Phys 4322 Final Exam - Solution May 12, 2015

Size: px
Start display at page:

Download "Phys 4322 Final Exam - Solution May 12, 2015"

Transcription

1 Phys 4322 Final Exam - Solution May 12, 2015 You may NOT use any book or notes other than that supplied with this test. You will have 3 hours to finish. DO YOUR OWN WORK. Express your answers clearly and concisely so that appropriate credit can be assigned for each problem. There are 6 problems. You must do 5 for full credit. TURN IN ONLY 5 PROBLEMS - I WILL GRADE ONLY THE FIRST 5 PROBLEMS YOU SUBMIT. Full credit for each problem is 25 points. 1) Find the approximate inductance per unit length of two long, straight, paralle wires. The wires are separated by a distance, d, center to center and can be treated as thin, although each wire has a radius, a. Assume only surface currents. I Cross Section a Figure 1: The geometry of problem 1 I The inductance is obtaied by finding the magnetic flux through the area of the circuit and dividing by the current which greates the magnetic field. In this case, the magnetic field is a superposition of the field due to the two wires of the circuit. The magnetic field of each wire is obtained from Ampere s Law. Choose the coordiate origin as the center of a wire. B d l = µ0 I In the above, d l, is an element of the circular loop about the wire as a center, and I the current flowing in the wire which is carried talong the axis of the loop. By symmetry, the magnetic field, B only depends on the radius of the loop so; B d l = B dl = B(2πr) = µ0 I B = µ 0 I/2πr 1

2 The flux due to one wire with a r d a, σ the area through which B passes, and w a segment length along the wire is; φ = d a a φ = µ 0Iw) 2π B d σ = (µ 0 Iw)/2π ln[(d a)/a] d a a dr/r The flux increases by a factor of 2 to include the field of the other wire. Then the inductance per unit lenght is obtained by dividing the flux by the current and the length. L/w = 2φ/Iw = µ 0 /π ln[(d a)/a] 2) Show by a field transformation that E 2 c 2 B 2 is a Lorentz invarient. The field transformantions in Cartesian coordinates for a boost of velocity, V, in the x direction are; E x = E x B x = B x E y = γ(e y V B z ) B y = γ(b y + (v/c 2 )E z ) E z = γ(e z + V B y ) B z = γ(b z (v/c) 2 E y ) Transform from the primed system to the unprimed system. E 2 = E x 2 + E y 2 + E z 2 B 2 = E y 2 + E z 2 E 2 = E 2 x + γ 2 (E y V B z ) 2 + γ 2 (E z + V B y ) 2 B 2 = B 2 x + γ 2 (B y + V B z ) 2 + γ 2 (E z V B y ) 2 Collect terms and substitute into E 2 c 2 B 2 to show that the result for the unprimed system has the same form, E 2 c 2 B 2 3) A two protons are connected by a rigid rod of length, d, and spin with angular velocity, ω, about the x axis through the center of the rod. In another frame of reference, the rod moves with velocity, v a, parallel to the axis of rotation. Find the velocity of the protons in this moving frame. 2

3 The protons have a velocity in the (y,z) direction; V = (d/2)ω[cos(ωt) ŷ + sin(ωt) ẑ] V 0 = Vy 2 + V z 2 = (d/2)ω For a boost in the x direction, the total velocity is Vx 2 + Vy 2 + Vz 2 V x = V y = V z = V a 1 V 0 V a /c 2 aω cos(ωt) γ(1 V 0 V a /c 2 ) aω sin(ωt) γ(1 V 0 V a /c 2 ) 4) Find the power transmission coefficient for a plane EM wave incident normally from a material with permittivity, ǫ 0 and permeabiity, µ 0 into a transparent dielectric with permittivity, ǫ, and premeability, µ 0. Material II µ o ε Material I µ o ε o Figure 2: The geometry of problem 4 In region I; The incident plane wave is; E i = E i0 e i(k iz ωt) B i = µ 0 ǫ 0 E i 3

4 The reflected plane wave is; E r = E r0 e i(krz+ωt) B r = µ 0 ǫ 0 E r In region II The transmitted wave is; E t = E t0 e i(ktz ωt) B t = µ 0 ǫ 0 E t Apply the boundary conditions at z = 0. 1) The frequencies are identical for each of the waves. 2) The parallel component of E to the surface is continuous. 3)The power flow at the surface is conserved. For parallel E continuous at the surface; E i + E r = E t The average incident power in the wave is; S = 1/(2µ 0 ) E B = (1/2) ǫ 0 /µ 0 E i 2 For conservation of power flow at the surface; ǫ0 /µ 0 (1/2) E i 2 ǫ 0 /µ 0 (1/2) E r 2 = ǫ/µ 0 (1/2) E t 2 Solve these equations to obtain the amplitude transmission coefficient. R t = E t E i = 2 ǫ 0 ǫ0 + ǫ The Power transmission coefficient, R p, is given by R 2 t 5) A wire of length, d, carries a harmonic current of frequency, ω, which has position dependence, I = I 0 cos 2 ( πx ). Ignore phase differences due to position and use non-relativistic d expressions. Find the effective dipole moment, p. Use the equation of continuity; 4

5 J = ρ t = iωρ. Then use Ampere s law, I = J d A = ( J) dτ = ω dz ρda. This results in (suppressing the time dependence); I z = 2I 0 [sin(πx/d) cos(πx/d)] (π/d) = iωλ λ = i2πi 0 ωd p = d/2 d/2 p = ii 0 ω dxxλ Find the power radiated. sin(πx/d) cos(πx/d) The radiated power is obtained from the Lamor equation for harmonic time dependence. P = µ 0ω 4 p 2 12πc Find the radiation resistance. (1/2)I 2 0 R = P R = 2P/I 2 0 6) Show Gauss s law holds for a point charge moving in a straight line with constant velocity, v. The E field for a point charge in uniform motion is; q (1 β E = ( 4πǫ ) 2 ) ˆr 0 γ 2 (1 β 2 sin 2 (θ)) 3/2 5

6 Then evaluate E d A to show the result is q ǫ0 The integral is; I = q(1 β2 ) 4πǫ 2 γ 2 r 2 sin(θ) dθ dφ (1 β 2 sin 2 (θ)) 3/2 r 2 Careful attention to the algebra, substitution for α = cos(θ), with sin(θ) dθ = dα, and integration over the solid angle yields the expected result. 6

EM radiation - Lecture 14

EM radiation - Lecture 14 EM radiation - Lecture 14 1 Review Begin with a review of the potentials, fields, and Poynting vector for a point charge in accelerated motion. The retarded potential forms are given below. The source

More information

University of Illinois at Chicago Department of Physics

University of Illinois at Chicago Department of Physics University of Illinois at Chicago Department of Physics Electromagnetism Qualifying Examination January 4, 2017 9.00 am - 12.00 pm Full credit can be achieved from completely correct answers to 4 questions.

More information

NIU Ph.D. Candidacy Examination Fall 2018 (8/21/2018) Electricity and Magnetism

NIU Ph.D. Candidacy Examination Fall 2018 (8/21/2018) Electricity and Magnetism NIU Ph.D. Candidacy Examination Fall 2018 (8/21/2018) Electricity and Magnetism You may solve ALL FOUR problems if you choose. The points of the best three problems will be counted towards your final score

More information

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Name Electro Dynamic Instructions: Use SI units. Short answers! No derivations here, just state your responses clearly. 1. (2) Write an

More information

There are four questions on this exam. All are of equal value but not necessarily of equal difficulty. Answer all four questions

There are four questions on this exam. All are of equal value but not necessarily of equal difficulty. Answer all four questions Electricity and Magnetism (PHYS2016) Second Semester Final Exam 2015 There are four questions on this exam. All are of equal value but not necessarily of equal difficulty. Answer all four questions You

More information

University of Illinois at Chicago Department of Physics. Electricity and Magnetism PhD Qualifying Examination

University of Illinois at Chicago Department of Physics. Electricity and Magnetism PhD Qualifying Examination University of Illinois at Chicago Department of Physics Electricity and Magnetism PhD Qualifying Examination January 8, 216 (Friday) 9: am - 12: noon Full credit can be achieved from completely correct

More information

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory lectromagnetism Christopher R Prior Fellow and Tutor in Mathematics Trinity College, Oxford ASTeC Intense Beams Group Rutherford Appleton Laboratory Contents Review of Maxwell s equations and Lorentz Force

More information

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1. Problem 4.1 A cube m on a side is located in the first octant in a Cartesian coordinate system, with one of its corners at the origin. Find the total charge contained in the cube if the charge density

More information

Magnetostatics III Magnetic Vector Potential (Griffiths Chapter 5: Section 4)

Magnetostatics III Magnetic Vector Potential (Griffiths Chapter 5: Section 4) Dr. Alain Brizard Electromagnetic Theory I PY ) Magnetostatics III Magnetic Vector Potential Griffiths Chapter 5: Section ) Vector Potential The magnetic field B was written previously as Br) = Ar), 1)

More information

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is Magnetostatics 1. Currents 2. Relativistic origin of magnetic field 3. Biot-Savart law 4. Magnetic force between currents 5. Applications of Biot-Savart law 6. Ampere s law in differential form 7. Magnetic

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 14, 2013 3:10PM to 5:10PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted

More information

Introduction and Review Lecture 1

Introduction and Review Lecture 1 Introduction and Review Lecture 1 1 Fields 1.1 Introduction This class deals with classical electrodynamics. Classical electrodynamics is the exposition of electromagnetic interactions between the develoment

More information

MIDSUMMER EXAMINATIONS 2001

MIDSUMMER EXAMINATIONS 2001 No. of Pages: 7 No. of Questions: 10 MIDSUMMER EXAMINATIONS 2001 Subject PHYSICS, PHYSICS WITH ASTROPHYSICS, PHYSICS WITH SPACE SCIENCE & TECHNOLOGY, PHYSICS WITH MEDICAL PHYSICS Title of Paper MODULE

More information

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

Exam 3 November 19, 2012 Instructor: Timothy Martin

Exam 3 November 19, 2012 Instructor: Timothy Martin PHY 232 Exam 3 October 15, 2012 Exam 3 November 19, 2012 Instructor: Timothy Martin Student Information Name and section: UK Student ID: Seat #: Instructions Answer the questions in the space provided.

More information

Electricity & Magnetism Qualifier

Electricity & Magnetism Qualifier Electricity & Magnetism Qualifier For each problem state what system of units you are using. 1. Imagine that a spherical balloon is being filled with a charged gas in such a way that the rate of charge

More information

PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions

PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions 1. A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the coils do not carry a current,

More information

ECE 3209 Electromagnetic Fields Final Exam Example. University of Virginia Solutions

ECE 3209 Electromagnetic Fields Final Exam Example. University of Virginia Solutions ECE 3209 Electromagnetic Fields Final Exam Example University of Virginia Solutions (print name above) This exam is closed book and closed notes. Please perform all work on the exam sheets in a neat and

More information

Module II: Relativity and Electrodynamics

Module II: Relativity and Electrodynamics Module II: Relativity and Electrodynamics Lecture 2: Lorentz transformations of observables Amol Dighe TIFR, Mumbai Outline Length, time, velocity, acceleration Transformations of electric and magnetic

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 8, 2018 2:00PM to 4:00PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted for

More information

Exam IV, Magnetism May 1 st, Exam IV, Magnetism

Exam IV, Magnetism May 1 st, Exam IV, Magnetism Exam IV, Magnetism Prof. Maurik Holtrop Department of Physics PHYS 408 University of New Hampshire March 27 th, 2003 Name: Student # NOTE: There are 4 questions. You have until 9 pm to finish. You must

More information

Electromagnetism Answers to Problem Set 9 Spring 2006

Electromagnetism Answers to Problem Set 9 Spring 2006 Electromagnetism 70006 Answers to Problem et 9 pring 006. Jackson Prob. 5.: Reformulate the Biot-avart law in terms of the solid angle subtended at the point of observation by the current-carrying circuit.

More information

Chapter 27 Sources of Magnetic Field

Chapter 27 Sources of Magnetic Field Chapter 27 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

Symmetries 2 - Rotations in Space

Symmetries 2 - Rotations in Space Symmetries 2 - Rotations in Space This symmetry is about the isotropy of space, i.e. space is the same in all orientations. Thus, if we continuously rotated an entire system in space, we expect the system

More information

E & M Qualifier. January 11, To insure that the your work is graded correctly you MUST:

E & M Qualifier. January 11, To insure that the your work is graded correctly you MUST: E & M Qualifier 1 January 11, 2017 To insure that the your work is graded correctly you MUST: 1. use only the blank answer paper provided, 2. use only the reference material supplied (Schaum s Guides),

More information

Basics of Electromagnetics Maxwell s Equations (Part - I)

Basics of Electromagnetics Maxwell s Equations (Part - I) Basics of Electromagnetics Maxwell s Equations (Part - I) Soln. 1. C A. dl = C. d S [GATE 1994: 1 Mark] A. dl = A. da using Stoke s Theorem = S A. ds 2. The electric field strength at distant point, P,

More information

Electromagnetism Phys 3230 Exam 2005

Electromagnetism Phys 3230 Exam 2005 Electromagnetism Phys Exam 5 All four questions in Phys should be addressed. If one is not certain in maths, one should try to present explanations in words. 1. Maxwell s equations (5% from 1 given for

More information

Candidacy Exam Department of Physics February 6, 2010 Part I

Candidacy Exam Department of Physics February 6, 2010 Part I Candidacy Exam Department of Physics February 6, 2010 Part I Instructions: ˆ The following problems are intended to probe your understanding of basic physical principles. When answering each question,

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

r,t r R Z j ³ 0 1 4π² 0 r,t) = 4π

r,t r R Z j ³ 0 1 4π² 0 r,t) = 4π 5.4 Lienard-Wiechert Potential and Consequent Fields 5.4.1 Potential and Fields (chapter 10) Lienard-Wiechert potential In the previous section, we studied the radiation from an electric dipole, a λ/2

More information

Massachusetts Institute of Technology Physics 8.03 Fall 2004 Final Exam Thursday, December 16, 2004

Massachusetts Institute of Technology Physics 8.03 Fall 2004 Final Exam Thursday, December 16, 2004 You have 3 hours Do all eight problems You may use calculators Massachusetts Institute of Technology Physics 8.03 Fall 004 Final Exam Thursday, December 16, 004 This is a closed-book exam; no notes are

More information

P321(b), Assignement 1

P321(b), Assignement 1 P31(b), Assignement 1 1 Exercise 3.1 (Fetter and Walecka) a) The problem is that of a point mass rotating along a circle of radius a, rotating with a constant angular velocity Ω. Generally, 3 coordinates

More information

Solutions: Homework 5

Solutions: Homework 5 Ex. 5.1: Capacitor Solutions: Homework 5 (a) Consider a parallel plate capacitor with large circular plates, radius a, a distance d apart, with a d. Choose cylindrical coordinates (r,φ,z) and let the z

More information

Final Exam Physics 7b Section 2 Fall 2004 R Packard. Section Number:

Final Exam Physics 7b Section 2 Fall 2004 R Packard. Section Number: Final Exam Physics 7b Section 2 Fall 2004 R Packard Name: SID: Section Number: The relative weight of each problem is stated next to the problem. Work the easier ones first. Define physical quantities

More information

Electromagnetic Theory I

Electromagnetic Theory I Electromagnetic Theory I Final Examination 18 December 2009, 12:30-2:30 pm Instructions: Answer the following 10 questions, each of which is worth 10 points. Explain your reasoning in each case. Use SI

More information

Physics 214 Final Exam Solutions Winter 2017

Physics 214 Final Exam Solutions Winter 2017 Physics 14 Final Exam Solutions Winter 017 1 An electron of charge e and mass m moves in a plane perpendicular to a uniform magnetic field B If the energy loss by radiation is neglected, the orbit is a

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chapter 28 Sources of Magnetic Field In this chapter we investigate the sources of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents), Ampere s Law is introduced

More information

Physics 8.02 Exam Two Mashup Spring 2003

Physics 8.02 Exam Two Mashup Spring 2003 Physics 8.0 Exam Two Mashup Spring 003 Some (possibly useful) Relations: closedsurface da Q κ d = ε E A inside points from inside to outside b V = V V = E d s moving from a to b b a E d s = 0 V many point

More information

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 2 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Part of a long, straight insulated wire carrying current i is bent into a circular

More information

Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Solutions to PHY2049 Exam 2 (Nov. 3, 2017) Solutions to PHY2049 Exam 2 (Nov. 3, 207) Problem : In figure a, both batteries have emf E =.2 V and the external resistance R is a variable resistor. Figure b gives the electric potentials V between the

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 9, 2012 3:10PM to 5:10PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted for

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chapter 28 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

Preliminary Examination - Day 1 Thursday, August 10, 2017

Preliminary Examination - Day 1 Thursday, August 10, 2017 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, August, 7 This test covers the topics of Quantum Mechanics (Topic ) and Electrodynamics (Topic ). Each topic has 4 A questions

More information

Worked Examples Set 2

Worked Examples Set 2 Worked Examples Set 2 Q.1. Application of Maxwell s eqns. [Griffiths Problem 7.42] In a perfect conductor the conductivity σ is infinite, so from Ohm s law J = σe, E = 0. Any net charge must be on the

More information

/R = If we take the surface normal to be +ẑ, then the right hand rule gives positive flowing current to be in the +ˆφ direction.

/R = If we take the surface normal to be +ẑ, then the right hand rule gives positive flowing current to be in the +ˆφ direction. Problem 6.2 The loop in Fig. P6.2 is in the x y plane and B = ẑb 0 sinωt with B 0 positive. What is the direction of I (ˆφ or ˆφ) at: (a) t = 0 (b) ωt = π/4 (c) ωt = π/2 V emf y x I Figure P6.2: Loop of

More information

Scattering. 1 Classical scattering of a charged particle (Rutherford Scattering)

Scattering. 1 Classical scattering of a charged particle (Rutherford Scattering) Scattering 1 Classical scattering of a charged particle (Rutherford Scattering) Begin by considering radiation when charged particles collide. The classical scattering equation for this process is called

More information

Preliminary Exam: Electromagnetism, Thursday January 12, :00-12:00

Preliminary Exam: Electromagnetism, Thursday January 12, :00-12:00 1 Preliminary Exam: Electromagnetism, Thursday January 12, 2017. 9:00-12:00 Answer a total of any THREE out of the four questions. For your answers you can use either the blue books or individual sheets

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 efore Starting All of your grades should now be posted

More information

NIU Ph.D. Candidacy Examination Fall 2017 (8/22/2017) Electricity and Magnetism

NIU Ph.D. Candidacy Examination Fall 2017 (8/22/2017) Electricity and Magnetism NIU Ph.D. Candidacy Examination Fall 2017 (8/22/2017) Electricity and Magnetism You may solve ALL FOUR problems if you choose. The points of the best three problems will be counted towards your final score

More information

Inductance. thevectorpotentialforthemagneticfield, B 1. ] d l 2. 4π I 1. φ 12 M 12 I 1. 1 Definition of Inductance. r 12

Inductance. thevectorpotentialforthemagneticfield, B 1. ] d l 2. 4π I 1. φ 12 M 12 I 1. 1 Definition of Inductance. r 12 Inductance 1 Definition of Inductance When electric potentials are placed on a system of conductors, charges move to cancel the electric field parallel to the conducting surfaces of the conductors. We

More information

Lecture notes for ELECTRODYNAMICS.

Lecture notes for ELECTRODYNAMICS. Lecture notes for 640-343 ELECTRODYNAMICS. 1 Summary of Electrostatics 1.1 Coulomb s Law Force between two point charges F 12 = 1 4πɛ 0 Q 1 Q 2ˆr 12 r 1 r 2 2 (1.1.1) 1.2 Electric Field For a charge distribution:

More information

Physics 2020 Exam 2 Constants and Formulae

Physics 2020 Exam 2 Constants and Formulae Physics 2020 Exam 2 Constants and Formulae Useful Constants k e = 8.99 10 9 N m 2 /C 2 c = 3.00 10 8 m/s ɛ = 8.85 10 12 C 2 /(N m 2 ) µ = 4π 10 7 T m/a e = 1.602 10 19 C h = 6.626 10 34 J s m p = 1.67

More information

MASSCHUSETTS INSTITUTE OF TECHNOLOGY ESG Physics. Problem Set 8 Solution

MASSCHUSETTS INSTITUTE OF TECHNOLOGY ESG Physics. Problem Set 8 Solution MASSCHUSETTS INSTITUTE OF TECHNOLOGY ESG Physics 8.0 with Kai Spring 003 Problem : 30- Problem Set 8 Solution Determine the magnetic field (in terms of I, a and b) at the origin due to the current loop

More information

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 110A. Homework #6. Benjamin Stahl. February 17, 2015

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 110A. Homework #6. Benjamin Stahl. February 17, 2015 UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS A Homework #6 Benjamin Stahl February 7, 5 GRIFFITHS, 5.9 The magnetic field at a point, P, will be found for each of the steady current

More information

August 2013 Qualifying Exam. Part II

August 2013 Qualifying Exam. Part II August 2013 Qualifying Exam Part II Mathematical tables are allowed. Formula sheets are provided. Calculators are allowed. Please clearly mark the problems you have solved and want to be graded. Do only

More information

Additional Formula Sheet for Final Exam

Additional Formula Sheet for Final Exam Additional Formula Sheet for Final Exam eading and thoroughly familiarizing yourself with this formula sheet is an important part of, but it is not a substitute for, proper exam preparation. The latter

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2012 DO NOT DISTRIBUTE THIS PAGE

AAPT UNITED STATES PHYSICS TEAM AIP 2012 DO NOT DISTRIBUTE THIS PAGE 2012 Semifinal Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 2012 Semifinal Exam DO NOT DISTRIBUTE THIS PAGE Important Instructions for the Exam Supervisor This examination consists of two parts. Part A has

More information

UNIVERSITY OF BOLTON. SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2018

UNIVERSITY OF BOLTON. SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2018 ENG018 SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING MODULE NO: EEE6002 Date: 17 January 2018 Time: 2.00 4.00 INSTRUCTIONS TO CANDIDATES: There are six questions.

More information

Transformations. 1 The Lorentz Transformation. 2 Velocity Transformation

Transformations. 1 The Lorentz Transformation. 2 Velocity Transformation Transformations 1 The Lorentz Transformation In the last lecture we obtained the relativistic transformations for space/time between inertial frames. These transformations follow mainly from the postulate

More information

Principles of Physics II

Principles of Physics II Principles of Physics II J. M. Veal, Ph. D. version 18.05.4 Contents 1 Fluid Mechanics 3 1.1 Fluid pressure............................ 3 1. Buoyancy.............................. 3 1.3 Fluid flow..............................

More information

Final Exam - PHYS 611 Electromagnetic Theory. Mendes, Spring 2013, April

Final Exam - PHYS 611 Electromagnetic Theory. Mendes, Spring 2013, April NAME: Final Exam - PHYS 611 Electromagnetic Theory Mendes, Spring 2013, April 24 2013 During the exam you can consult your textbooks (Melia, Jackson, Panofsky/Phillips, Griffiths), the print-outs of classnotes,

More information

Motional Electromotive Force

Motional Electromotive Force Motional Electromotive Force The charges inside the moving conductive rod feel the Lorentz force The charges drift toward the point a of the rod The accumulating excess charges at point a create an electric

More information

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 110A. Homework #7. Benjamin Stahl. March 3, 2015

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 110A. Homework #7. Benjamin Stahl. March 3, 2015 UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS A Homework #7 Benjamin Stahl March 3, 5 GRIFFITHS, 5.34 It will be shown that the magnetic field of a dipole can written in the following

More information

Radiation Damping. 1 Introduction to the Abraham-Lorentz equation

Radiation Damping. 1 Introduction to the Abraham-Lorentz equation Radiation Damping Lecture 18 1 Introduction to the Abraham-Lorentz equation Classically, a charged particle radiates energy if it is accelerated. We have previously obtained the Larmor expression for the

More information

Electromagnetic (EM) Waves

Electromagnetic (EM) Waves Electromagnetic (EM) Waves Short review on calculus vector Outline A. Various formulations of the Maxwell equation: 1. In a vacuum 2. In a vacuum without source charge 3. In a medium 4. In a dielectric

More information

Examples of relativistic transformations

Examples of relativistic transformations Examples of relativistic transformations Lecture 9 1 Field transformations In the last lecture we obtained the field transformation equations. For a boost in the 1 direction E 1 = E 1 ; B 1 = B 1 E 2 =

More information

Review of Electrostatics

Review of Electrostatics Review of Electrostatics 1 Gradient Define the gradient operation on a field F = F(x, y, z) by; F = ˆx F x + ŷ F y + ẑ F z This operation forms a vector as may be shown by its transformation properties

More information

AP Physics 2 Electromagnetic Induction Multiple Choice

AP Physics 2 Electromagnetic Induction Multiple Choice Slide 1 / 50 AP Physics 2 Electromagnetic Induction Multiple Choice www.njctl.org Slide 2 / 50 1 A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018 Quiz 4 (Discussion ession) Phys 1302W.400 pring 2018 This group quiz consists of one problem that, together with the individual problems on Friday, will determine your grade for quiz 4. For the group problem,

More information

Physics 2020 Exam 1 Constants and Formulae

Physics 2020 Exam 1 Constants and Formulae Physics 2020 Exam 1 Constants and Formulae Useful Constants k e = 8.99 10 9 N m 2 /C 2 ɛ = 8.85 10 12 C 2 /(N m 2 ) G = 6.673 10 11 N m 2 / kg 2 e = 1.602 10 19 C m p = 1.672 10 27 kg m e = 9.110 10 31

More information

Electrical polarization. Figure 19-5 [1]

Electrical polarization. Figure 19-5 [1] Electrical polarization Figure 19-5 [1] Properties of Charge Two types: positive and negative Like charges repel, opposite charges attract Charge is conserved Fundamental particles with charge: electron

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 04 Electronics and Communicaton Engineering Question Bank Course Name : Electromagnetic Theory and Transmission Lines (EMTL) Course Code :

More information

Final on December Physics 106 R. Schad. 3e 4e 5c 6d 7c 8d 9b 10e 11d 12e 13d 14d 15b 16d 17b 18b 19c 20a

Final on December Physics 106 R. Schad. 3e 4e 5c 6d 7c 8d 9b 10e 11d 12e 13d 14d 15b 16d 17b 18b 19c 20a Final on December11. 2007 - Physics 106 R. Schad YOUR NAME STUDENT NUMBER 3e 4e 5c 6d 7c 8d 9b 10e 11d 12e 13d 14d 15b 16d 17b 18b 19c 20a 1. 2. 3. 4. This is to identify the exam version you have IMPORTANT

More information

2nd Year Electromagnetism 2012:.Exam Practice

2nd Year Electromagnetism 2012:.Exam Practice 2nd Year Electromagnetism 2012:.Exam Practice These are sample questions of the type of question that will be set in the exam. They haven t been checked the way exam questions are checked so there may

More information

Classical Mechanics/Electricity and Magnetism. Preliminary Exam. August 20, :00-15:00 in P-121

Classical Mechanics/Electricity and Magnetism. Preliminary Exam. August 20, :00-15:00 in P-121 Classical Mechanics/Electricity and Magnetism Preliminary Exam August 20, 2008 09:00-15:00 in P-121 Answer THREE (3) questions from each of the TWO (2) sections A and B for a total of SIX (6) solutions.

More information

Lorentz Transformations

Lorentz Transformations Lorentz Transformations 1 The Lorentz Transformation In the last lecture the relativistic transformations for space/time between inertial frames was obtained. These transformations esentially follow from

More information

PHYS 110B - HW #4 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #4 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 11B - HW #4 Spring 4, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased [1.] Problem 8. from Griffiths Reference problem 7.31 figure 7.43. a Let

More information

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves EM Waves This Lecture More on EM waves EM spectrum Polarization From previous Lecture Displacement currents Maxwell s equations EM Waves 1 Reminders on waves Traveling waves on a string along x obey the

More information

Physics 214 Midterm Exam Solutions Winter 2017

Physics 214 Midterm Exam Solutions Winter 2017 Physics 14 Midterm Exam Solutions Winter 017 1. A linearly polarized electromagnetic wave, polarized in the ˆx direction, is traveling in the ẑ-direction in a dielectric medium of refractive index n 1.

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 9, 217 3:PM to 5:PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted for the

More information

PHYS 110B - HW #5 Fall 2005, Solutions by David Pace Equations referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #5 Fall 2005, Solutions by David Pace Equations referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #5 Fall 005, Solutions by David Pace Equations referenced equations are from Griffiths Problem statements are paraphrased [.] Imagine a prism made of lucite (n.5) whose cross-section is a

More information

Final Exam: Physics Spring, 2017 May 8, 2017 Version 01

Final Exam: Physics Spring, 2017 May 8, 2017 Version 01 Final Exam: Physics2331 - Spring, 2017 May 8, 2017 Version 01 NAME (Please Print) Your exam should have 11 pages. This exam consists of 18 multiple-choice questions (2 points each, worth 36 points), and

More information

Wave Phenomena Physics 15c. Lecture 8 LC Transmission Line Wave Reflection

Wave Phenomena Physics 15c. Lecture 8 LC Transmission Line Wave Reflection Wave Phenomena Physics 15c Lecture 8 LC Transmission Line Wave Reflection Midterm Exam #1 Midterm #1 has been graded Class average = 80.4 Standard deviation = 14.6 Your exam will be returned in the section

More information

Theory of Electromagnetic Fields

Theory of Electromagnetic Fields Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK Abstract We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to

More information

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law Maxwell s equations and EM waves This Lecture More on Motional EMF and Faraday s law Displacement currents Maxwell s equations EM Waves From previous Lecture Time dependent fields and Faraday s Law 1 Radar

More information

Physics 7B Final Exam: Monday December 14th, 2015 Instructors: Prof. R.J. Birgeneau/Dr. A. Frano

Physics 7B Final Exam: Monday December 14th, 2015 Instructors: Prof. R.J. Birgeneau/Dr. A. Frano Physics 7B Final Exam: Monday December 14th, 15 Instructors: Prof. R.J. Birgeneau/Dr. A. Frano Total points: 1 (7 problems) Show all your work and take particular care to explain what you are doing. Partial

More information

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution CONTENTS CHAPTER 1. VECTOR ANALYSIS 1. Scalars and Vectors 2. Vector Algebra 3. The Cartesian Coordinate System 4. Vector Cartesian Coordinate System 5. The Vector Field 6. The Dot Product 7. The Cross

More information

Examples of Dielectric Problems and the Electric Susceptability. 2 A Dielectric Sphere in a Uniform Electric Field

Examples of Dielectric Problems and the Electric Susceptability. 2 A Dielectric Sphere in a Uniform Electric Field Examples of Dielectric Problems and the Electric Susceptability Lecture 10 1 A Dielectric Filled Parallel Plate Capacitor Suppose an infinite, parallel plate capacitor filled with a dielectric of dielectric

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor: Profs. Andrew Rinzler, Paul Avery, Selman Hershfield PHYSICS DEPARTMENT PHY 049 Exam 3 April 7, 00 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized

More information

n Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A

n Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A Physics in Session 2: I n Physics / Higher Physics 1B (PHYS1221/1231) n Science, dvanced Science n Engineering: Electrical, Photovoltaic,Telecom n Double Degree: Science/Engineering n 6 UOC n Waves n Physical

More information

Review of Electrostatics. Define the gradient operation on a field F = F(x, y, z) by;

Review of Electrostatics. Define the gradient operation on a field F = F(x, y, z) by; Review of Electrostatics 1 Gradient Define the gradient operation on a field F = F(x, y, z) by; F = ˆx F x + ŷ F y + ẑ F z This operation forms a vector as may be shown by its transformation properties

More information

Physics 2102 Gabriela González. Marathon review of the course: 15 weeks in ~60 minutes!

Physics 2102 Gabriela González. Marathon review of the course: 15 weeks in ~60 minutes! Physics 2102 Gabriela González Marathon review of the course: 15 weeks in ~60 minutes! Fields: electric & magnetic electric and magnetic forces on electric charges potential energy, electric potential,

More information

Section B. Electromagnetism

Section B. Electromagnetism Prelims EM Spring 2014 1 Section B. Electromagnetism Problem 0, Page 1. An infinite cylinder of radius R oriented parallel to the z-axis has uniform magnetization parallel to the x-axis, M = m 0ˆx. Calculate

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 10, 2011 3:10PM to 5:10PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted

More information

Louisiana State University Physics 2102, Exam 2, March 5th, 2009.

Louisiana State University Physics 2102, Exam 2, March 5th, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 2, March 5th, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

Michael Faraday. Chapter 31. EMF Produced by a Changing Magnetic Field, 1. Induction. Faraday s Law

Michael Faraday. Chapter 31. EMF Produced by a Changing Magnetic Field, 1. Induction. Faraday s Law Michael Faraday Chapter 31 Faraday s Law Great experimental physicist and chemist 1791 1867 Contributions to early electricity include: Invention of motor, generator, and transformer Electromagnetic induction

More information

Physics 511 Spring 2000

Physics 511 Spring 2000 Physics 511 Spring 2000 Problem Set #8: Due Friday April 7, 2000 Read: Notes on Multipole Radiation, Jackson Third Ed. Chap. 6.3-6.4, 9.1-9.4, Low 4.1-4.6 Problem 1. Electromagnetic radiation in one dimension

More information