other Zemax Metrics. ECE 5616 Curtis Imaging Metrics Frequenc response Coherent sstems Incoherent sstems MTF OTF Strehl ratio Other Zema Metrics Where we are going with this Use linear sstems concept of transfer function to characterize sstem

More information

Educational Procedure for Designing and Teaching Reflector Antennas in Electrical Engineering Programs. Abstract. Introduction

Educational Procedure for Designing and Teaching Reflector Antennas in Electrical Engineering Programs. Abstract. Introduction Educational Procedure or Designing and Teaching Relector Antennas in Electrical Engineering Programs Marco A.B. Terada Klipsch School o Electrical and Computer Engineering New Mexico State University Las

More information

Chapter 7. Interference of Light

Chapter 7. Interference of Light Chapter 7. Interference of Light Last Lecture Superposition of waves Laser This Lecture Two-Beam Interference Young s Double Slit Experiment Virtual Sources Newton s Rings Film Thickness Measurement by

More information

UNCERTAINTY EVALUATION OF SINUSOIDAL FORCE MEASUREMENT

UNCERTAINTY EVALUATION OF SINUSOIDAL FORCE MEASUREMENT XXI IMEKO World Congress Measurement in Research and Industry August 30 eptember 4, 05, Prague, Czech Republic UNCERTAINTY EVALUATION OF INUOIDAL FORCE MEAUREMENT Christian chlegel, Gabriela Kiekenap,Rol

More information

Ultra Fast Calculation of Temperature Profiles of VLSI ICs in Thermal Packages Considering Parameter Variations

Ultra Fast Calculation of Temperature Profiles of VLSI ICs in Thermal Packages Considering Parameter Variations Ultra Fast Calculation o Temperature Proiles o VLSI ICs in Thermal Packages Considering Parameter Variations Je-Hyoung Park, Virginia Martín Hériz, Ali Shakouri, and Sung-Mo Kang Dept. o Electrical Engineering,

More information

Application of nondiffracting beams to wireless optical communications

Application of nondiffracting beams to wireless optical communications Application of nondiffracting beams to wireless optical communications V. Kollárová a, T. Medřík a, R. Čelechovský a, Z. Bouchal a O. Wilfert* b, Z. Kolka b a Faculty of Science, Palacký University, 17.

More information

DIFFRACTION AND FOURIER OPTICS I.

DIFFRACTION AND FOURIER OPTICS I. DIFFRACTION AND FOURIER OPTICS I. Introduction Let us examine some of the main features of the Huygens-Fresnel scalar theory of optical diffraction. This theory approximates the vector electric and magnetic

More information

Focusing of light. Colin Sheppard Division of Bioengineering and Department of Biological Sciences National University of Singapore

Focusing of light. Colin Sheppard Division of Bioengineering and Department of Biological Sciences National University of Singapore Focusing of light Colin Sheppard Division of Bioengineering and Department of Biological Sciences National University of Singapore E-mail: colin@nus.edu.sg Tight focusing of light Microscopy Laser micromachining

More information

Optics.

Optics. Optics www.optics.rochester.edu/classes/opt100/opt100page.html Course outline Light is a Ray (Geometrical Optics) 1. Nature of light 2. Production and measurement of light 3. Geometrical optics 4. Matrix

More information

ZERO-DISTANCE PULSE FRONTS OF STRETCHER AND ITS OPTICAL SYSTEM

ZERO-DISTANCE PULSE FRONTS OF STRETCHER AND ITS OPTICAL SYSTEM ERODISTANCE PULSE RONTS O STRETCHER AND ITS OPTICAL SYSTEM Author: DOI: 10.12684/alt.1.70 Corresponding author: email: agitin@mbiberlin.de erodistance Pulse ronts o a Stretcher and its Optical System Max

More information

Double-distance propagation of Gaussian beams passing through a tilted cat-eye optical lens in a turbulent atmosphere

Double-distance propagation of Gaussian beams passing through a tilted cat-eye optical lens in a turbulent atmosphere Double-distance propagation of Gaussian beams passing through a tilted cat-eye optical lens in a turbulent atmosphere Zhao Yan-Zhong( ), Sun Hua-Yan( ), and Song Feng-Hua( ) Department of Photoelectric

More information

Part I: Thin Converging Lens

Part I: Thin Converging Lens Laboratory 1 PHY431 Fall 011 Part I: Thin Converging Lens This eperiment is a classic eercise in geometric optics. The goal is to measure the radius o curvature and ocal length o a single converging lens

More information

Lecture 19 Optical MEMS (1)

Lecture 19 Optical MEMS (1) EEL6935 Advanced MEMS (Spring 5) Instructor: Dr. Huikai Xie Lecture 19 Optical MEMS (1) Agenda: Optics Review EEL6935 Advanced MEMS 5 H. Xie 3/8/5 1 Optics Review Nature of Light Reflection and Refraction

More information

Prac%ce Quiz 8. These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar.

Prac%ce Quiz 8. These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar. Prac%ce Quiz 8 These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar. A laser beam shines vertically upwards. What laser power is needed

More information

PH 222-3A Spring 2010

PH 222-3A Spring 2010 PH -3A Spring 010 Interference Lecture 6-7 Chapter 35 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 35 Interference The concept of optical interference is critical to understanding

More information

Chapter 35. Interference

Chapter 35. Interference Chapter 35 Interference The concept of optical interference is critical to understanding many natural phenomena, ranging from color shifting in butterfly wings to intensity patterns formed by small apertures.

More information

TFY4102 Exam Fall 2015

TFY4102 Exam Fall 2015 FY40 Eam Fall 05 Short answer (4 points each) ) Bernoulli's equation relating luid low and pressure is based on a) conservation o momentum b) conservation o energy c) conservation o mass along the low

More information

3.1 The Plane Mirror Resonator 3.2 The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator

3.1 The Plane Mirror Resonator 3.2 The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator Quantum Electronics Laser Physics Chapter 3 The Optical Resonator 3.1 The Plane Mirror Resonator 3. The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator

More information

Physical Optics. Lecture 2: Diffraction Herbert Gross.

Physical Optics. Lecture 2: Diffraction Herbert Gross. Physical Optics Lecture : Diffraction 018-04-18 Herbert Gross www.iap.uni-jena.de Physical Optics: Content No Date Subject Ref Detailed Content 1 11.04. Wave optics G Complex fields, wave equation, k-vectors,

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

31. Diffraction: a few important illustrations

31. Diffraction: a few important illustrations 31. Diffraction: a few important illustrations Babinet s Principle Diffraction gratings X-ray diffraction: Bragg scattering and crystal structures A lens transforms a Fresnel diffraction problem into a

More information

Analysis of second-harmonic generation microscopy under refractive index mismatch

Analysis of second-harmonic generation microscopy under refractive index mismatch Vol 16 No 11, November 27 c 27 Chin. Phys. Soc. 19-1963/27/16(11/3285-5 Chinese Physics and IOP Publishing Ltd Analysis of second-harmonic generation microscopy under refractive index mismatch Wang Xiang-Hui(

More information

A Systematic Approach to Frequency Compensation of the Voltage Loop in Boost PFC Pre- regulators.

A Systematic Approach to Frequency Compensation of the Voltage Loop in Boost PFC Pre- regulators. A Systematic Approach to Frequency Compensation o the Voltage Loop in oost PFC Pre- regulators. Claudio Adragna, STMicroelectronics, Italy Abstract Venable s -actor method is a systematic procedure that

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. The diagram shows the concave mirror of a Cassegrain reflecting telescope, together with the eyepiece lens. Complete the diagram of the telescope and mark on it the focal

More information

A REPORT ON PERFORMANCE OF ANNULAR FINS HAVING VARYING THICKNESS

A REPORT ON PERFORMANCE OF ANNULAR FINS HAVING VARYING THICKNESS VOL., NO. 8, APRIL 6 ISSN 89-668 ARPN Journal o Engineering and Applied Sciences 6-6 Asian Research Publishing Networ (ARPN). All rights reserved. A REPORT ON PERFORMANCE OF ANNULAR FINS HAVING VARYING

More information

The interference of waves

The interference of waves The interference of waves In physics, interference is the addition (superposition) of two or more waves that results in a new wave pattern. The displacements of the waves add algebraically. Consider two

More information

Long- and short-term average intensity for multi-gaussian beam with a common axis in turbulence

Long- and short-term average intensity for multi-gaussian beam with a common axis in turbulence Chin. Phys. B Vol. 0, No. 1 011) 01407 Long- and short-term average intensity for multi-gaussian beam with a common axis in turbulence Chu Xiu-Xiang ) College of Sciences, Zhejiang Agriculture and Forestry

More information

between electron energy levels. Using the spectrum of electron energy (1) and the law of energy-momentum conservation for photon absorption:

between electron energy levels. Using the spectrum of electron energy (1) and the law of energy-momentum conservation for photon absorption: ENERGY MEASUREMENT O RELATIVISTIC ELECTRON BEAMS USING RESONANCE ABSORPTION O LASER LIGHT BY ELECTRONS IN A MAGNETIC IELD R.A. Melikian Yerevan Physics Institute, Yerevan ABSTRACT The possibility o a precise

More information

Chapter 1 High-Resolution Optical and Confocal Microscopy

Chapter 1 High-Resolution Optical and Confocal Microscopy Chapter 1 High-Resolution Optical and Confocal Microscopy Olaf Hollricher and Wolfram Ibach Abstract In this chapter, the theory of optical image formation in an optical microscope is described, and the

More information

Some Topics in Optics

Some Topics in Optics Some Topics in Optics The HeNe LASER The index of refraction and dispersion Interference The Michelson Interferometer Diffraction Wavemeter Fabry-Pérot Etalon and Interferometer The Helium Neon LASER A

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 26 Chapter 33 sec. 1-4 Fall 2017 Semester Professor Koltick Interference of Light Interference phenomena are a consequence of the wave-like nature of light Electric

More information

RELIABILITY OF BURIED PIPELINES WITH CORROSION DEFECTS UNDER VARYING BOUNDARY CONDITIONS

RELIABILITY OF BURIED PIPELINES WITH CORROSION DEFECTS UNDER VARYING BOUNDARY CONDITIONS REIABIITY OF BURIE PIPEIES WITH CORROSIO EFECTS UER VARYIG BOUARY COITIOS Ouk-Sub ee 1 and ong-hyeok Kim 1. School o Mechanical Engineering, InHa University #53, Yonghyun-ong, am-ku, Incheon, 40-751, Korea

More information

Use of thermal sieve to allow optical testing of cryogenic optical systems

Use of thermal sieve to allow optical testing of cryogenic optical systems Use of thermal sieve to allow optical testing of cryogenic optical systems Dae Wook Kim, * Wenrui Cai, and James H. Burge College of Optical Sciences, University of Arizona, 1630 E. University Blvd, Tucson,

More information

Supplementary Information: Enhancement of the tractor-beam pulling force on an optically bound structure

Supplementary Information: Enhancement of the tractor-beam pulling force on an optically bound structure Supplementary Information: Enhancement of the tractor-beam pulling force on an optically bound structure Jana Damková, Lukáš Chvátal, Jan Ježek, Jindřich Oulehla, Oto Brzobohatý and Pavel Zemánek Institute

More information

A Single-Beam, Ponderomotive-Optical Trap for Energetic Free Electrons

A Single-Beam, Ponderomotive-Optical Trap for Energetic Free Electrons A Single-Beam, Ponderomotive-Optical Trap for Energetic Free Electrons Traditionally, there have been many advantages to using laser beams with Gaussian spatial profiles in the study of high-field atomic

More information

Course 2: Basic Technologies

Course 2: Basic Technologies Course 2: Basic Technologies Part II: X-ray optics What do you see here? Seite 2 wavefront distortion http://www.hyperiontelescopes.com/performance12.php http://astronomy.jawaid1.com/articles/spherical%20ab

More information

APPLICATION OF A SCANNING VIBROMETER FOR THE PERIODIC CALIBRATION OF FORCE TRANSDUCERS

APPLICATION OF A SCANNING VIBROMETER FOR THE PERIODIC CALIBRATION OF FORCE TRANSDUCERS XX IMEKO World Congress Metrology or Green Growth September 9 14, 01, Busan, Republic o Korea APPLICATION OF A SCANNING VIBROMETER FOR THE PERIODIC CALIBRATION OF FORCE TRANSDUCERS Christian Schlegel,

More information

Wigner function for nonparaxial wave fields

Wigner function for nonparaxial wave fields 486 J. Opt. Soc. Am. A/ Vol. 18, No. 10/ October 001 C. J. R. Sheppard and K. G. Larin Wigner function for nonparaxial wave fields Colin J. R. Sheppard* and Kieran G. Larin Department of Physical Optics,

More information

Fourier Optics - Exam #1 Review

Fourier Optics - Exam #1 Review Fourier Optics - Exam #1 Review Ch. 2 2-D Linear Systems A. Fourier Transforms, theorems. - handout --> your note sheet B. Linear Systems C. Applications of above - sampled data and the DFT (supplement

More information

CHAPTER 8 ANALYSIS OF AVERAGE SQUARED DIFFERENCE SURFACES

CHAPTER 8 ANALYSIS OF AVERAGE SQUARED DIFFERENCE SURFACES CAPTER 8 ANALYSS O AVERAGE SQUARED DERENCE SURACES n Chapters 5, 6, and 7, the Spectral it algorithm was used to estimate both scatterer size and total attenuation rom the backscattered waveorms by minimizing

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter 1 Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

UNIT-5 EM WAVES UNIT-6 RAY OPTICS

UNIT-5 EM WAVES UNIT-6 RAY OPTICS UNIT-5 EM WAVES 2 Marks Question 1. To which regions of electromagnetic spectrum do the following wavelengths belong: (a) 250 nm (b) 1500 nm 2. State any one property which is common to all electromagnetic

More information

Phase Retrieval for the Hubble Space Telescope and other Applications Abstract: Introduction: Theory:

Phase Retrieval for the Hubble Space Telescope and other Applications Abstract: Introduction: Theory: Phase Retrieval for the Hubble Space Telescope and other Applications Stephanie Barnes College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 sab3@email.arizona.edu Abstract: James R.

More information