Magnetostatics III Magnetic Vector Potential (Griffiths Chapter 5: Section 4)

Size: px
Start display at page:

Download "Magnetostatics III Magnetic Vector Potential (Griffiths Chapter 5: Section 4)"

Transcription

1 Dr. Alain Brizard Electromagnetic Theory I PY ) Magnetostatics III Magnetic Vector Potential Griffiths Chapter 5: Section ) Vector Potential The magnetic field B was written previously as Br) = Ar), 1) where the magnetic vector potential is defined in terms of the current density Jr) as Ar) = µ From this definition, Ampère s Law becomes Ar) = µ Jr), V Jr ) dτ r r. ) whose solution is given by Eq. ). Note that, like the magnetic field B, the divergence of the magnetic vector potential vanishes: A =. Example I: Current Loop As a first application of the vector-potential formalism, we consider the case of the vector potential due to a single-turn current loop of radius R carrying current I see Figure below). The current density in this case is expressed in terms of the source point r = R cos ϕ x + sin ϕ ŷ) 1

2 as Jr ) = I R δcos θ ) δr R) sin ϕ x + cos ϕ ŷ), and, by azimuthal symmetry, the vector potential has to be independent of the azimuthal angle ϕ so that we may place the field point on the x, z)-plane: r = r sin θ x + cos θ ẑ). Hence, we find and Eq. ) becomes r r = r + R rr sin θ cos ϕ, Ar, θ) = µ IR π sin ϕ x + cos ϕ ŷ) dϕ r + R rr sin θ cos ϕ. Since the integration is symmetric about ϕ =, only the y-component of the vector potential A remains, which represents the component in the ϕ-direction, i.e., Ar, θ) = A ϕ r, θ) ϕ, where A ϕ r, θ) = µ IR π cos ϕ dϕ r + R rr sin θ cos ϕ. ) Although we are not interested in evaluating this integral explicitly, we can look at two interesting limits: r R and r R. In both limits with r < /r > = R/r or r/r), we use the expansion r + R rr sin θ cos ϕ ) 1/ 1 = 1 1 r > r< r> + r ) < sin θ cos ϕ +, r > to find A ϕ r, θ) = µ IR π dϕ cos ϕ 1 1 r< + r ) < sin θ cos ϕ + r > r> r > µ ) I Rr< sin θ. ) r > The vector potential in the far region r R) is, therefore, given by the approximate expression A ϕ r, θ) µ IπR sin θ, r for r R), 5) while in the near region r R), we find A ϕ r, θ) µ I r R ) sin θ, for r R). 6)

3 In both cases, we easily check that A =, since A ϕ is independent of the azimuthal angle ϕ. We now obtain approximate expressions for the magnetic field from the vector potential A = A ϕ ϕ: r θ B = r sin θ θ sin θa ϕ) r r ra ϕ). In the far region, for example, the magnetic field is B µ m cos θ r + sin θ θ ) = µ [ m r) r m r r ], 7) where m = I a =IπR ) ẑ denotes the magnetic dipole moment here, the direction of the area vector a obeys the right-hand rule). Example II: Spinning Charged Sphere Next, we consider the case of a spinning charged sphere of radius R and carrying a uniform surface charge density σ spinning with constant angular velocity ω. To set up the problem, we assume that the field point is on the z-axis: r = r ẑ and that the rotation axis is on the x, z)-plane and makes an angle ψ with respect to the z-axis: ω = ω sin ψ x+cos ψ ẑ) see Figure below). An arbitrary point r on the surface of the sphere is moving with tangential velocity v = ω r = ωr[ sin ψ sin θ sin ϕ ẑ cos θ ŷ) + cos ψ sin θ cos ϕ ŷ sin ϕ x) ], and, therefore, the surface current density is K = σ v. With this surface current density and r r = r + R rr cos θ, the vector potential is A = µ π π R sin θ dθ σ vθ,ϕ ) dϕ r + R rr cos θ = ŷ [ µ σω R sin ψ π sin θ cos θ dθ ]. r + R rr cos θ

4 Note that the vector potential is in the direction of ω r = ωr sin ψ ŷ and that the integral can be written as π sin θ cos θ dθ = 1 1 r + R rr cos θ rr 1 udu η + η 1 u = rrη ) 1/, where η = r > /r <. Hence, the vector potential inside and outside the sphere is A = µ σrω r) 1 inside sphere) R /r outside sphere) as viewed in the frame in which the field point is on the z-axis and the angular velocity ω is in the x, z)-plane. In the frame in which ω is directed along the z-axis and the field position is arbitrary, on the other hand, we find ω r = ωrsin θ ϕ and, thus, the vector potential A = A ϕ r, θ) ϕ has a single azimuthal component given by A ϕ r, θ) = µ σω R r/r) sin θ inside sphere) R/r) sin θ outside sphere) The magnetic field in this case is expressed in terms of the vector potential as r θ B = r sin θ θ sin θa ϕ) r r ra ϕ), and, thus, the magnetic field inside the spinning charged sphere is B in = µ σrω, i.e., it is constant. The magnetic field outside the spinning charged sphere, on the other hand, is B out = µ m cos θ r + sin θ θ ), r where the maggnitude of the magnetic dipole moment for the spinning charged sphere is m = σ ωr R. Magnetostatic Boundary Conditions From the divergenceless condition B = for the magnetic field, we find that the perpendicular component of the magnetic field is continuous across a surface carrying current density K, i.e., n B + B ) =,

5 where n is the unit vector perpendicular to the surface with n K = ). Ampère s Law applied to an infinitesimally thin volume enclosing the surface, on the other hand, implies that the parallel components of the magnetic field and discontinuous across the surface: Combining these two results, we find n B + B ) = µ K. B + B = µ K n). The vector potential, on the other hand, satisfies the boundary conditions A + = A and A + n A n = µ K. 5

Chapter 5. Magnetostatics

Chapter 5. Magnetostatics Chapter 5. Magnetostatics 5.4 Magnetic Vector Potential 5.1.1 The Vector Potential In electrostatics, E Scalar potential (V) In magnetostatics, B E B V A Vector potential (A) (Note) The name is potential,

More information

Linear and Nonlinear Magnetic Media (Griffiths Chapter 6: Sections 3-4) Auxiliary Field H We write the total current density flowing through matter as

Linear and Nonlinear Magnetic Media (Griffiths Chapter 6: Sections 3-4) Auxiliary Field H We write the total current density flowing through matter as Dr. Alain Brizard Electromagnetic Theory I (PY 02) Linear and Nonlinear Magnetic Media (Griffiths Chapter 6: Sections -4) Auxiliary Field H We write the total current density flowing through matter as

More information

Electromagnetism Answers to Problem Set 9 Spring 2006

Electromagnetism Answers to Problem Set 9 Spring 2006 Electromagnetism 70006 Answers to Problem et 9 pring 006. Jackson Prob. 5.: Reformulate the Biot-avart law in terms of the solid angle subtended at the point of observation by the current-carrying circuit.

More information

Jackson 6.4 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 6.4 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 6.4 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: A uniformly magnetized and conducting sphere of radius R and total magnetic moment m = 4πMR 3

More information

Electromagnetism: Worked Examples. University of Oxford Second Year, Part A2

Electromagnetism: Worked Examples. University of Oxford Second Year, Part A2 Electromagnetism: Worked Examples University of Oxford Second Year, Part A2 Caroline Terquem Department of Physics caroline.terquem@physics.ox.ac.uk Michaelmas Term 2017 2 Contents 1 Potentials 5 1.1 Potential

More information

Electromagnetic Theorems

Electromagnetic Theorems Electromagnetic Theorems Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Electromagnetic Theorems Outline Outline Duality The Main Idea Electric Sources

More information

Homework Assignment 4 Solution Set

Homework Assignment 4 Solution Set Homework Assignment 4 Solution Set PHYCS 442 7 February, 24 Problem (Griffiths 2.37 If the plates are sufficiently large the field near them does not depend on d. The field between the plates is zero (the

More information

Lecture 12 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell

Lecture 12 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell Lecture 12 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell 1. Review of Magnetostatics in Magnetic Materials - Currents give rise to curling magnetic fields:

More information

Electrodynamics Exam Solutions

Electrodynamics Exam Solutions Electrodynamics Exam Solutions Name: FS 215 Prof. C. Anastasiou Student number: Exercise 1 2 3 4 Total Max. points 15 15 15 15 6 Points Visum 1 Visum 2 The exam lasts 18 minutes. Start every new exercise

More information

University of Illinois at Chicago Department of Physics

University of Illinois at Chicago Department of Physics University of Illinois at Chicago Department of Physics Electromagnetism Qualifying Examination January 4, 2017 9.00 am - 12.00 pm Full credit can be achieved from completely correct answers to 4 questions.

More information

Vector Potential for the Magnetic Field

Vector Potential for the Magnetic Field Vector Potential for the Magnetic Field Let me start with two two theorems of Vector Calculus: Theorem 1: If a vector field has zero curl everywhere in space, then that field is a gradient of some scalar

More information

Coordinates 2D and 3D Gauss & Stokes Theorems

Coordinates 2D and 3D Gauss & Stokes Theorems Coordinates 2 and 3 Gauss & Stokes Theorems Yi-Zen Chu 1 2 imensions In 2 dimensions, we may use Cartesian coordinates r = (x, y) and the associated infinitesimal area We may also employ polar coordinates

More information

Solutions to Laplace s Equations- II

Solutions to Laplace s Equations- II Solutions to Laplace s Equations- II Lecture 15: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Laplace s Equation in Spherical Coordinates : In spherical coordinates

More information

Magnetostatics. Lecture 23: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Magnetostatics. Lecture 23: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Magnetostatics Lecture 23: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Magnetostatics Up until now, we have been discussing electrostatics, which deals with physics

More information

Phys 4322 Final Exam - Solution May 12, 2015

Phys 4322 Final Exam - Solution May 12, 2015 Phys 4322 Final Exam - Solution May 12, 2015 You may NOT use any book or notes other than that supplied with this test. You will have 3 hours to finish. DO YOUR OWN WORK. Express your answers clearly and

More information

Solution Set Eight. 1 Problem #1: Toroidal Electromagnet with Gap Problem #4: Self-Inductance of a Long Solenoid. 9

Solution Set Eight. 1 Problem #1: Toroidal Electromagnet with Gap Problem #4: Self-Inductance of a Long Solenoid. 9 : Solution Set Eight Northwestern University, Electrodynamics I Wednesday, March 9, 6 Contents Problem #: Toroidal Electromagnet with Gap. Problem #: Electromagnetic Momentum. 3 3 Problem #3: Type I Superconductor.

More information

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. E = jωb. H = J + jωd. D = ρ (M3) B = 0 (M4) D = εe

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. E = jωb. H = J + jωd. D = ρ (M3) B = 0 (M4) D = εe ANTENNAS Vector and Scalar Potentials Maxwell's Equations E = jωb H = J + jωd D = ρ B = (M) (M) (M3) (M4) D = εe B= µh For a linear, homogeneous, isotropic medium µ and ε are contant. Since B =, there

More information

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration 1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps

More information

Problem Set #5: 5.2, 5.4, 5.8, 5.12, 5.15, 5.19, 5.24, 5.27, 5.35 (Due Tuesday, April 8th)

Problem Set #5: 5.2, 5.4, 5.8, 5.12, 5.15, 5.19, 5.24, 5.27, 5.35 (Due Tuesday, April 8th) Chapter 5 Magnetostatics Problem Set #5: 5.2, 5.4, 5.8, 5.12, 5.15, 5.19, 5.24, 5.27, 5.35 (Due Tuesday, April 8th 5.1 Lorentz Force So far we were concerned with forces on test charges Q due to static

More information

Chapter 5. Magnetostatics

Chapter 5. Magnetostatics Chapter 5. Magnetostatics 5.1 The Lorentz Force Law 5.1.1 Magnetic Fields Consider the forces between charges in motion Attraction of parallel currents and Repulsion of antiparallel ones: How do you explain

More information

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016 PHYS 500 - Southern Illinois University October 13, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 13, 2016 1 / 10 The Laplacian in Spherical Coordinates The Laplacian is given

More information

Chapter 6. Quantum Theory of the Hydrogen Atom

Chapter 6. Quantum Theory of the Hydrogen Atom Chapter 6 Quantum Theory of the Hydrogen Atom 1 6.1 Schrodinger s Equation for the Hydrogen Atom Symmetry suggests spherical polar coordinates Fig. 6.1 (a) Spherical polar coordinates. (b) A line of constant

More information

Preliminary Exam: Electromagnetism, Thursday January 12, :00-12:00

Preliminary Exam: Electromagnetism, Thursday January 12, :00-12:00 1 Preliminary Exam: Electromagnetism, Thursday January 12, 2017. 9:00-12:00 Answer a total of any THREE out of the four questions. For your answers you can use either the blue books or individual sheets

More information

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 110A. Homework #6. Benjamin Stahl. February 17, 2015

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 110A. Homework #6. Benjamin Stahl. February 17, 2015 UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS A Homework #6 Benjamin Stahl February 7, 5 GRIFFITHS, 5.9 The magnetic field at a point, P, will be found for each of the steady current

More information

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II November 5, 207 Prof. Alan Guth FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 207 A few items below are marked

More information

A Catalog of Hidden Momenta

A Catalog of Hidden Momenta A Catalog of Hidden Momenta David J. Griffiths Department of Physics, Reed College Portland, Oregon 9722 May 12, 218 Abstract Electromagnetic fields carry momentum: P em = ɛ (E B dτ. But if the center-of-energy

More information

Solutions: Homework 5

Solutions: Homework 5 Ex. 5.1: Capacitor Solutions: Homework 5 (a) Consider a parallel plate capacitor with large circular plates, radius a, a distance d apart, with a d. Choose cylindrical coordinates (r,φ,z) and let the z

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.3: Vector Model of Angular Momentum

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.3: Vector Model of Angular Momentum Modern Physics Unit 6: Hydrogen Atom - Radiation ecture 6.3: Vector Model of Angular Momentum Ron Reifenberger Professor of Physics Purdue University 1 Summary of Important Points from ast ecture The magnitude

More information

7 Curvilinear coordinates

7 Curvilinear coordinates 7 Curvilinear coordinates Read: Boas sec. 5.4, 0.8, 0.9. 7. Review of spherical and cylindrical coords. First I ll review spherical and cylindrical coordinate systems so you can have them in mind when

More information

Department of Physics IIT Kanpur, Semester II,

Department of Physics IIT Kanpur, Semester II, Department of Physics IIT Kanpur, Semester II, 7-8 PHYA: Physics II Solution # 4 Instructors: AKJ & SC Solution 4.: Force with image charges (Griffiths rd ed. Prob.6 As far as force is concerned, this

More information

Ch. 28: Sources of Magnetic Fields

Ch. 28: Sources of Magnetic Fields Ch. 28: Sources of Magnetic Fields Electric Currents Create Magnetic Fields A long, straight wire A current loop A solenoid Slide 24-14 Biot-Savart Law Current produces a magnetic field The Biot-Savart

More information

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015 Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction

More information

Multipole Fields in the Vacuum Gauge. June 26, 2016

Multipole Fields in the Vacuum Gauge. June 26, 2016 Multipole Fields in the Vacuum Gauge June 26, 2016 Whatever you call them rubber bands, or Poincaré stresses, or something else there have to be other forces in nature to make a consistent theory of this

More information

Chapter 6: Quantum Theory of the Hydrogen Atom

Chapter 6: Quantum Theory of the Hydrogen Atom Chapter 6: Quantum Theory of the Hydrogen Atom The first problem that Schrödinger tackled with his new wave equation was that of the hydrogen atom. The discovery of how naturally quantization occurs in

More information

Problem Set #5: 5.7,5.9,5.13 (Due Monday, April 8th)

Problem Set #5: 5.7,5.9,5.13 (Due Monday, April 8th) Chapter 5 Magnetostatics Problem Set #5: 5.7,5.9,5.13 (Due Monday, April 8th) 5.1 Biot-Savart Law So far we were concerned with static configuration of charges known as electrostatics. We now switch to

More information

B r Solved Problems Magnetic Field of a Straight Wire

B r Solved Problems Magnetic Field of a Straight Wire (4) Equate Iencwith d s to obtain I π r = NI NI = = ni = l π r 9. Solved Problems 9.. Magnetic Field of a Straight Wire Consider a straight wire of length L carrying a current I along the +x-direction,

More information

Basics of Electromagnetics Maxwell s Equations (Part - I)

Basics of Electromagnetics Maxwell s Equations (Part - I) Basics of Electromagnetics Maxwell s Equations (Part - I) Soln. 1. C A. dl = C. d S [GATE 1994: 1 Mark] A. dl = A. da using Stoke s Theorem = S A. ds 2. The electric field strength at distant point, P,

More information

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS B - HW #6 Spring 4, Solution by David Pace Any referenced equation are from Griffith Problem tatement are paraphraed. Problem. from Griffith Show that the following, A µo ɛ o A V + A ρ ɛ o Eq..4 A

More information

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ.

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ. 4 Legendre Functions In order to investigate the solutions of Legendre s differential equation d ( µ ) dθ ] ] + l(l + ) m dµ dµ µ Θ = 0. (4.) consider first the case of m = 0 where there is no azimuthal

More information

Exam 4 Solutions. a. 1,2,and 3 b. 1 and 2, not 3 c. 1 and 3, not 2 d. 2 and 3, not 1 e. only 2

Exam 4 Solutions. a. 1,2,and 3 b. 1 and 2, not 3 c. 1 and 3, not 2 d. 2 and 3, not 1 e. only 2 Prof. Darin Acosta Prof. Greg Stewart April 8, 007 1. Which of the following statements is true? 1. In equilibrium all of any excess charge stored on a conductor is on the outer surface.. In equilibrium

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

Classical Field Theory: Electrostatics-Magnetostatics

Classical Field Theory: Electrostatics-Magnetostatics Classical Field Theory: Electrostatics-Magnetostatics April 27, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 2nd Edition, Section 1-5 Electrostatics The behavior of an electrostatic field can be described

More information

2nd Year Electromagnetism 2012:.Exam Practice

2nd Year Electromagnetism 2012:.Exam Practice 2nd Year Electromagnetism 2012:.Exam Practice These are sample questions of the type of question that will be set in the exam. They haven t been checked the way exam questions are checked so there may

More information

Physics 351, Spring 2017, Homework #12. Due at start of class, Friday, April 14, 2017

Physics 351, Spring 2017, Homework #12. Due at start of class, Friday, April 14, 2017 Physics 351, Spring 2017, Homework #12. Due at start of class, Friday, April 14, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page at

More information

Calculations of Magnetic Fields from Known Current Distributions. B d B2 r 0I B 2 r

Calculations of Magnetic Fields from Known Current Distributions. B d B2 r 0I B 2 r Calculations of Magnetic Fields from Known Current Distributions In the absence of magnetic materials this is a relatively simple problem analogous to finding the electric field with known charge distributions.

More information

D. S. Weile Radiation

D. S. Weile Radiation Radiation Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Radiation Outline Outline Maxwell Redux Maxwell s Equation s are: 1 E = jωb = jωµh 2 H = J +

More information

Topic 7. Electric flux Gauss s Law Divergence of E Application of Gauss Law Curl of E

Topic 7. Electric flux Gauss s Law Divergence of E Application of Gauss Law Curl of E Topic 7 Electric flux Gauss s Law Divergence of E Application of Gauss Law Curl of E urface enclosing an electric dipole. urface enclosing charges 2q and q. Electric flux Flux density : The number of field

More information

Supporting Information

Supporting Information Supporting Information A: Calculation of radial distribution functions To get an effective propagator in one dimension, we first transform 1) into spherical coordinates: x a = ρ sin θ cos φ, y = ρ sin

More information

DIVERGENCE AND CURL THEOREMS

DIVERGENCE AND CURL THEOREMS This document is stored in Documents/4C/Gausstokes.tex. with LaTex. Compile it November 29, 2014 Hans P. Paar DIVERGENCE AND CURL THEOREM 1 Introduction We discuss the theorems of Gauss and tokes also

More information

Electricity & Magnetism Qualifier

Electricity & Magnetism Qualifier Electricity & Magnetism Qualifier For each problem state what system of units you are using. 1. Imagine that a spherical balloon is being filled with a charged gas in such a way that the rate of charge

More information

Solutions: Homework 2

Solutions: Homework 2 Solutions: Homework 2 Ex 2.1: Particle moving in Magnetic Field (a) If the initial velocity is perpendicular to the magnetic field B, the magnitude of the Lorentz Force (Eq 1.52) is F = 1 c q qu B ub (1)

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.13 INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) by A.J.Hobson 13.13.1 Introduction 13.13. The second moment of a volume of revolution about the y-axis 13.13.3

More information

A cylinder in a magnetic field (Jackson)

A cylinder in a magnetic field (Jackson) Problem 1. A cylinder in a magnetic field (Jackson) A very long hollow cylinder of inner radius a and outer radius b of permeability µ is placed in an initially uniform magnetic field B o at right angles

More information

PHYS 110B - HW #4 Fall 2005, Solutions by David Pace Equations referenced as EQ. # are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #4 Fall 2005, Solutions by David Pace Equations referenced as EQ. # are from Griffiths Problem statements are paraphrased PHYS B - HW #4 Fall 5, Solutions by David Pace Equations referenced as EQ. # are from Griffiths Problem statements are paraphrased [.] Problem 8. from Griffiths Reference problem 7.3 figure 7.43. a Let

More information

Magnetostatics and the vector potential

Magnetostatics and the vector potential Magnetostatics and the vector potential December 8, 2015 1 The divergence of the magnetic field Starting with the general form of the Biot-Savart law, B (x 0 ) we take the divergence of both sides with

More information

Physics Education Centre EXAMINATION. PHYS2016_Semester 2 Electromagnetism

Physics Education Centre EXAMINATION. PHYS2016_Semester 2 Electromagnetism Venue Student Number Physics Education Centre EXAMINATION This paper is for ANU students. Examination Duration: Reading Time: 180 minutes 15 minutes Exam Conditions: Central Examination Students must return

More information

PHYS 110B - HW #4 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #4 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 11B - HW #4 Spring 4, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased [1.] Problem 8. from Griffiths Reference problem 7.31 figure 7.43. a Let

More information

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is Magnetostatics 1. Currents 2. Relativistic origin of magnetic field 3. Biot-Savart law 4. Magnetic force between currents 5. Applications of Biot-Savart law 6. Ampere s law in differential form 7. Magnetic

More information

Vortex motion. Wasilij Barsukow, July 1, 2016

Vortex motion. Wasilij Barsukow, July 1, 2016 The concept of vorticity We call Vortex motion Wasilij Barsukow, mail@sturzhang.de July, 206 ω = v vorticity. It is a measure of the swirlyness of the flow, but is also present in shear flows where the

More information

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare. 8.07 Lecture 37: December 12, 2012 (THE LAST!) RADIATION Radiation: infinity. Electromagnetic fields that carry energy off to At large distances, E ~ and B ~ fall off only as 1=r, so the Poynting vector

More information

Circular motion. Aug. 22, 2017

Circular motion. Aug. 22, 2017 Circular motion Aug. 22, 2017 Until now, we have been observers to Newtonian physics through inertial reference frames. From our discussion of Newton s laws, these are frames which obey Newton s first

More information

A half submerged metal sphere (UIC comprehensive

A half submerged metal sphere (UIC comprehensive Problem 1. exam) A half submerged metal sphere (UIC comprehensive A very light neutral hollow metal spherical shell of mass m and radius a is slightly submerged by a distance b a below the surface of a

More information

Physics 505 Fall 2005 Homework Assignment #7 Solutions

Physics 505 Fall 2005 Homework Assignment #7 Solutions Physics 505 Fall 005 Homework Assignment #7 Solutions Textbook problems: Ch. 4: 4.10 Ch. 5: 5.3, 5.6, 5.7 4.10 Two concentric conducting spheres of inner and outer radii a and b, respectively, carry charges

More information

Physics 312, Winter 2007, Practice Final

Physics 312, Winter 2007, Practice Final Physics 312, Winter 2007, Practice Final Time: Two hours Answer one of Question 1 or Question 2 plus one of Question 3 or Question 4 plus one of Question 5 or Question 6. Each question carries equal weight.

More information

Summary: Curvilinear Coordinates

Summary: Curvilinear Coordinates Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 10 1 Summary: Curvilinear Coordinates 1. Summary of Integral Theorems 2. Generalized Coordinates 3. Cartesian Coordinates: Surfaces of Constant

More information

Second Year Electromagnetism Summer 2018 Caroline Terquem. Vacation work: Problem set 0. Revisions

Second Year Electromagnetism Summer 2018 Caroline Terquem. Vacation work: Problem set 0. Revisions Second Year Electromagnetism Summer 2018 Caroline Terquem Vacation work: Problem set 0 Revisions At the start of the second year, you will receive the second part of the Electromagnetism course. This vacation

More information

Keble College - Hilary 2015 CP3&4: Mathematical methods I&II Tutorial 4 - Vector calculus and multiple integrals II

Keble College - Hilary 2015 CP3&4: Mathematical methods I&II Tutorial 4 - Vector calculus and multiple integrals II Keble ollege - Hilary 2015 P3&4: Mathematical methods I&II Tutorial 4 - Vector calculus and multiple integrals II Tomi Johnson 1 Prepare full solutions to the problems with a self assessment of your progress

More information

Expansion of 1/r potential in Legendre polynomials

Expansion of 1/r potential in Legendre polynomials Expansion of 1/r potential in Legendre polynomials In electrostatics and gravitation, we see scalar potentials of the form V = K d Take d = R r = R 2 2Rr cos θ + r 2 = R 1 2 r R cos θ + r R )2 Use h =

More information

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 2201 Electromagnetism Alexander A. Iskandar, Ph.D. Physics of Magnetism and Photonics Research Group Magnetostatics CURRENT AND MAGNETIC FIELDS 1 Current Consider a long conducting wire that is neutral

More information

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination University of Illinois at Chicago Department of Physics Electricity & Magnetism Qualifying Examination January 7, 28 9. am 12: pm Full credit can be achieved from completely correct answers to 4 questions.

More information

Problems in Magnetostatics

Problems in Magnetostatics Problems in Magnetostatics 8th February 27 Some of the later problems are quite challenging. This is characteristic of problems in magnetism. There are trivial problems and there are tough problems. Very

More information

EECS 117. Lecture 17: Magnetic Forces/Torque, Faraday s Law. Prof. Niknejad. University of California, Berkeley

EECS 117. Lecture 17: Magnetic Forces/Torque, Faraday s Law. Prof. Niknejad. University of California, Berkeley University of California, Berkeley EECS 117 Lecture 17 p. 1/? EECS 117 Lecture 17: Magnetic Forces/Torque, Faraday s Law Prof. Niknejad University of California, Berkeley University of California, Berkeley

More information

Physics 227: Lecture 16 Ampere s Law

Physics 227: Lecture 16 Ampere s Law Physics 227: Lecture 16 Ampere s Law Lecture 15 review: Magnetic field magnitudes for charged particle or current. Ratio of magnetic to electric force for two charged particles. Long straight wire: B =

More information

Joint Entrance Examination for Postgraduate Courses in Physics EUF

Joint Entrance Examination for Postgraduate Courses in Physics EUF Joint Entrance Examination for Postgraduate Courses in Physics EUF For the first semester 2014 Part 1 15 October 2013 Instructions: DO NOT WRITE YOUR NAME ON THE TEST. It should be identified only by your

More information

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases:

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases: Lecture 29: Cosmology Cosmology Reading: Weinberg, Ch A metric tensor appropriate to infalling matter In general (see, eg, Weinberg, Ch ) we may write a spherically symmetric, time-dependent metric in

More information

PHY752, Fall 2016, Assigned Problems

PHY752, Fall 2016, Assigned Problems PHY752, Fall 26, Assigned Problems For clarification or to point out a typo (or worse! please send email to curtright@miami.edu [] Find the URL for the course webpage and email it to curtright@miami.edu

More information

Problem Solving 9: Displacement Current, Poynting Vector and Energy Flow

Problem Solving 9: Displacement Current, Poynting Vector and Energy Flow MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 9: Displacement Current, Poynting Vector and Energy Flow Section Table and Group Names Hand in one copy per group at the end

More information

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004 Massachusetts Institute of Technology Department of Physics Course: 8.09 Classical Mechanics Term: Fall 004 Final Examination December 17, 004 Instructions Do not start until you are told to do so. Solve

More information

Applications of Ampere s Law

Applications of Ampere s Law Applications of Ampere s Law In electrostatics, the electric field due to any known charge distribution ρ(x, y, z) may alwaysbeobtainedfromthecoulomblaw it sauniversal tool buttheactualcalculation is often

More information

INTRODUCTION MAGNETIC FIELD OF A MOVING POINT CHARGE. Introduction. Magnetic field due to a moving point charge. Units.

INTRODUCTION MAGNETIC FIELD OF A MOVING POINT CHARGE. Introduction. Magnetic field due to a moving point charge. Units. Chapter 9 THE MAGNETC FELD ntroduction Magnetic field due to a moving point charge Units Biot-Savart Law Gauss s Law for magnetism Ampère s Law Maxwell s equations for statics Summary NTRODUCTON Last lecture

More information

(b) For the system in question, the electric field E, the displacement D, and the polarization P = D ɛ 0 E are as follows. r2 0 inside the sphere,

(b) For the system in question, the electric field E, the displacement D, and the polarization P = D ɛ 0 E are as follows. r2 0 inside the sphere, PHY 35 K. Solutions for the second midterm exam. Problem 1: a The boundary conditions at the oil-air interface are air side E oil side = E and D air side oil side = D = E air side oil side = ɛ = 1+χ E.

More information

Problem Set #3: 2.11, 2.15, 2.21, 2.26, 2.40, 2.42, 2.43, 2.46 (Due Thursday Feb. 27th)

Problem Set #3: 2.11, 2.15, 2.21, 2.26, 2.40, 2.42, 2.43, 2.46 (Due Thursday Feb. 27th) Chapter Electrostatics Problem Set #3:.,.5,.,.6,.40,.4,.43,.46 (Due Thursday Feb. 7th). Coulomb s Law Coulomb showed experimentally that for two point charges the force is - proportional to each of the

More information

Scattering cross-section (µm 2 )

Scattering cross-section (µm 2 ) Supplementary Figures Scattering cross-section (µm 2 ).16.14.12.1.8.6.4.2 Total scattering Electric dipole, a E (1,1) Magnetic dipole, a M (1,1) Magnetic quardupole, a M (2,1). 44 48 52 56 Wavelength (nm)

More information

Summary: Applications of Gauss Law

Summary: Applications of Gauss Law Physics 2460 Electricity and Magnetism I, Fall 2006, Lecture 15 1 Summary: Applications of Gauss Law 1. Field outside of a uniformly charged sphere of radius a: 2. An infinite, uniformly charged plane

More information

Elastic Scattering. R = m 1r 1 + m 2 r 2 m 1 + m 2. is the center of mass which is known to move with a constant velocity (see previous lectures):

Elastic Scattering. R = m 1r 1 + m 2 r 2 m 1 + m 2. is the center of mass which is known to move with a constant velocity (see previous lectures): Elastic Scattering In this section we will consider a problem of scattering of two particles obeying Newtonian mechanics. The problem of scattering can be viewed as a truncated version of dynamic problem

More information

Dynamics 12e. Copyright 2010 Pearson Education South Asia Pte Ltd. Chapter 20 3D Kinematics of a Rigid Body

Dynamics 12e. Copyright 2010 Pearson Education South Asia Pte Ltd. Chapter 20 3D Kinematics of a Rigid Body Engineering Mechanics: Dynamics 12e Chapter 20 3D Kinematics of a Rigid Body Chapter Objectives Kinematics of a body subjected to rotation about a fixed axis and general plane motion. Relative-motion analysis

More information

Dielectrics - III. Lecture 22: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Dielectrics - III. Lecture 22: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Dielectrics - III Lecture 22: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We continue with our discussion of dielectric medium. Example : Dielectric Sphere in a uniform

More information

Integration is the reverse of the process of differentiation. In the usual notation. k dx = kx + c. kx dx = 1 2 kx2 + c.

Integration is the reverse of the process of differentiation. In the usual notation. k dx = kx + c. kx dx = 1 2 kx2 + c. PHYS122 - Electricity and Magnetism Integration Reminder Integration is the reverse of the process of differentiation. In the usual notation f (x)dx = f(x) + constant The derivative of the RHS gives you

More information

Chapter 27 Sources of Magnetic Field

Chapter 27 Sources of Magnetic Field Chapter 27 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

ECE 3209 Electromagnetic Fields Final Exam Example. University of Virginia Solutions

ECE 3209 Electromagnetic Fields Final Exam Example. University of Virginia Solutions ECE 3209 Electromagnetic Fields Final Exam Example University of Virginia Solutions (print name above) This exam is closed book and closed notes. Please perform all work on the exam sheets in a neat and

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 14, 2013 3:10PM to 5:10PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted

More information

Junior-level Electrostatics Content Review

Junior-level Electrostatics Content Review Junior-level Electrostatics Content Review Please fill out the following exam to the best of your ability. This will not count towards your final grade in the course. Do your best to get to all the questions

More information

MP204 Electricity and Magnetism

MP204 Electricity and Magnetism MATHEMATICAL PHYSICS SEMESTER 2, REPEAT 2016 2017 MP204 Electricity and Magnetism Prof. S. J. Hands, Dr. M. Haque and Dr. J.-I. Skullerud Time allowed: 1 1 2 hours Answer ALL questions MP204, 2016 2017,

More information

INTRODUCTION ELECTRODYNAMICS BEFORE MAXWELL MAXWELL S DISPLACEMENT CURRENT. Introduction Z B S. E l = Electrodynamics before Maxwell

INTRODUCTION ELECTRODYNAMICS BEFORE MAXWELL MAXWELL S DISPLACEMENT CURRENT. Introduction Z B S. E l = Electrodynamics before Maxwell Chapter 14 MAXWELL S EQUATONS ntroduction Electrodynamics before Maxwell Maxwell s displacement current Maxwell s equations: General Maxwell s equations in vacuum The mathematics of waves Summary NTRODUCTON

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

PHYS 3327 PRELIM 1. Prof. Itai Cohen, Fall 2010 Friday, 10/15/10. Name: Read all of the following information before starting the exam:

PHYS 3327 PRELIM 1. Prof. Itai Cohen, Fall 2010 Friday, 10/15/10. Name: Read all of the following information before starting the exam: PHYS 3327 PRELIM 1 Prof. Itai Cohen, Fall 2010 Friday, 10/15/10 Name: Read all of the following information before starting the exam: Put your name on the exam now. Show all work, clearly and in order,

More information

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator Time Dependent Wave Equation Quantum Mechanical Description Hamiltonian Static/Time-dependent Time-dependent Energy operator H 0 + H t Ψ t = ih Ψ t t The Hamiltonian and wavefunction are time-dependent

More information

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2B.11 Page 1 of 5

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2B.11 Page 1 of 5 BS Transport Phenomena 2e Revised: Chapter 2 - Problem 2B11 Page 1 of 5 Problem 2B11 The cone-and-plate viscometer (see Fig 2B11 A cone-and-plate viscometer consists of a flat plate and an inverted cone,

More information