Antenna Theory Exam No. 1 October 9, 2000

Size: px
Start display at page:

Download "Antenna Theory Exam No. 1 October 9, 2000"

Transcription

1 ntenna Theory Exa No. 1 October 9, 000 Solve the following 4 probles. Each proble is 0% of the grade. To receive full credit, you ust show all work. If you need to assue anything, state your assuptions clearly. Reasonable assuptions that are necessary to solve the proble will be accepted. In all probles assue properties of free space (ε F/, µ H/, η Ω) 1. one wavelength, thin wire dipole antenna is given. ssuing a peak current of 1 at 600 MHz calculate: a. The radiated power of the antenna. b. The radiation resistance of the antenna. c. The directivity and axiu directivity of the antenna Solution: Find the far-field electric and agnetic field intensities. Calculate the tie averaged power density and integrate it over a sphere of radius R to obtain the radiated power. Fro radiated power and current, calculate the radiation resistance. Fro radiated power and power density calculate the radiation intensity and then the directivity of the antenna. Fro Eqs. (18.85) and (18.86): The tie averaged poer density is: E θ j R e j βr cos (βl/)cosθ cos(βl/) H φ ji 0 R e jβr cos (βl/)cosθ cos(βl/) θ φ ji 0 R e jβr cos (βl/)cosθ cos(βl/) j R e jβr cos (βl/)cosθ cos(βl/) R I 0 η cos (βl/)cosθ cos(βl/) 8 R ith Lλ and β/λ we get βl/. P av R I 0 η cos cosθ R Integrating over a spherical surface at radius R: s P av.ds φ0 θ0 I 0 η cos cosθ + 1 R dφ I 0 η 8 R 8 θ0 I 0 η 4 θ0 cos cosθ + 1 cos cosθ + 1 The integral is the sae as in Eq. (18.9) and, fro Table, equals 3.318:

2 b. Fro Eq. (18.36): I 0 η I 0 R rad R rad I Ω c. The definition of directivity is given in Eq. (18.50) and that of radiation intensity in Eq. (18.46): D(θ,φ) U(θ,φ) /4 4U(θ,φ) U(θ,φ) P av R I 0 η cos cosθ sr D(θ,φ) 4U(θ,φ) I 0 η cos cosθ + 1 cos cosθ For axiu directivity we note that the axiu value of the expression in brackets occurs at θ/ and equals. d half wavelength antenna is given. The axiu agnetic field intensity of the antenna in the far field is easured and found to be equal to 1 / (peak). ssuing free space and no losses, calculate the radiated power of the antenna. Radiation is at a 1 wavelength. Solution: Given the agnetic field intensity in the far field we can iediately obtain the electric field intensity and therefore the tie averaged power density. Integrating over a sphere of radius R gives the radiated power. Method : Fro Eq. (18.98): H φ ji cos 0 jβr e cosθ R The electric field intensity is therefore (Eq. (18.97)): φj1e jβr cos cosθ The power density is therefore: E θjηe jβr cos cosθ cos (/)cosθ Rη The radiated power is:

3 η cos (/)cosθ R dφ ηr cos (/)cosθ 1.18ηR R φ0 θ0 θ0 Notes: is the value of the integral taken fro Table.. The radiated power depends on where the agnetic field intensity was easured. Method : n alternative ethod is to note fro the expression for H that I 0 R 1 I 0 R Now, since we know that the radiation resistance of a half wavelength dipole is and using Eq. (18.36) we have: I 0 R rad (R) R 3. Three half wavelength dipoles are placed parallel to each other and are separated a distance h1. The three dipoles are fed with identical currents equal to (peak) at 1. GHz. Find: a. The total radiated power of the array. b. The directivity of the array. Solution: Use the expressions for an n eleent array with n3. a. The electric field intensity of a 3 eleent array of half wavelength dipoles ay be written directly fro Eqs. (18.13) and (18. 97): where in this case, E θ j R e j βr cos (/)cosθ e jψ sin(3ψ/) sin(ψ/) ψ βhcosφ (/λ)(4λ)cosφ 4cosφ where the fact that the wavelength equals 0.5 (λc/f / ) was used to write h4λ. Siilarly, for the agnetic field intensity we write: H φ ji 0 R e jβr cos (/)cosθ The tie averaged power density is therefore: The radiated power is: R cos (/)cosθ sin(3ψ/) 4 R sin(ψ/)

4 1 cos (/)cosθ sin(3ψ/) R dφ cos (/)cosθ sin(3ψ/) 4 φ0 θ0 R sin(ψ/) θ0 sin(ψ/) cos (/)cosθ sin(6cosφ) cos (/)cosθ sin(6cosφ) 40 θ0 sin(cosφ) θ0 sin(cosφ) b. The definition of directivity is given in Eq. (18.50) and that of radiation intensity in Eq. (18.46): D(θ,φ) 4 P av R D(θ,φ) U(θ,φ) /4 4U(θ,φ) U(θ,φ) P av R 4 cos (/)cosθ sin(6cosφ) 4 sin(cosφ) cos (/)cosθ sin(6cosφ) 40 θ0 sin(cosφ) sr θ0 cos (/)cosθ sin(6cosφ) sin(cosφ) cos (/)cosθ sin(6cosφ) sin(cosφ) 4. a. Calculate the ratio between the radiation resistance of a λ and a λ/ dipole, at any given frequency. b. Calculate the ratio between the axiu power density of a λ and a λ/ dipole. c. Based on the previous two responses which antenna is better overall?. ssue lossless antennas Solution: Calculate the radiated power for an arbitrary long antenna (Eq ) and evaluate it for a λ and a λ/ antenna. The ratio is then found. In (b), the sae relation is used. a. Fro Eq. (18.93): R rad η θ θ0 cos (L/λ)cosθ cos(l/λ) The integral is given in Table for Lλ and for Lλ/ as 4.37 and ith these: R rad (λ/) 1.18η, R rad(λ) 4.37η R rad (λ/) 1.18η, R rad (λ) R rad (λ/) 4.37η / 1.18η b. The tie averaged power density for an arbitrary long antenna is given in Eq. (18.89): cos (βl/)cosθ cos(βl/) P av 8 R

5 For the half wavelength dipole we have: cos (/)cosθ P av 8 R The axiu value occurs at θ/ and equals: For the λ dipole: P av ax 8 R P av cos cosθ 1 8 R The axiu value occurs when cos(cosθ) 1. This occurs at θ60. P av ax 8 R 1 1 sin60 8 R 3/ R P av (λ) ax P av (λ/) ax c. Based on the inforation in (a) and (b), the λ antenna is uch better. However, other aspect coe into play including rsadiation resistance, sidelobes and the like.

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. E = jωb. H = J + jωd. D = ρ (M3) B = 0 (M4) D = εe

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. E = jωb. H = J + jωd. D = ρ (M3) B = 0 (M4) D = εe ANTENNAS Vector and Scalar Potentials Maxwell's Equations E = jωb H = J + jωd D = ρ B = (M) (M) (M3) (M4) D = εe B= µh For a linear, homogeneous, isotropic medium µ and ε are contant. Since B =, there

More information

Linear Wire Antennas. EE-4382/ Antenna Engineering

Linear Wire Antennas. EE-4382/ Antenna Engineering EE-4382/5306 - Antenna Engineering Outline Introduction Infinitesimal Dipole Small Dipole Finite Length Dipole Half-Wave Dipole Ground Effect Constantine A. Balanis, Antenna Theory: Analysis and Design

More information

Linear Wire Antennas Dipoles and Monopoles

Linear Wire Antennas Dipoles and Monopoles inear Wire Antennas Dipoles and Monopoles The dipole and the monopole are arguably the two most widely used antennas across the UHF, VHF and lower-microwave bands. Arrays of dipoles are commonly used as

More information

Physics 41 Homework #2 Chapter 16. fa. Here v is the speed of the wave. 16. The speed of a wave on a massless string would be infinite!

Physics 41 Homework #2 Chapter 16. fa. Here v is the speed of the wave. 16. The speed of a wave on a massless string would be infinite! Physics 41 Hoewor # Chapter 1 Serway 7 th Conceptual: Q: 3,, 8, 11, 1, Probles P: 1, 3, 5, 9, 1, 5, 31, 35, 38, 4, 5, 57 Conceptual 3. (i) d=e, f, c, b, a (ii) Since, the saller the (the coefficient of

More information

Exam 3 Solutions. 1. Which of the following statements is true about the LR circuit shown?

Exam 3 Solutions. 1. Which of the following statements is true about the LR circuit shown? PHY49 Spring 5 Prof. Darin Acosta Prof. Paul Avery April 4, 5 PHY49, Spring 5 Exa Solutions. Which of the following stateents is true about the LR circuit shown? It is (): () Just after the switch is closed

More information

Electromagnetic Waves

Electromagnetic Waves Electroagnetic Waves Physics 4 Maxwell s Equations Maxwell s equations suarize the relationships between electric and agnetic fields. A ajor consequence of these equations is that an accelerating charge

More information

ME Machine Design I. FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Friday, May 8th, 2009

ME Machine Design I. FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Friday, May 8th, 2009 ME 5 - Machine Design I Spring Seester 009 Nae Lab. Div. FINAL EXAM. OPEN BOOK AND LOSED NOTES. Friday, May 8th, 009 Please use the blank paper for your solutions. Write on one side of the paper only.

More information

Linear Wire Antennas

Linear Wire Antennas Linear Wire Antennas Ranga Rodrigo August 4, 010 Lecture notes are fully based on Balanis?. Some diagrams and text are directly from the books. Contents 1 Infinitesimal Dipole 1 Small Dipole 7 3 Finite-Length

More information

Problem 8.18 For some types of glass, the index of refraction varies with wavelength. A prism made of a material with

Problem 8.18 For some types of glass, the index of refraction varies with wavelength. A prism made of a material with Problem 8.18 For some types of glass, the index of refraction varies with wavelength. A prism made of a material with n = 1.71 4 30 λ 0 (λ 0 in µm), where λ 0 is the wavelength in vacuum, was used to disperse

More information

Electromagnetics I Exam No. 3 December 1, 2003 Solution

Electromagnetics I Exam No. 3 December 1, 2003 Solution Electroagnetics Ea No. 3 Deceber 1, 2003 Solution Please read the ea carefull. Solve the folloing 4 probles. Each proble is 1/4 of the grade. To receive full credit, ou ust sho all ork. f cannot understand

More information

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1 PHYS12 Physics 1 FUNDAMENTALS Module 3 OSCILLATIONS & WAVES Text Physics by Hecht Chapter 1 OSCILLATIONS Sections: 1.5 1.6 Exaples: 1.6 1.7 1.8 1.9 CHECKLIST Haronic otion, periodic otion, siple haronic

More information

UNIVERSITY OF BOLTON. SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2018

UNIVERSITY OF BOLTON. SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2018 ENG018 SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING MODULE NO: EEE6002 Date: 17 January 2018 Time: 2.00 4.00 INSTRUCTIONS TO CANDIDATES: There are six questions.

More information

Chapter 28: Alternating Current

Chapter 28: Alternating Current hapter 8: Alternating urrent Phasors and Alternating urrents Alternating current (A current) urrent which varies sinusoidally in tie is called alternating current (A) as opposed to direct current (D).

More information

Problem Score 1 /25 2 /16 3 /20 4 /24 5 /15 Total /100

Problem Score 1 /25 2 /16 3 /20 4 /24 5 /15 Total /100 PHYS 4 Exa 3 Noveber 8, 6 Tie o Discussion Section: Nae: Instructions Clear your desk o everything but pens/pencils and erasers. Take o all caps, hats, visors, etc., and place the on the loor under your

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization 3 Haronic oscillator revisited: Dirac s approach and introduction to Second Quantization. Dirac cae up with a ore elegant way to solve the haronic oscillator proble. We will now study this approach. The

More information

A GENERAL FORM FOR THE ELECTRIC FIELD LINES EQUATION CONCERNING AN AXIALLY SYMMETRIC CONTINUOUS CHARGE DISTRIBUTION

A GENERAL FORM FOR THE ELECTRIC FIELD LINES EQUATION CONCERNING AN AXIALLY SYMMETRIC CONTINUOUS CHARGE DISTRIBUTION A GENEAL FOM FO THE ELECTIC FIELD LINES EQUATION CONCENING AN AXIALLY SYMMETIC CONTINUOUS CHAGE DISTIBUTION BY MUGU B. ăuţ Abstract..By using an unexpected approach it results a general for for the electric

More information

Chapter 10 Objectives

Chapter 10 Objectives Chapter 10 Engr8 Circuit Analysis Dr Curtis Nelson Chapter 10 Objectives Understand the following AC power concepts: Instantaneous power; Average power; Root Mean Squared (RMS) value; Reactive power; Coplex

More information

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get:

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get: Equal Area Criterion.0 Developent of equal area criterion As in previous notes, all powers are in per-unit. I want to show you the equal area criterion a little differently than the book does it. Let s

More information

3.4-7 First check to see if the loop is indeed electromagnetically small. Ie sinθ ˆφ H* = 2. ˆrr 2 sinθ dθ dφ =

3.4-7 First check to see if the loop is indeed electromagnetically small. Ie sinθ ˆφ H* = 2. ˆrr 2 sinθ dθ dφ = ECE 54/4 Spring 17 Assignment.4-7 First check to see if the loop is indeed electromagnetically small f 1 MHz c 1 8 m/s b.5 m λ = c f m b m Yup. (a) You are welcome to use equation (-5), but I don t like

More information

1-2 Vector and scalar potentials

1-2 Vector and scalar potentials 1-2 Vector and scalar potentials z a f a r q a q J y x f Maxwell's equations μ (1) ε (2) ρ (3) (4) - Derivation of E and H field by source current J Approach 1 : take (1) and plug into (2) μ ε μ μ (5)

More information

Electromagnetic fields modeling of power line communication (PLC)

Electromagnetic fields modeling of power line communication (PLC) Electroagnetic fields odeling of power line counication (PLC) Wei Weiqi UROP 3 School of Electrical and Electronic Engineering Nanyang echnological University E-ail: 4794486@ntu.edu.sg Keyword: power line

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.it.edu 8.012 Physics I: Classical Mechanics Fall 2008 For inforation about citing these aterials or our Ters of Use, isit: http://ocw.it.edu/ters. MASSACHUSETTS INSTITUTE

More information

University of Illinois at Chicago Department of Physics

University of Illinois at Chicago Department of Physics University of Illinois at Chicago Department of Physics Electromagnetism Qualifying Examination January 4, 2017 9.00 am - 12.00 pm Full credit can be achieved from completely correct answers to 4 questions.

More information

In this chapter, we consider several graph-theoretic and probabilistic models

In this chapter, we consider several graph-theoretic and probabilistic models THREE ONE GRAPH-THEORETIC AND STATISTICAL MODELS 3.1 INTRODUCTION In this chapter, we consider several graph-theoretic and probabilistic odels for a social network, which we do under different assuptions

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 16

ECE Spring Prof. David R. Jackson ECE Dept. Notes 16 ECE 6345 Spring 5 Prof. David R. Jackson ECE Dept. Notes 6 Overview In this set of notes we calculate the power radiated into space by the circular patch. This will lead to Q sp of the circular patch.

More information

yields m 1 m 2 q 2 = (m 1 + m 2 )(m 1 q m 2 q 2 2 ). Thus the total kinetic energy is T 1 +T 2 = 1 m 1m 2

yields m 1 m 2 q 2 = (m 1 + m 2 )(m 1 q m 2 q 2 2 ). Thus the total kinetic energy is T 1 +T 2 = 1 m 1m 2 1 I iediately have 1 q 1 = f( q )q/ q and q = f( q )q/ q. Multiplying these equations by and 1 (respectively) and then subtracting, I get 1 ( q 1 q ) = ( + 1 )f( q )q/ q. The desired equation follows after

More information

Quantum Chemistry Exam 2 Take-home Solutions

Quantum Chemistry Exam 2 Take-home Solutions Cheistry 60 Fall 07 Dr Jean M Standard Nae KEY Quantu Cheistry Exa Take-hoe Solutions 5) (0 points) In this proble, the nonlinear variation ethod will be used to deterine an approxiate solution for the

More information

Chapter 16 Solutions

Chapter 16 Solutions Chapter 16 Solutions 16.1 Replace x by x vt = x 4.5t to get y = 6 [(x 4.5t) + 3] 16. y (c) y (c) y (c) 6 4 4 4 t = s t = 1 s t = 1.5 s 0 6 10 14 x 0 6 10 14 x 0 6 10 14 x y (c) y (c) 4 t =.5 s 4 t = 3

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

ELG3311: Assignment 3

ELG3311: Assignment 3 LG33: ssignent 3 roble 6-: The Y-connected synchronous otor whose naeplate is shown in Figure 6- has a perunit synchronous reactance of 0.9 and a per-unit resistance of 0.0. (a What is the rated input

More information

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Proc. of the IEEE/OES Seventh Working Conference on Current Measureent Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Belinda Lipa Codar Ocean Sensors 15 La Sandra Way, Portola Valley, CA 98 blipa@pogo.co

More information

Basics of Electromagnetics Maxwell s Equations (Part - I)

Basics of Electromagnetics Maxwell s Equations (Part - I) Basics of Electromagnetics Maxwell s Equations (Part - I) Soln. 1. C A. dl = C. d S [GATE 1994: 1 Mark] A. dl = A. da using Stoke s Theorem = S A. ds 2. The electric field strength at distant point, P,

More information

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions 2015 FRQ #1 Free Response Question #1 - AP Physics 1-2015 Exa Solutions (a) First off, we know both blocks have a force of gravity acting downward on the. et s label the F & F. We also know there is a

More information

The most fundamental antenna is the incremental dipole as pictured in Figure 1. a Z. I o δh. a X. Figure 1. Incremental dipole

The most fundamental antenna is the incremental dipole as pictured in Figure 1. a Z. I o δh. a X. Figure 1. Incremental dipole . Chapter 13 Antennas Features Used crossp( ), dotp( ), real( ), conj( ), Í, NewProb,, Polar graphs Setup 1 NewFold ant setmode("complex Format", "Polar") This chapter describes how to perform basic antenna

More information

Particle dynamics Physics 1A, UNSW

Particle dynamics Physics 1A, UNSW 1 Particle dynaics Physics 1A, UNSW Newton's laws: S & J: Ch 5.1 5.9, 6.1 force, ass, acceleration also weight Physclips Chapter 5 Friction - coefficients of friction Physclips Chapter 6 Hooke's Law Dynaics

More information

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March EN4: Dynaics and ibrations Midter Exaination Tuesday Marc 4 14 Scool of Engineering Brown University NAME: General Instructions No collaboration of any kind is peritted on tis exaination. You ay bring

More information

While the poor efficiency of the small antennas discussed in the last unit limits their

While the poor efficiency of the small antennas discussed in the last unit limits their Unit 3 Linear Wire Antennas and Antenna Arrays While the poor efficiency of the small antennas discussed in the last unit limits their practicality, the ideas encountered in analyzing them are very useful

More information

III. Spherical Waves and Radiation

III. Spherical Waves and Radiation III. Spherical Waves and Radiation Antennas radiate spherical waves into free space Receiving antennas, reciprocity, path gain and path loss Noise as a limit to reception Ray model for antennas above a

More information

2.003 Engineering Dynamics Problem Set 2 Solutions

2.003 Engineering Dynamics Problem Set 2 Solutions .003 Engineering Dynaics Proble Set Solutions This proble set is priarily eant to give the student practice in describing otion. This is the subject of kineatics. It is strongly recoended that you study

More information

Name: Partner(s): Date: Angular Momentum

Name: Partner(s): Date: Angular Momentum Nae: Partner(s): Date: Angular Moentu 1. Purpose: In this lab, you will use the principle of conservation of angular oentu to easure the oent of inertia of various objects. Additionally, you develop a

More information

Radiation from transmission lines PART I: free space transmission lines

Radiation from transmission lines PART I: free space transmission lines 1 Radiation from transmission lines PART I: free space transmission lines Reuven Ianconescu, Vladimir Vulfin Shenkar College of Engineering and Design, Ramat Gan, Israel, riancon@gmail.com Ben-Gurion University

More information

sinb2ωtg to write this as

sinb2ωtg to write this as Chapter 31 13. (a) The charge (as a function of tie) is given by q= Qsinωt, where Q is the axiu charge on the capacitor an ω is the angular frequency of oscillation. A sine function was chosen so that

More information

16.30/31 September 24, 2010 Prof. J. P. How and Prof. E. Frazzoli Due: October 15, 2010 T.A. B. Luders /31 Lab #1

16.30/31 September 24, 2010 Prof. J. P. How and Prof. E. Frazzoli Due: October 15, 2010 T.A. B. Luders /31 Lab #1 16.30/31 Septeber 24, 2010 Prof. J. P. How and Prof. E. Frazzoli Due: October 15, 2010 T.A. B. Luders 16.30/31 Lab #1 1 Introduction The Quanser helicopter is a echanical device that eulates the flight

More information

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations P Physics Multiple Choice Practice Oscillations. ass, attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is.

More information

1 Identical Parallel Machines

1 Identical Parallel Machines FB3: Matheatik/Inforatik Dr. Syaantak Das Winter 2017/18 Optiizing under Uncertainty Lecture Notes 3: Scheduling to Miniize Makespan In any standard scheduling proble, we are given a set of jobs J = {j

More information

Angular Momentum Properties

Angular Momentum Properties Cheistry 460 Fall 017 Dr. Jean M. Standard October 30, 017 Angular Moentu Properties Classical Definition of Angular Moentu In classical echanics, the angular oentu vector L is defined as L = r p, (1)

More information

A body of unknown mass is attached to an ideal spring with force constant 123 N/m. It is found to vibrate with a frequency of

A body of unknown mass is attached to an ideal spring with force constant 123 N/m. It is found to vibrate with a frequency of Chapter 14 [ Edit ] Overview Suary View Diagnostics View Print View with Answers Chapter 14 Due: 11:59p on Sunday, Noveber 27, 2016 To understand how points are awarded, read the Grading Policy for this

More information

CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS

CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 21 MAGNETIC FORCES AND MAGNETIC FIELDS PROBLEMS 5. SSM REASONING According to Equation 21.1, the agnitude of the agnetic force on a oving charge is F q 0 vb sinθ. Since the agnetic field points

More information

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 15.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

More information

Physics 218 Exam 3 Fall 2010, Sections

Physics 218 Exam 3 Fall 2010, Sections Physics 28 Exa 3 Fall 200, Sections 52-524 Do not fill out the inforation below until instructed to do so! Nae Signature Student ID E-ail Section # : SOUTIONS ules of the exa:. You have the full class

More information

THE ROCKET EXPERIMENT 1. «Homogenous» gravitational field

THE ROCKET EXPERIMENT 1. «Homogenous» gravitational field THE OCKET EXPEIENT. «Hoogenous» gravitational field Let s assue, fig., that we have a body of ass Μ and radius. fig. As it is known, the gravitational field of ass Μ (both in ters of geoetry and dynaics)

More information

Supplementary to Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data

Supplementary to Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data Suppleentary to Learning Discriinative Bayesian Networks fro High-diensional Continuous Neuroiaging Data Luping Zhou, Lei Wang, Lingqiao Liu, Philip Ogunbona, and Dinggang Shen Proposition. Given a sparse

More information

The Distribution of the Covariance Matrix for a Subset of Elliptical Distributions with Extension to Two Kurtosis Parameters

The Distribution of the Covariance Matrix for a Subset of Elliptical Distributions with Extension to Two Kurtosis Parameters journal of ultivariate analysis 58, 96106 (1996) article no. 0041 The Distribution of the Covariance Matrix for a Subset of Elliptical Distributions with Extension to Two Kurtosis Paraeters H. S. Steyn

More information

List Scheduling and LPT Oliver Braun (09/05/2017)

List Scheduling and LPT Oliver Braun (09/05/2017) List Scheduling and LPT Oliver Braun (09/05/207) We investigate the classical scheduling proble P ax where a set of n independent jobs has to be processed on 2 parallel and identical processors (achines)

More information

Part A Here, the velocity is at an angle of 45 degrees to the x-axis toward the z-axis. The velocity is then given in component form as.

Part A Here, the velocity is at an angle of 45 degrees to the x-axis toward the z-axis. The velocity is then given in component form as. Electrodynaics Chapter Andrew Robertson 32.30 Here we are given a proton oving in a agnetic eld ~ B 0:5^{ T at a speed of v :0 0 7 /s in the directions given in the gures. Part A Here, the velocity is

More information

Projectile Motion with Air Resistance (Numerical Modeling, Euler s Method)

Projectile Motion with Air Resistance (Numerical Modeling, Euler s Method) Projectile Motion with Air Resistance (Nuerical Modeling, Euler s Method) Theory Euler s ethod is a siple way to approxiate the solution of ordinary differential equations (ode s) nuerically. Specifically,

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

Question 1. Question 3. Question 4. Graduate Analysis I Exercise 4

Question 1. Question 3. Question 4. Graduate Analysis I Exercise 4 Graduate Analysis I Exercise 4 Question 1 If f is easurable and λ is any real nuber, f + λ and λf are easurable. Proof. Since {f > a λ} is easurable, {f + λ > a} = {f > a λ} is easurable, then f + λ is

More information

Chem/Biochem 471 Exam 3 12/18/08 Page 1 of 7 Name:

Chem/Biochem 471 Exam 3 12/18/08 Page 1 of 7 Name: Che/Bioche 47 Exa /8/08 Pae of 7 Please leave the exa paes stapled toether. The forulas are on a separate sheet. This exa has 5 questions. You ust answer at least 4 of the questions. You ay answer ore

More information

The Failure of Coaxial TEM Cells ASTM Standards Methods In H.F. Range

The Failure of Coaxial TEM Cells ASTM Standards Methods In H.F. Range The Failure of Coaxial TEM Cells ASTM Standards Methods In H.F. Range Mihai Badic HV/EMC Laboratory, Research Institute for Electrical Engineering - ICPE Bucharest, ROMAN badic@icpe.ro Mihai-Jo Marinescu

More information

Effects of an Inhomogeneous Magnetic Field (E =0)

Effects of an Inhomogeneous Magnetic Field (E =0) Effects of an Inhoogeneous Magnetic Field (E =0 For soe purposes the otion of the guiding centers can be taken as a good approxiation of that of the particles. ut it ust be recognized that during the particle

More information

Magnetostatics III Magnetic Vector Potential (Griffiths Chapter 5: Section 4)

Magnetostatics III Magnetic Vector Potential (Griffiths Chapter 5: Section 4) Dr. Alain Brizard Electromagnetic Theory I PY ) Magnetostatics III Magnetic Vector Potential Griffiths Chapter 5: Section ) Vector Potential The magnetic field B was written previously as Br) = Ar), 1)

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee227c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee227c@berkeley.edu October

More information

A Study of Electromagnetic Wave Propagation. in the Foam Core Sandwich Structures

A Study of Electromagnetic Wave Propagation. in the Foam Core Sandwich Structures ID-83 A Study of Electroagnetic Wave Propagation in the Foa Core Sandwich Structures H. J. Chun and H. S. Shin School of Electrical and Mechanical Engineering, Yonsei University 34, Shinchon-dong, Seodaeun-gu,

More information

FOUNDATION STUDIES EXAMINATIONS January 2016

FOUNDATION STUDIES EXAMINATIONS January 2016 1 FOUNDATION STUDIES EXAMINATIONS January 2016 PHYSICS Seester 2 Exa July Fast Track Tie allowed 2 hours for writing 10 inutes for reading This paper consists of 4 questions printed on 11 pages. PLEASE

More information

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1. Problem 4.1 A cube m on a side is located in the first octant in a Cartesian coordinate system, with one of its corners at the origin. Find the total charge contained in the cube if the charge density

More information

Lecture 38: Equations of Rigid-Body Motion

Lecture 38: Equations of Rigid-Body Motion Lecture 38: Equations of Rigid-Body Motion It s going to be easiest to find the equations of motion for the object in the body frame i.e., the frame where the axes are principal axes In general, we can

More information

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area Proceedings of the 006 WSEAS/IASME International Conference on Heat and Mass Transfer, Miai, Florida, USA, January 18-0, 006 (pp13-18) Spine Fin Efficiency A Three Sided Pyraidal Fin of Equilateral Triangular

More information

P (t) = P (t = 0) + F t Conclusion: If we wait long enough, the velocity of an electron will diverge, which is obviously impossible and wrong.

P (t) = P (t = 0) + F t Conclusion: If we wait long enough, the velocity of an electron will diverge, which is obviously impossible and wrong. 4 Phys520.nb 2 Drude theory ~ Chapter in textbook 2.. The relaxation tie approxiation Here we treat electrons as a free ideal gas (classical) 2... Totally ignore interactions/scatterings Under a static

More information

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along (40) Gravitational Systes Two heavy spherical (radius 0.05) objects are located at fixed positions along 2M 2M 0 an axis in space. The first ass is centered at r = 0 and has a ass of 2M. The second ass

More information

Physics 4B. Chapter 31: Questions: 2, 8, 12 Exercises & Problems: 2, 23, 24, 32, 41, 44, 48, 60, 72, 83. n n f

Physics 4B. Chapter 31: Questions: 2, 8, 12 Exercises & Problems: 2, 23, 24, 32, 41, 44, 48, 60, 72, 83. n n f Physics 4B Solutions to hapter 1 HW hapter 1: Questions:, 8, 1 Exercises & Probles:,, 4,, 41, 44, 48, 60, 7, 8 Question 1- (a) less; (b) greater Question 1-8 (a) 1 an 4; (b) an Question 1-1 (a) lea; (b)

More information

which together show that the Lax-Milgram lemma can be applied. (c) We have the basic Galerkin orthogonality

which together show that the Lax-Milgram lemma can be applied. (c) We have the basic Galerkin orthogonality UPPSALA UNIVERSITY Departent of Inforation Technology Division of Scientific Coputing Solutions to exa in Finite eleent ethods II 14-6-5 Stefan Engblo, Daniel Elfverson Question 1 Note: a inus sign in

More information

3. In the figure below, the coefficient of friction between the center mass and the surface is

3. In the figure below, the coefficient of friction between the center mass and the surface is Physics 04A Exa October 9, 05 Short-answer probles: Do any seven probles in your exa book. Start each proble on a new page and and clearly indicate the proble nuber for each. If you attept ore than seven

More information

Particle Kinetics Homework

Particle Kinetics Homework Chapter 4: article Kinetics Hoework Chapter 4 article Kinetics Hoework Freefor c 2018 4-1 Chapter 4: article Kinetics Hoework 4-2 Freefor c 2018 Chapter 4: article Kinetics Hoework Hoework H.4. Given:

More information

Physics 139B Solutions to Homework Set 3 Fall 2009

Physics 139B Solutions to Homework Set 3 Fall 2009 Physics 139B Solutions to Hoework Set 3 Fall 009 1. Consider a particle of ass attached to a rigid assless rod of fixed length R whose other end is fixed at the origin. The rod is free to rotate about

More information

Physics 215 Winter The Density Matrix

Physics 215 Winter The Density Matrix Physics 215 Winter 2018 The Density Matrix The quantu space of states is a Hilbert space H. Any state vector ψ H is a pure state. Since any linear cobination of eleents of H are also an eleent of H, it

More information

Aperture Antennas 1 Introduction

Aperture Antennas 1 Introduction 1 Introduction Very often, we have antennas in aperture forms, for example, the antennas shown below: Pyramidal horn antenna Conical horn antenna 1 Paraboloidal antenna Slot antenna Analysis Method for.1

More information

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-A Fall 014 Waves - I Lectures 4-5 Chapter 16 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will

More information

MA304 Differential Geometry

MA304 Differential Geometry MA304 Differential Geoetry Hoework 4 solutions Spring 018 6% of the final ark 1. The paraeterised curve αt = t cosh t for t R is called the catenary. Find the curvature of αt. Solution. Fro hoework question

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell 9.2 The Blackbody as the Ideal Radiator A material that absorbs 100 percent of the energy incident on it from all directions

More information

Physics 41 HW Set 1 Chapter 15 Serway 7 th Edition

Physics 41 HW Set 1 Chapter 15 Serway 7 th Edition Physics HW Set Chapter 5 Serway 7 th Edition Conceptual Questions:, 3, 5,, 6, 9 Q53 You can take φ = π, or equally well, φ = π At t= 0, the particle is at its turning point on the negative side of equilibriu,

More information

ROTATIONAL MOTION FROM TRANSLATIONAL MOTION

ROTATIONAL MOTION FROM TRANSLATIONAL MOTION ROTATIONAL MOTION FROM TRANSLATIONAL MOTION Velocity Acceleration 1-D otion 3-D otion Linear oentu TO We have shown that, the translational otion of a acroscopic object is equivalent to the translational

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 13

ECE Spring Prof. David R. Jackson ECE Dept. Notes 13 ECE 635 Spring 15 Prof. David R. Jackson ECE Dept. Notes 13 1 Overview In this set of notes we perform the algebra necessary to evaluate the p factor in closed form (assuming a thin substrate) and to simplify

More information

Tactics Box 2.1 Interpreting Position-versus-Time Graphs

Tactics Box 2.1 Interpreting Position-versus-Time Graphs 1D kineatic Retake Assignent Due: 4:32p on Friday, October 31, 2014 You will receive no credit for ites you coplete after the assignent is due. Grading Policy Tactics Box 2.1 Interpreting Position-versus-Tie

More information

Polygonal Designs: Existence and Construction

Polygonal Designs: Existence and Construction Polygonal Designs: Existence and Construction John Hegean Departent of Matheatics, Stanford University, Stanford, CA 9405 Jeff Langford Departent of Matheatics, Drake University, Des Moines, IA 5011 G

More information

First of all, because the base kets evolve according to the "wrong sign" Schrödinger equation (see pp ),

First of all, because the base kets evolve according to the wrong sign Schrödinger equation (see pp ), HW7.nb HW #7. Free particle path integral a) Propagator To siplify the notation, we write t t t, x x x and work in D. Since x i, p j i i j, we can just construct the 3D solution. First of all, because

More information

Some Perspective. Forces and Newton s Laws

Some Perspective. Forces and Newton s Laws Soe Perspective The language of Kineatics provides us with an efficient ethod for describing the otion of aterial objects, and we ll continue to ake refineents to it as we introduce additional types of

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search Quantu algoriths (CO 781, Winter 2008) Prof Andrew Childs, University of Waterloo LECTURE 15: Unstructured search and spatial search ow we begin to discuss applications of quantu walks to search algoriths

More information

Lecture 38: Equations of Rigid-Body Motion

Lecture 38: Equations of Rigid-Body Motion Lecture 38: Equations of Rigid-Body Motion It s going to be easiest to find the equations of motion for the object in the body frame i.e., the frame where the axes are principal axes In general, we can

More information

Note that an that the liit li! k+? k li P!;! h (k)? ((k? )) li! i i+? i + U( i ) is just a Rieann su representation of the continuous integral h h j +

Note that an that the liit li! k+? k li P!;! h (k)? ((k? )) li! i i+? i + U( i ) is just a Rieann su representation of the continuous integral h h j + G5.65: Statistical Mechanics Notes for Lecture 5 I. THE FUNCTIONAL INTEGRAL REPRESENTATION OF THE PATH INTEGRAL A. The continuous liit In taking the liit P!, it will prove useful to ene a paraeter h P

More information

Role of rf electric and magnetic fields in heating of micro-protrusions in accelerating structures. Gregory S. Nusinovich and Thomas M. Antonsen, Jr.

Role of rf electric and magnetic fields in heating of micro-protrusions in accelerating structures. Gregory S. Nusinovich and Thomas M. Antonsen, Jr. Role of rf electric and agnetic fields in heating of icro-protrusions in accelerating structures. Gregory S. Nusinovich and Thoas M. Antonsen, Jr. Abstract It is known that high-gradient operation in etallic

More information

which proves the motion is simple harmonic. Now A = a 2 + b 2 = =

which proves the motion is simple harmonic. Now A = a 2 + b 2 = = Worked out Exaples. The potential energy function for the force between two atos in a diatoic olecules can be expressed as follows: a U(x) = b x / x6 where a and b are positive constants and x is the distance

More information

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11 MATH35 - QUANTUM MECHANICS - SOLUTION SHEET. The Hamiltonian for a particle of mass m moving in three dimensions under the influence of a three-dimensional harmonic oscillator potential is Ĥ = h m + mω

More information

Physics 202H - Introductory Quantum Physics I Homework #12 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/12/13

Physics 202H - Introductory Quantum Physics I Homework #12 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/12/13 Physics 0H - Introctory Quantu Physics I Hoework # - Solutions Fall 004 Due 5:0 PM, Monday 004//3 [70 points total] Journal questions. Briefly share your thoughts on the following questions: What aspects

More information

Written Examination. Antennas and Propagation (AA ) June 22, 2018.

Written Examination. Antennas and Propagation (AA ) June 22, 2018. Written Examination Antennas and Propagation (AA. 7-8 June, 8. Problem ( points A circular loop of radius a = cm is positioned at a height h over a perfectly electric conductive ground plane as in figure,

More information

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness A Note on Scheduling Tall/Sall Multiprocessor Tasks with Unit Processing Tie to Miniize Maxiu Tardiness Philippe Baptiste and Baruch Schieber IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights,

More information

a a a a a a a m a b a b

a a a a a a a m a b a b Algebra / Trig Final Exa Study Guide (Fall Seester) Moncada/Dunphy Inforation About the Final Exa The final exa is cuulative, covering Appendix A (A.1-A.5) and Chapter 1. All probles will be ultiple choice

More information

Chaotic Coupled Map Lattices

Chaotic Coupled Map Lattices Chaotic Coupled Map Lattices Author: Dustin Keys Advisors: Dr. Robert Indik, Dr. Kevin Lin 1 Introduction When a syste of chaotic aps is coupled in a way that allows the to share inforation about each

More information

Session : Electrodynamic Tethers

Session : Electrodynamic Tethers Session : Eectrodynaic Tethers Eectrodynaic tethers are ong, thin conductive wires depoyed in space that can be used to generate power by reoving kinetic energy fro their orbita otion, or to produce thrust

More information