# Symmetries 2 - Rotations in Space

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Symmetries 2 - Rotations in Space This symmetry is about the isotropy of space, i.e. space is the same in all orientations. Thus, if we continuously rotated an entire system in space, we expect the system to remain unchanged. Rotations mean things going round and round. If we allow the particle of mass m to rotate about an axis, the interesting variables are the distance r from the axis of rotation and the angle θ from some horizontal axis to describe by how much we have rotated the position of he particle. The first time derivative of angle θ gives the angular velocity ω = dθ dt. The speed in the direction of movement is then given by the distance r from the axis times the angular velocity v t = r dθ dt, keeping r fixed. The notation v t is chosen to refer to the component tangent to the path of the velocity of the particle.

2 Symmetries 2 - Rotations in Space In analogy with linear momentum that describes how fast the particle moves away from the origin, we can define angular momentum, denoted often as L, to describe how much the particle is going around the origin. A particle of mass m that goes round a circle of radius r = a with angular velocity dθ dt momentum L = ma 2 dθ dt. has angular In direct analogy with the translation invariance of linear momentum, we see that the angular momentum remains unchanged under a continuous rotation of the frame. Let θ = θ + α, where α is some constant angle, then in the primed system L θ = mr 2 dθ dt = mr 2 d(θ+α) dt = mr 2 dθ dt = L θ, since dα dt = 0. So, angular momentum is rotation invariant. The rate of change of angular momentum equals the external torque τ: dl dt = τ Where the torque describes how much a force rotates an object about an axis. Thus, again for an isolated system i.e. a system without an external torque, the angular momentum is conserved dl dt = 0 Therefore, the mechanical properties of an isolated system i.e. a system with no external fields to break the symmetry, do not change when the entire system is rotated in any manner in space.

3 Symmetries 2 - Rotations in Space For systems in an external potential u = u(r, θ, t) the angular momentum is conserved if the potential has rotational symmetry, i.e. the potential does not depend on the angle θ and thus u θ = 0. Example: an ice skater spinning in a gravitational field. The angular momentum L = mr 2 dθ dt is conserved because the gravitational potential is not dependent on θ. Schematically seen from above: Angular momentum conserved L 1 = L 2, but since m 1 = m 2 = m and r 1 > r 2, we get ω 2 > ω 1, i.e. the skater spins faster with arms in.

4 Symmetries 3 - Time translations Homogeneity of time, i.e. time is the same at every time, is the symmetry responsible for energy conservation. Let t t + α, with α some constant, to represent a continuous time translation. Consider a one dimensional system of a particle of mass m with kinetic energy m 2 ( dx dt )2 and potential energy U(x). If U = U(t) explicitly, then E is not conserved. The total energy is E = m 2 ( dx dt )2 + U(x). Differentiating the above equation with respect to time using the product rule, we obtain for the kinetic energy ( ( ) d m dx 2 ) ( ) ( ) dx d 2 x = m dt 2 dt dt dt 2 For the potential energy, remember x depends on t, so du dt = du dx dx dt by the chain rule. Then; de dt = dx [ m d 2 x dt dt + du ] 2 dx Recognising Newton s Second Law of motion, m d2 x dt 2 de dt = 0 = dp dt = du dx, you see that So energy is conserved! Thus, isolated systems have no explicit time dependance energy is conserved. Conservative systems, i.e. systems with constant external field energy is conserved. For example, for the particle of mass m projected in the presence of an external field, gravity, the total energy E = T + U = kinetic energy + potential energy is conserved.

5 Example: Simple Harmonic Oscillator Suppose we have a spring of spring constant k fixed in space at one end and has a mass m at the other end. The mass will stretch the spring until it reaches a vertical position of equilibrium, i.e. a position x 0 = 0 at which the resorting spring force, given by Hooke s law F = kx, exactly balances the gravitational force F = mg. k,m are constants. Newton s Second Law of motion for small oscillations about the position of equilibrium x 0 gives m d 2 x dt = kx 2 Where x is small and it measures the vertical distances from x 0 = 0.

6 Example: Simple Harmonic Oscillator If at time t = 0 the mass is at the position x 0 = 0, then the solution to this differential equation is given by x(t) = A sin(ωt), where A is the amplitude of the oscillations and ω is the angular frequency of these oscillations such that ω 2 = k m. We can visualise this motion by imagining a pen being attached to the mass that leaves a mark on the surface behind. If we then stretch that out over time, we would see something like this: The total energy of this system is given by E = m 2 ( dx dt )2 + kx2 2. Here we have position x(t) = A sin(ωt) and we can find speed dx dt = Aω cos(ωt). Thus we have for the energy E = m 2 A2 ω 2 cos 2 (ωt) + k 2 A2 sin 2 (ωt). Recalling that ω 2 = k m and factoring out the common factor, we have: E = A 2 k 2 [cos2 (ωt) + sin 2 (ωt)]

7 Example: Simple Harmonic Oscillator At this point it still looks like we have a time dependance, but looks can be deceptive. Let us graph cos 2 (ωt) and sin 2 (ωt): Adding these two graphs, we see that the sum for any t is always 1. In fact, this result sin 2 (ωt) + cos 2 (ωt) = 1 is true for any angle, i.e. if we let t t = t + α, we still have sin 2 (ωt ) + cos 2 (ωt ) = 1. Hence, E = A 2 k 2 = constant and de dt = 0 and so energy is conserved for an harmonic oscillator.

8 Example: Simple Harmonic Oscillator What about momentum conservation? The spring is fixed at an arbitrary, but once chosen fixed point in space, and consequently we were looking at motion about a fixed point x 0. If we make a linear translation in space letting x x = x + α, we notice that there is no spring! So momentum is not conserved.

9 Summary Whenever there is a continuous symmetry, there is a conserved quantity. - Emmy Noether Continuous parallel translations in space lead to momentum conservation. Continuous rotations in space lead to angular momentum conservation. Continuous translations in time lead to energy conservation.

### Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is

Dr. Alain Brizard College Physics I (PY 10) Oscillations Textbook Reference: Chapter 14 sections 1-8. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring

### Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

### Physics 2101 S c e t c i cti n o 3 n 3 March 31st Announcements: Quiz today about Ch. 14 Class Website:

Physics 2101 Section 3 March 31 st Announcements: Quiz today about Ch. 14 Class Website: http://www.phys.lsu.edu/classes/spring2010/phys2101 3/ http://www.phys.lsu.edu/~jzhang/teaching.html Simple Harmonic

### Oscillatory Motion SHM

Chapter 15 Oscillatory Motion SHM Dr. Armen Kocharian Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A

### Rotational Kinetic Energy

Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body

### Double Spring Harmonic Oscillator Lab

Dylan Humenik and Benjamin Daily Double Spring Harmonic Oscillator Lab Objectives: -Experimentally determine harmonic equations for a double spring system using various methods Part 1 Determining k of

### Physics 121, April 3, Equilibrium and Simple Harmonic Motion. Physics 121. April 3, Physics 121. April 3, Course Information

Physics 121, April 3, 2008. Equilibrium and Simple Harmonic Motion. Physics 121. April 3, 2008. Course Information Topics to be discussed today: Requirements for Equilibrium (a brief review) Stress and

### Apr 14, Calculus with Algebra and Trigonometry II Lecture 20More physics Aprapplications

Calculus with Algebra and Trigonometry II Lecture 20 More physics applications Apr 14, 2015 14, 2015 1 / 14 Motion in two dimensions A particle s motion can be described by specifying how the coordinates

### Investigating Springs (Simple Harmonic Motion)

Investigating Springs (Simple Harmonic Motion) INTRODUCTION The purpose of this lab is to study the well-known force exerted by a spring The force, as given by Hooke s Law, is a function of the amount

### Chapter 4. Oscillatory Motion. 4.1 The Important Stuff Simple Harmonic Motion

Chapter 4 Oscillatory Motion 4.1 The Important Stuff 4.1.1 Simple Harmonic Motion In this chapter we consider systems which have a motion which repeats itself in time, that is, it is periodic. In particular

### Solution Derivations for Capa #12

Solution Derivations for Capa #12 1) A hoop of radius 0.200 m and mass 0.460 kg, is suspended by a point on it s perimeter as shown in the figure. If the hoop is allowed to oscillate side to side as a

### Experiment 08: Physical Pendulum. 8.01t Nov 10, 2004

Experiment 08: Physical Pendulum 8.01t Nov 10, 2004 Goals Investigate the oscillation of a real (physical) pendulum and compare to an ideal (point mass) pendulum. Angular frequency calculation: Practice

### Oscillations Simple Harmonic Motion

Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 1, 2017 Overview oscillations simple harmonic motion (SHM) spring systems energy in SHM pendula damped oscillations Oscillations and

### Physics A - PHY 2048C

Physics A - PHY 2048C and 11/15/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 Did you read Chapter 12 in the textbook on? 2 Must an object be rotating to have a moment

### Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is:

Chapter 1 Kinematics 1.1 Basic ideas r(t) is the position of a particle; r = r is the distance to the origin. If r = x i + y j + z k = (x, y, z), then r = r = x 2 + y 2 + z 2. v(t) is the velocity; v =

### For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is

Experiment 14 The Physical Pendulum The period of oscillation of a physical pendulum is found to a high degree of accuracy by two methods: theory and experiment. The values are then compared. Theory For

### t = g = 10 m/s 2 = 2 s T = 2π g

Annotated Answers to the 1984 AP Physics C Mechanics Multiple Choice 1. D. Torque is the rotational analogue of force; F net = ma corresponds to τ net = Iα. 2. C. The horizontal speed does not affect the

### Chap. 15: Simple Harmonic Motion

Chap. 15: Simple Harmonic Motion Announcements: CAPA is due next Tuesday and next Friday. Web page: http://www.colorado.edu/physics/phys1110/phys1110_sp12/ Examples of periodic motion vibrating guitar

### Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Mass-spring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function

### Phys 7221 Homework # 8

Phys 71 Homework # 8 Gabriela González November 15, 6 Derivation 5-6: Torque free symmetric top In a torque free, symmetric top, with I x = I y = I, the angular velocity vector ω in body coordinates with

### AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

### Physics 5153 Classical Mechanics. Canonical Transformations-1

1 Introduction Physics 5153 Classical Mechanics Canonical Transformations The choice of generalized coordinates used to describe a physical system is completely arbitrary, but the Lagrangian is invariant

### Chapter 1. Harmonic Oscillator. 1.1 Energy Analysis

Chapter 1 Harmonic Oscillator Figure 1.1 illustrates the prototypical harmonic oscillator, the mass-spring system. A mass is attached to one end of a spring. The other end of the spring is attached to

### Concept Question: Normal Force

Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical

### Physics 106 Group Problems Summer 2015 Oscillations and Waves

Physics 106 Group Problems Summer 2015 Oscillations and Waves Name: 1. (5 points) The tension in a string with a linear mass density of 0.0010 kg/m is 0.40 N. What is the frequency of a sinusoidal wave

### Section Mass Spring Systems

Asst. Prof. Hottovy SM212-Section 3.1. Section 5.1-2 Mass Spring Systems Name: Purpose: To investigate the mass spring systems in Chapter 5. Procedure: Work on the following activity with 2-3 other students

### In-Class Problems 20-21: Work and Kinetic Energy Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 In-Class Problems 20-21: Work and Kinetic Energy Solutions In-Class-Problem 20 Calculating Work Integrals a) Work

### Unforced Oscillations

Unforced Oscillations Simple Harmonic Motion Hooke s Law Newton s Second Law Method of Force Competition Visualization of Harmonic Motion Phase-Amplitude Conversion The Simple Pendulum and The Linearized

### PHY131H1S - Class 20. Pre-class reading quiz on Chapter 12

PHY131H1S - Class 20 Today: Gravitational Torque Rotational Kinetic Energy Rolling without Slipping Equilibrium with Rotation Rotation Vectors Angular Momentum Pre-class reading quiz on Chapter 12 1 Last

### 4.1 Important Notes on Notation

Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the

### Practice Problems for Exam 2 Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall Term 008 Practice Problems for Exam Solutions Part I Concept Questions: Circle your answer. 1) A spring-loaded toy dart gun

### Simple and Physical Pendulums Challenge Problem Solutions

Simple and Physical Pendulums Challenge Problem Solutions Problem 1 Solutions: For this problem, the answers to parts a) through d) will rely on an analysis of the pendulum motion. There are two conventional

### = o + t = ot + ½ t 2 = o + 2

Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

### EXAMPLE 2: CLASSICAL MECHANICS: Worked examples. b) Position and velocity as integrals. Michaelmas Term Lectures Prof M.

CLASSICAL MECHANICS: Worked examples Michaelmas Term 2006 4 Lectures Prof M. Brouard EXAMPLE 2: b) Position and velocity as integrals Calculate the position of a particle given its time dependent acceleration:

### Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

### PREMED COURSE, 14/08/2015 OSCILLATIONS

PREMED COURSE, 14/08/2015 OSCILLATIONS PERIODIC MOTIONS Mechanical Metronom Laser Optical Bunjee jumping Electrical Astronomical Pulsar Biological ECG AC 50 Hz Another biological exampe PERIODIC MOTIONS

### Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Homeworks VIII and IX both center on Lagrangian mechanics and involve many of the same skills. Therefore,

### 28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.

### In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 TEAL Fall Term 004 In-Class Problems 30-3: Moment of Inertia, Torque, and Pendulum: Solutions Problem 30 Moment of Inertia of a

### 4. Sinusoidal solutions

16 4. Sinusoidal solutions Many things in nature are periodic, even sinusoidal. We will begin by reviewing terms surrounding periodic functions. If an LTI system is fed a periodic input signal, we have

### DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B-1A: ROTATIONAL DYNAMICS Essential Idea: The basic laws of mechanics have an extension when equivalent principles are applied to rotation. Actual

### Second order Unit Impulse Response. 1. Effect of a Unit Impulse on a Second order System

Effect of a Unit Impulse on a Second order System We consider a second order system mx + bx + kx = f (t) () Our first task is to derive the following If the input f (t) is an impulse cδ(t a), then the

### Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and

Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related Torque The door is free to rotate about

### Lecture Notes for PHY 405 Classical Mechanics

Lecture Notes for PHY 405 Classical Mechanics From Thorton & Marion s Classical Mechanics Prepared by Dr. Joseph M. Hahn Saint Mary s University Department of Astronomy & Physics September 1, 2005 Chapter

### National Quali cations

National Quali cations AH06 X70/77/ Mathematics of Mechanics TUESDAY, 7 MAY :00 PM :00 PM Total marks 00 Attempt ALL questions. You may use a calculator. Full credit will be given only to solutions which

### Lecture 9 - Rotational Dynamics

Lecture 9 - Rotational Dynamics A Puzzle... Angular momentum is a 3D vector, and changing its direction produces a torque τ = dl. An important application in our daily lives is that bicycles don t fall

### PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work.

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. In-Class Activities: 2. Apply the principle of work

### Good Vibes: Introduction to Oscillations

Good Vibes: Introduction to Oscillations Description: Several conceptual and qualitative questions related to main characteristics of simple harmonic motion: amplitude, displacement, period, frequency,

### Newton's Laws You should be able to state these laws using both words and equations.

Review before first test Physical Mechanics Fall 000 Newton's Laws You should be able to state these laws using both words and equations. The nd law most important for meteorology. Second law: net force

### Figure 1 Answer: = m

Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

### APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

### Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related Torque The door is free to rotate about

### Unforced Mechanical Vibrations

Unforced Mechanical Vibrations Today we begin to consider applications of second order ordinary differential equations. 1. Spring-Mass Systems 2. Unforced Systems: Damped Motion 1 Spring-Mass Systems We

### Brenda Rubenstein (Physics PhD)

PHYSICIST PROFILE Brenda Rubenstein (Physics PhD) Postdoctoral Researcher Lawrence Livermore Nat l Lab Livermore, CA In college, Brenda looked for a career path that would allow her to make a positive

### CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

### Two-Body Problem. Central Potential. 1D Motion

Two-Body Problem. Central Potential. D Motion The simplest non-trivial dynamical problem is the problem of two particles. The equations of motion read. m r = F 2, () We already know that the center of

### Exam 3 Practice Solutions

Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

### 21.55 Worksheet 7 - preparation problems - question 1:

Dynamics 76. Worksheet 7 - preparation problems - question : A coupled oscillator with two masses m and positions x (t) and x (t) is described by the following equations of motion: ẍ x + 8x ẍ x +x A. Write

### Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8 Rotational Equilibrium and Rotational Dynamics 1 Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related 2 Torque The door is free to rotate

### 5.6 Unforced Mechanical Vibrations

5.6 Unforced Mechanical Vibrations 215 5.6 Unforced Mechanical Vibrations The study of vibrating mechanical systems begins here with examples for unforced systems with one degree of freedom. The main example

### General Physics (PHY 2130)

General Physics (PHY 130) Lecture 0 Rotational dynamics equilibrium nd Newton s Law for rotational motion rolling Exam II review http://www.physics.wayne.edu/~apetrov/phy130/ Lightning Review Last lecture:

### Torque. Introduction. Torque. PHY torque - J. Hedberg

Torque PHY 207 - torque - J. Hedberg - 2017 1. Introduction 2. Torque 1. Lever arm changes 3. Net Torques 4. Moment of Rotational Inertia 1. Moment of Inertia for Arbitrary Shapes 2. Parallel Axis Theorem

### Math 240: Spring-mass Systems

Math 240: Spring-mass Systems Ryan Blair University of Pennsylvania Tuesday March 1, 2011 Ryan Blair (U Penn) Math 240: Spring-mass Systems Tuesday March 1, 2011 1 / 15 Outline 1 Review 2 Today s Goals

### Chapter 7 Hooke s Force law and Simple Harmonic Oscillations

Chapter 7 Hooke s Force law and Simple Harmonic Oscillations Hooke s Law An empirically derived relationship that approximately works for many materials over a limited range. Exactly true for a massless,

### Circular motion. Aug. 22, 2017

Circular motion Aug. 22, 2017 Until now, we have been observers to Newtonian physics through inertial reference frames. From our discussion of Newton s laws, these are frames which obey Newton s first

### Chapter 14. Oscillations and Resonance RESONANCE

Chapter 14 Oscillations and Resonance CHAPTER 14 RESONANCE OSCILLATIONS AND Oscillations and vibrations play a more significant role in our lives than we realize. When you strike a bell, the metal vibrates,

### Harmonic Oscillator. Mass-Spring Oscillator Resonance The Pendulum. Physics 109 Experiment Number 12

Harmonic Oscillator Mass-Spring Oscillator Resonance The Pendulum Physics 109 Experiment Number 12 Outline Simple harmonic motion The vertical mass-spring system Driven oscillations and resonance The pendulum

### C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0.

Problem #1 A. A projectile of mass m is shot vertically in the gravitational field. Its initial velocity is v o. Assuming there is no air resistance, how high does m go? B. Now assume the projectile is

### EXPANSION OF HORIZONTALLY ROTATING HELICAL SPRINGS

EXPANSION OF HORIZONTALLY ROTATING HELICAL SPRINGS Reza Montazeri Namin a a School of Mechanical Engineering, Sharif University of Technology, I. R. Iran. Abstract The present paper is a solution to IYPT

### Lecture 6. Angular Momentum and Roataion Invariance of L. x = xcosφ + ysinφ ' y = ycosφ xsinφ for φ << 1, sinφ φ, cosφ 1 x ' x + yφ y ' = y xφ,

Lecture 6 Conservation of Angular Momentum (talk about LL p. 9.3) In the previous lecture we saw that time invariance of the L leads to Energy Conservation, and translation invariance of L leads to Momentum

### Math Assignment 5

Math 2280 - Assignment 5 Dylan Zwick Fall 2013 Section 3.4-1, 5, 18, 21 Section 3.5-1, 11, 23, 28, 35, 47, 56 Section 3.6-1, 2, 9, 17, 24 1 Section 3.4 - Mechanical Vibrations 3.4.1 - Determine the period

### Physics H7A, Fall 2011 Homework 6 Solutions

Physics H7A, Fall 2011 Homework 6 Solutions 1. (Hooke s law) (a) What are the dimensions (in terms of M, L, and T ) of the spring constant k in Hooke s law? (b) If it takes 4.00 J of work to stretch a

### WAVES & SIMPLE HARMONIC MOTION

PROJECT WAVES & SIMPLE HARMONIC MOTION EVERY WAVE, REGARDLESS OF HOW HIGH AND FORCEFUL IT CRESTS, MUST EVENTUALLY COLLAPSE WITHIN ITSELF. - STEFAN ZWEIG What s a Wave? A wave is a wiggle in time and space

### DIFFERENTIATION RULES

3 DIFFERENTIATION RULES DIFFERENTIATION RULES Before starting this section, you might need to review the trigonometric functions. DIFFERENTIATION RULES In particular, it is important to remember that,

### Exercises Lecture 15

AM1 Mathematical Analysis 1 Oct. 011 Feb. 01 Date: January 7 Exercises Lecture 15 Harmonic Oscillators In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium

### FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is

### 1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

AP Physics B Practice Questions: Rotational Motion Multiple-Choice Questions 1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

### Conservation of Angular Momentum

Lecture 23 Chapter 12 Physics I Conservation of Angular Momentum Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will continue discussing rotational dynamics

### 7 Pendulum. Part II: More complicated situations

MATH 35, by T. Lakoba, University of Vermont 60 7 Pendulum. Part II: More complicated situations In this Lecture, we will pursue two main goals. First, we will take a glimpse at a method of Classical Mechanics

### FIITJEE Solutions to AIEEE PHYSICS

FTJEE Solutions to AEEE - 7 -PHYSCS Physics Code-O 4. The displacement of an object attached to a spring and executing simple harmonic motion is given by x = cos πt metres. The time at which the maximum

### Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1

Physics 131: Lecture Today s Agenda Rolling without slipping Angular Momentum Conservation o Angular Momentum Physics 01: Lecture 19, Pg 1 Rolling Without Slipping Rolling is a combination o rotation and

### Motion under the Influence of a Central Force

Copyright 004 5 Motion under the Influence of a Central Force The fundamental forces of nature depend only on the distance from the source. All the complex interactions that occur in the real world arise

### Translational Motion Rotational Motion Equations Sheet

PHYSICS 01 Translational Motion Rotational Motion Equations Sheet LINEAR ANGULAR Time t t Displacement x; (x = rθ) θ Velocity v = Δx/Δt; (v = rω) ω = Δθ/Δt Acceleration a = Δv/Δt; (a = rα) α = Δω/Δt (

### Damped harmonic motion

Damped harmonic motion March 3, 016 Harmonic motion is studied in the presence of a damping force proportional to the velocity. The complex method is introduced, and the different cases of under-damping,

### EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

1 EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development

### Harmonic Oscillator - Model Systems

3_Model Systems HarmonicOscillators.nb Chapter 3 Harmonic Oscillator - Model Systems 3.1 Mass on a spring in a gravitation field a 0.5 3.1.1 Force Method The two forces on the mass are due to the spring,

### Physics 231 Lecture 18

Physics 31 ecture 18 τ = Fd;d is the lever arm Main points of today s lecture: Energy Pendulum T = π g ( ) θ = θmax cos πft + ϑ0 Damped Oscillations x x equibrium = Ae bt/(m) cos(ω damped t) ω damped =

### Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Chapter 1: Rotation of Rigid Bodies Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Translational vs Rotational / / 1/ m x v dx dt a dv dt F ma p mv KE mv Work Fd P Fv / / 1/ I

### PHYSICS 149: Lecture 21

PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30

### kg C 10 C = J J = J kg C 20 C = J J = J J

Seat: PHYS 1500 (Spring 2007) Exam #3, V1 Name: 5 pts 1. A pendulum is made with a length of string of negligible mass with a 0.25 kg mass at the end. A 2nd pendulum is identical except the mass is 0.50

### Chapter 9 Notes. x cm =

Chapter 9 Notes Chapter 8 begins the discussion of rigid bodies, a system of particles with fixed relative positions. Previously we have dealt with translation of a particle: if a rigid body does not rotate

### Find the value of λ. (Total 9 marks)

1. A particle of mass 0.5 kg is attached to one end of a light elastic spring of natural length 0.9 m and modulus of elasticity λ newtons. The other end of the spring is attached to a fixed point O 3 on

### Oscillations. Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance

Oscillations Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance 1 Revision problem Please try problem #31 on page 480 A pendulum

### Imaginary. Axis. Real. Axis

Name ME6 Final. I certify that I upheld the Stanford Honor code during this exam Monday December 2, 25 3:3-6:3 p.m. ffl Print your name and sign the honor code statement ffl You may use your course notes,

### V sphere = 4 3 πr3. a c = v2. F c = m v2. F s = k s. F ds. = dw dt. P W t. K linear 1 2 mv2. U s = 1 2 kx2 E = K + U. p mv

v = v i + at x = x i + v i t + 1 2 at2 v 2 = v 2 i + 2a x F = ma F = dp dt P = mv R = v2 sin(2θ) g v dx dt a dv dt = d2 x dt 2 x = r cos(θ) V sphere = 4 3 πr3 a c = v2 r = rω2 F f = µf n F c = m v2 r =

### Lab 11. Spring-Mass Oscillations

Lab 11. Spring-Mass Oscillations Goals To determine experimentally whether the supplied spring obeys Hooke s law, and if so, to calculate its spring constant. To find a solution to the differential equation

### 0J2 - Mechanics Lecture Notes 4

0J2 - Mechanics Lecture Notes 4 Dynamics II Forces and motion in 2D and 3D This is the generalisation of Dynamics I to 2D and 3D. We shall use vectors and vector algebra including the scalar (dot) product.