Instabilities Driven Equilibration in Nuclear Collisions

Size: px
Start display at page:

Download "Instabilities Driven Equilibration in Nuclear Collisions"

Transcription

1 Instabilities Driven Equilibration in Nuclear Collisions Stanisław Mrówczyńsi Świętorzysa Academy, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland 1

2 Evidence of equilibration success of thermal models in describing ratios of article multilicities - chemical equilibrium of the final state n n a b ~ e m a m T b success of thermal models in describing article T sectra - thermal equilibrium of the final state d d m + n ~ e T T T

3 Evidence of equilibration at the early stage Success of hydrodynamic models in describing ellitic flow φ Hydrodynamics + v v t ρ Hydrodynamic requires local thermodynamical equilibrium! dn dϕ π/ π 3 φ

4 Equilibration is fast v ~ ε + y y Eccentricity decays due to the free streaming! ε v t eq. 6 fm/ c time of equilibration U. Heinz and P. Kolb, Nucl. Phys. A7, 69 4

5 Collisions are too slow Time scale of hard arton-arton scattering t hard ~ g 4 1 ln 1/ gt hard scattering ~ momentum transfer of order of T either single hard scattering or multile soft scatterings t eq t hard.6 fm/ c R. Baier, A.H. Mueller, D. Schiff and D.T. Son, Phys. Lett. B539, 46 5

6 Scenarios of fast equilibration Production mechanism of articles obeys equilibrium momentum distributions instantaneous equilibration Schwinger mechanism: d d π m n ~ e ee T T A. Białas, Phys.Lett. B466, W. Florowsi, Acta Phys. Pol. B35, D. Kharzeev & K. Tuchin, he-h/5134 Equilibration is fast because quar-qluon lasma is strongly couled sqgp E.V. Shurya, J. Phys.G3, S11 4 E.V. Shurya & I. Zahed, Phys. Rev. C7, Instabilities drive equilibration - as in the EM lasma 6

7 Instabilities driven equilibration The most imortant contributions St. Mrówczyńsi, Color Collective Effects At The Early Stage Of Ultrarelativistic Heavy Ion Collisions, Phys. Rev. C 49, St. Mrówczyńsi, Color filamentation in ultrarelativistic heavy-ion collisions, Phys. Lett. B 393, P. Romatsche and M. Stricland, Collective modes of an anisotroic quar gluon lasma, Phys. Rev. D 68, Unstable Mode Analysis P. Arnold, J. Lenaghan and G.D. Moore, QCD lasma instabilities and bottom-u thermalization, JHEP 38, 3 Numerical Simulations A. Rebhan, P. Romatsche and M. Stricland, Hard-loo dynamics of non-abelian lasma instabilities, Phys. Rev. Lett. 94, A. Dumitru and Y. Nara, QCD lasma instabilities and isotroization, arxiv:he-h/

8 Instabilities driven equilibration The most imortant contributions cont. St. Mrówczyńsi and M. Thoma, Hard Loo Aroach to Anisotroic Systems, Phys. Rev. D 6, 3611 P. Arnold and J. Lenaghan, The abelianization of QCD lasma instabilities, Phys. Rev. D 7, Effective Action St. Mrówczyńsi, A. Rebhan and M. Stricland, Hard-loo effective action for anisotroic lasmas, Phys. Rev. D 7, 54 4 Heavy-Ion Phenomenology J. Randru and St. Mrówczyńsi, Chromodynamic Weibel instabilities in relativistic nuclear collisions, Phys. Rev. C 68, P. Arnold, J. Lenaghan, G.D. Moore and L.G. Yaffe, Aarent thermalization due to lasma instabilities in quar gluon lasma, Phys. Rev. Lett. 94,

9 Instabilities stationary state Instability A t A + δa t δa t e γt fluctuation γ > stable configuration unstable configuration A At A At 9

10 Plasma instabilities instabilities in configuration sace hydrodynamic instabilities instabilities in momentum sace inetic instabilities instabilities due to non-equilibrium momentum distribution f is not ~ E e T 1

11 Kinetic instabilities longitudinal modes E, δρ ~ e i ωt r transverse modes E, δj ~ e i ωt r E electric field, wave vector, ρ charge density, j - current 11

12 Logitudinal modes unstable configuration lasma f, y, z beam Energy is transferred from articles to fields 1

13 Logitudinal modes Electric field decays - daming f, y, z Electric field grows - instability f, y, z article acceleration ω E article deceleration article acceleration ω E article deceleration ω - hase velocity of the electric field wave, - article s velocity E 13

14 Transverse modes Unstable transverse modes occur due anisotroic momentum distribution f f f ê y e ˆ Momentum distribution distribution can monotonously decrease in every direction 14

15 Momentum Sace Anisotroy in Nuclear Collisions Parton momentum distribution is initially strongly anisotroic T T L time L CM after 1-st collisions local rest frame 15

16 16 Seeds of instability t f E d j j ab b a v δ π δ ν ν Current fluctuations,,,,, t t t t Direction of the momentum surlus

17 Mechanism of filamentation z F v v F v v F F F q v B j z B j B y y 17

18 Disersion equation Equation of motion of chromodynamic field A in momentum sace ν ν ν [ g Π ] A ν Disersion equation gluon self-energy det[ g ν ν Π ν ] ω, Instabilities solutions with Imω > A Im ~ e ωt Dynamical information is hidden in ν Π. How to get it? 18

19 Transort theory distribution functions Distribution functions of quars Q, antiquars Q, gluons G, 3 3 matri 8 8 matri Distribution functions are gauge deendent Q, U Q, U 1 Tr[ Q, ] gauge indeendent Baryon current Color current j 3 1 d b Tr [ Q, Q, ] 3 3 π E 3 d 3 g π E { Q, 1 Tr[ Q, ] +...} 3 antiquars & gluons 19

20 Transort theory transort equations fundamental adjoint v D g F Q, v v D + g F Q, D F v v g v G, C g C C free streaming mean-field force collisions D ig[ A,...], F ν A ν ν A ig[ A, A ν ] D ν ν F j [ Q, Q, G] mean-field generation collisionless limit: C C Cg

21 1 Transort theory - linearization,,, + G g G Q F g Q D Q F g Q D v v v v v v δ δ δ F D,, Q Q Q δ + Linearized transort equations,,, Q Q Q Q δ >> δ >> stationary colorless state fluctuation n Q ij ij δ

22 Transort theory olarization tensor A j ν ν Π ' ', 4 Q F d g Q v v δ 4 D δ ],, [ G Q Q j δ δ δ λ σ σ λ ν νλ ν π f i g E d g + Π + ] [ 3 3 g n n n f + +, Π Π Π ν ν ν

23 Diagrammatic Hard Loo aroach Π ν Hard loo aroimation: << g d 3 ν λ ν νλ Π g 3 σ + π E σ + i [ ] f λ Π ν ν ν Π, Π 3

24 Disersion equation Disersion equation det[ g ν ν Π ν ] ε ij ij 1 ij δ Π ω Disersion equation Π ν chromodielectric tensor ω, det[ δ ij i j ω ε ij ] ij ij g d v ε δ ω π ω v + i 3 i f l [1 v ω δ lj + l v ω j ] v / E 4

25 y Disersion equation configuration of interest z Direction of the momentum surlus j,, j, E,, E,,, Disersion equation zz ω ε ω, 5

26 Eistence of unstable modes Penrose criterion H ω C ω ω ω ε zz ω, d ω 1 dh ω πi H ω dω Im H ω ω dω d ln H ω ln H ω πi dω C Re H number of zeros of Hω in C ω i H C Imω ω < Re ω φπ φπ There are unstable modes if + 6

27 Unstable solution f π 1/ 3/ ρσ σ σ 3 e σ α s ρ 6 fm 3 g / 4π. 3 σ.3 GeV ω ε zz ω, solution ω ± i γ < γ R J. Randru and St. M., Phys. Rev. C 68,

28 Growth of instabilities numerical simulation Classical system of colored articles & fields initial fields: Gaussian noise as in Color Glass Condensate initial article distribution: f, ~ δ e y + hard z magnetic hard 1 GeV 3 L 4 fm ρ 1 fm electric A. Dumitru and Y. Nara, arxiv:he-h/5311 8

29 Abelanization V eff [ A a ] A a A a g f abc f ade A b A d A c A e the gauge a a A, Ai t,, y, z Ai a L YM 1 4 g 1 4 f F abc a ν f F ade ν a A b 1 A d B a B A c a A e SU a a g b B A + fabca A c P. Arnold and J. Lenaghan,Phys. Rev. D 7,

30 Abelanization numerical simulation Classical system of colored articles & fields φ L rms Tr[ A ] d L C L d L Tr i[ A y, A z ] Tr[ A ] A. Dumitru and Y. Nara, arxiv:he-h/5311 3

31 Isotroization - articles Direction of the momentum surlus j B F dt F 31

32 Isotroization - fields Direction of the momentum surlus E B P ~ B E ~ fields a a 3

33 Isotroization numerical simulation Classical system of colored articles & fields T ij 3 d π 3 i E j f T yy +T zz / Isotroy: T T + Tyy Tzz / A. Dumitru and Y. Nara, arxiv:he-h/

34 Conclusion The scenario of instabilities driven equilibration seems to be a lausible solution of the fast equilibration roblem of relativistic heavy-ion collisions 34

Instabilities Driven Equilibration of the Quark-Gluon Plasma

Instabilities Driven Equilibration of the Quark-Gluon Plasma Instabilities Driven Equilibration of the Quar-Gluon Plasma Stanisław Mrówczyńsi Świętorzysa Academy, Kielce, Poland & Institute for Nuclear Studies, Warsaw, Poland 1 - why Mar s favorite formula e -E/T

More information

Quark-Gluon LHC

Quark-Gluon LHC Quar-Gluon Plasma @ LHC Stanisław Mrówczyńsi Świętorzysa Academy Kielce Poland & Institute for Nuclear Studies Warsaw Poland QGP @ LHC wealy couled strongly collectie unstable equilibrates fast 1 Relatiistic

More information

Shear Viscosity in an Anisotropically Expanding QGP

Shear Viscosity in an Anisotropically Expanding QGP Shear Viscosity in an Anisotroically Exanding QGP Steffen A. Bass Duke University QGP Proerties: key findings The sqgp: ro s and con s Anomalous Viscosity work in collaboration with M. Asakawa, B. Mueller

More information

Longitudinal thermalization via the chromo-weibel instability

Longitudinal thermalization via the chromo-weibel instability Longitudinal thermalization via the chromo-weibel instability Maximilian Attems Frankfurt Institute of Advanced Studies 1207.5795, 1301.7749 Collaborators: Anton Rebhan, Michael Strickland Schladming,

More information

Bulk and shear viscosities for the Gribov-Zwanziger plasma

Bulk and shear viscosities for the Gribov-Zwanziger plasma EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 215 Bulk and shear viscosities for the Gribov-Zwanziger plasma Wojciech

More information

Isotropization from Color Field Condensate in heavy ion collisions

Isotropization from Color Field Condensate in heavy ion collisions Isotropization from Color Field Condensate in heavy ion collisions Stefan Flörchinger (CERN) RBRC Workshop on The Approach to Equilibrium in Strongly Interacting Matter, BNL, April 2, 2014. based on: S.

More information

Instability in an expanding non-abelian system

Instability in an expanding non-abelian system Instability in an expanding non-abelian system Kenji Fukushima (Department of Physics, Keio University) 1 Why expanding? 2 Relativistic Heavy-Ion Collision RHIC LHC Heavy-ions collide A new state of matter

More information

Classical YM Dynamics and Turbulence Diffusion

Classical YM Dynamics and Turbulence Diffusion Classical YM Dynamics and Turbulence Diffusion Kenji Fukushima Department of Physics, Keio University 1 Transverse Pattern Formation Central Results g 2 μ t=0.1 g 2 μ t=30 g 2 μ t=10 June 18, 2013g@2 μ

More information

arxiv: v1 [nucl-th] 7 Jan 2019

arxiv: v1 [nucl-th] 7 Jan 2019 arxiv:1901.01924v1 [nucl-th] 7 Jan 2019 E-mail: sigtryggur.hauksson@mail.mcgill.ca Sangyong Jeon E-mail: jeon@physics.mcgill.ca Charles Gale E-mail: gale@physics.mcgill.ca Jets are a promising way to probe

More information

Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions

Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions Kyoto, 2015/10/05 Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions Dr. Marco Ruggieri Physics and Astronomy Department, Catania University, Catania (Italy) Collaborators: Vincenzo Greco

More information

Plasma Instabilities: Review

Plasma Instabilities: Review Plasma Instabilities: Review Guy Moore, McGill University And Arnold, Yaffe, Mrówczyński, Romatschke, Strickland, Rebhan, Lenaghan, Dumitru, Nara, Bödeker, Rummukainen, Berges, Venugopalan, Ipp, Schenke,

More information

arxiv: v1 [nucl-th] 2 Mar 2015

arxiv: v1 [nucl-th] 2 Mar 2015 The domain of validity of fluid dynamics and the onset of cavitation in ultrarelativistic heavy ion collisions arxiv:503.0053v [nucl-th] 2 Mar 205 Department of Physics, McGill University, 3600 University

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

Chemical composition of the decaying glasma

Chemical composition of the decaying glasma Chemical composition of the decaying glasma Tuomas Lappi BNL tvv@quark.phy.bnl.gov with F. Gelis and K. Kajantie Strangeness in Quark Matter, UCLA, March 2006 Abstract I will present results of a nonperturbative

More information

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario.

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario. Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario. Shear viscosity from BAMPS Andrej El Zhe Xu Carsten Greiner Institut für Theoretische Physik

More information

Equilibration of Scalar Fields in an Expanding System

Equilibration of Scalar Fields in an Expanding System Equilibration of Scalar Fields in an Expanding System Akihiro Nishiyama (Kyoto Sangyo University Collaboration with Yoshitaka Hatta (University of Tsukuba Aug 22nd, 2012. arxiv:1206.4743 Relativistic Heavy

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

arxiv: v1 [hep-ph] 30 Dec 2018

arxiv: v1 [hep-ph] 30 Dec 2018 Jet fragmentation in a QCD medium: Universal quark/gluon ration and Wave turbulence arxiv:1812.11533v1 [hep-ph] 30 Dec 2018 Y. Mehtar-Tani Brookhaven National Laboratory, Physics Department, Upton, NY

More information

Plasmon mass scale and quantum fluctuations of classical fields on a real time lattice

Plasmon mass scale and quantum fluctuations of classical fields on a real time lattice https://helda.helsinki.fi Plasmon mass scale and quantum fluctuations of classical fields on a real time lattice Kurkela, Aleksi 2018-03 Kurkela, A, Lappi, T & Peuron, J 2018, ' Plasmon mass scale and

More information

MD Simulations of classical sqgp

MD Simulations of classical sqgp MD Simulations of classical sqgp From RHIC to LHC: Achievements and Opportunities Tuesday, November 7, 2006 Kevin Dusling Ismail Zahed Outline Introduction Motivation for sqgp Motivation for classical

More information

arxiv: v1 [nucl-th] 26 Aug 2011

arxiv: v1 [nucl-th] 26 Aug 2011 The Viscosity of Quark-Gluon Plasma at RHIC and the LHC Ulrich Heinz, Chun Shen and Huichao Song Deartment of Physics, The Ohio State University, Columbus, Ohio 436, USA Lawrence Berkeley National Laboratory,

More information

Universality classes far from equilibrium of scalar and gauge theories

Universality classes far from equilibrium of scalar and gauge theories Universality classes far from equilibrium of scalar and gauge theories Ruprecht-Karls University Heidelberg Kirill Boguslavski Talk based on: INT thermalization workshop / week 2 Aug 14, 2015 In collaboration

More information

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk Final Exam Instructions: Please write clearly. Do not just answer the questions, but document the thoughts leading

More information

Perfect-fluid hydrodynamics for RHIC successes and problems

Perfect-fluid hydrodynamics for RHIC successes and problems Title Perfect-fluid hydrodynamics for RHIC successes and problems Wojciech Florkowski with W. Broniowski, M. Chojnacki, A. Kisiel, Institute of Nuclear Physics, Kraków & Jan Kochanowski University, Kielce,

More information

Gerry and Fermi Liquid Theory. Thomas Schaefer North Carolina State

Gerry and Fermi Liquid Theory. Thomas Schaefer North Carolina State Ë Ë Ë³ Gerry and Fermi Liquid Theory Thomas Schaefer North Carolina State Introduction I learned about Fermi liquid theory (FLT from Gerry. I was under the imression that the theory amounted to the oeration

More information

Chiral Magnetic Effect

Chiral Magnetic Effect Chiral Magnetic Effect Kenji Fukushima (Yukawa Institute for Theoretical Physics) 1 Strong q Angle, Strong CP Problem and Heavy-Ion Collisions P and CP Violation in the YM Theory Gauge Actions P- and CP-

More information

Hadronization by coalescence plus fragmentation from RHIC to LHC

Hadronization by coalescence plus fragmentation from RHIC to LHC Vincenzo Minissale University of Catania INFN LNS Hadronization by coalescence lus fragmentation from RHIC to LHC Nucleus Nucleus 015, June 015 Vincenzo Greco Francesco Scardina arxiv:150.0613 Outline

More information

High energy factorization in Nucleus-Nucleus collisions

High energy factorization in Nucleus-Nucleus collisions High energy factorization in Nucleus-Nucleus collisions François Gelis CERN and CEA/Saclay François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 1

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Lawrence Berkeley National Laboratory Berkeley, US 1 Introduction: Heavy Ion Physics Today t = 5 10 17 sec T=1

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

THERMALIZATION, ISOTROPIZATION AND FLOWS OF THE SHATTERED CGC

THERMALIZATION, ISOTROPIZATION AND FLOWS OF THE SHATTERED CGC Dr. Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy) THERMALIZATION, ISOTROPIZATION AND FLOWS OF THE SHATTERED CGC Collaborators: - Vincenzo Greco

More information

Heavy ion collisions and black hole dynamics

Heavy ion collisions and black hole dynamics Gen Relativ Gravit (2007) 39:1533 1538 DOI 10.1007/s10714-007-0473-8 ESSAY Heavy ion collisions and black hole dynamics Steven S. Gubser Published online: 3 July 2007 Springer Science+Business Media, LLC

More information

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature Leonard Fister, Jan M. Pawlowski, Universität Heidelberg... work in progress ERG Corfu - September 2 Motivation ultimate goal: computation

More information

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Benjamin Dönigus 03.12.2009 Seminar WS 2009/2010 Relativistische Schwerionenphysik Interface of Quark-Gluon Plasma and

More information

Onset of Jet decoherence in dense QCD media

Onset of Jet decoherence in dense QCD media Onset of Jet decoherence in dense QCD media Yacine Mehtar-Tani In collaboration with Carlos A. Salgado and Konrad Tywoniuk PRL 106 (2011) arxiv:1009.2965 [he-h] arxiv:1102.4317 [he-h] Y. M.-T. and K. Tywoniuk,

More information

The direct photon puzzle

The direct photon puzzle The direct photon puzzle Jean-François Paquet January 16, 2017 ALICE Journal Club Jean-François Paquet (Stony Brook) 2 What is the direct photon puzzle? > Background

More information

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12 Strong Interaction Effects of Strong Magnetic Fields Berndt Mueller CPODD Workshop 2012 RIKEN BNL, 25-27 June 2012 Overview Pseudoscalar QED-QCD couplings CME phenomenology Results M. Asakawa, A. Majumder

More information

On the Ter-Mikaelian and Landau Pomeranchuk effects for induced soft gluon radiation in a QCD medium

On the Ter-Mikaelian and Landau Pomeranchuk effects for induced soft gluon radiation in a QCD medium On the Ter-Miaelian and Landau Pomeranchu effects for induced soft gluon radiation in a QCD medium B. Kämpfer 1, O.P. Pavleno 1,2 1 Forschungszentrum Rossendorf, PF 10119, 01314 Dresden, Germany 2 Institute

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

ECT*, Trento December 3, Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina

ECT*, Trento December 3, Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina ECT*, Trento December 3, 2015 Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina initial stage pre-equilibrium hydrodynamical evolution hadronization freeze-out

More information

Chiral kinetic theory

Chiral kinetic theory Chiral kinetic theory. 1/12 Chiral kinetic theory M. Stehanov U. of Illinois at Chicago with Yi Yin Chiral kinetic theory. 2/12 Motivation Interesting alications of chiral magnetic/vortical effect involve

More information

High energy factorization in Nucleus-Nucleus collisions

High energy factorization in Nucleus-Nucleus collisions High energy factorization in Nucleus-Nucleus collisions François Gelis CERN and CEA/Saclay François Gelis 2008 Workshop on Hot and dense matter in the RHIC-LHC era, TIFR, Mumbai, February 2008 - p. 1 Outline

More information

Photon production in the bottom-up thermalization of heavy-ion collisions

Photon production in the bottom-up thermalization of heavy-ion collisions Photon production in the bottom-up thermalization of heavy-ion collisions Naoto Tanji Institut für Theoretische Physik Heidelberg University arxiv: 1701.05064 collaboration with Jürgen Berges (Heidelberg

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

Berndt Müller. H-QM Opening Symposium GSI, November 9, 2006

Berndt Müller. H-QM Opening Symposium GSI, November 9, 2006 Berndt Müller H-QM Opening Symposium GSI, November 9, 2006 1 Nucleons + mesons Genre: Comedy / Crime / Romance / Thriller Eating Takoyaki (squid balls) fresh from the grill in Osaka/Japan Quarkgluon plasma

More information

Hybrid Model of Heavy-Ion Collisions at BES Energies with Dynamical Sources

Hybrid Model of Heavy-Ion Collisions at BES Energies with Dynamical Sources Hybrid Model of Heavy-Ion Collisions at BES Energies with Dynamical Sources Lipei Du In collaboration with Gojko Vujanovic and Ulrich Heinz Department of Physics, The Ohio State University, USA May 14,

More information

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider Berndt Mueller (Duke University) LANL Theory Colloquium 2 June 2005 The Road to the Quark-Gluon Plasma

More information

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Single Au+Au Collision seen by STAR@RHIC Gunther Roland Gunther Roland/MIT July 15 2003 MPI Munich 15/7/2003 Gunther Roland/MIT www.spiegel.de

More information

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab hreshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab Introduction With the advent of higher energies at Jefferson Lab, the study of charmonium becomes possible. he threshold production of J/5

More information

Towards new relativistic hydrodynamcis from AdS/CFT

Towards new relativistic hydrodynamcis from AdS/CFT Towards new relativistic hydrodynamcis from AdS/CFT Michael Lublinsky Stony Brook with Edward Shuryak QGP is Deconfined QGP is strongly coupled (sqgp) behaves almost like a perfect liquid (Navier-Stokes

More information

Transport Properties in Magnetic Field

Transport Properties in Magnetic Field University of Illinois at Chicago/ RIKEN-BNL Research Center The Phases of Dense Matter, July 11-Aug 12 INT, July 28, 2016 The magnetic field in heavy-ion collisions In heavy-ion collisions, two magnetic

More information

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC Journal of Physics: Conference Series PAPER OPEN ACCESS Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN = 39-200 GeV at RHIC To cite this article: S S Vdovkina 2017 J.

More information

The Strange Physics of Nonabelian Plasmas

The Strange Physics of Nonabelian Plasmas The Strange Physics of Nonabelian Plasmas Guy Moore, McGill University Review: What does Nonabelian mean? Instability of a Uniform magnetic field Radiation and the LPM effect Plasma instabilities My units:

More information

Indications for a critical end point in the phase diagram for hot and dense nuclear matter

Indications for a critical end point in the phase diagram for hot and dense nuclear matter Indications for a critical end point in the phase diagram for hot and dense nuclear matter Roy A. Lacey Stony Brook University Outline Introduction Phase Diagram Search strategy Theoretical guidance Femtoscopic

More information

Instabilities in the Quark-Gluon Plasma

Instabilities in the Quark-Gluon Plasma in the Quark-Gluon Maximilian Attems Institute for Theoretical Physics, TU Vienna October 5, 2010 Dans la vie, rien n est à craindre, tout est à comprendre. Marie Curie Vienna Theory Lunch Seminar 2010

More information

arxiv: v1 [nucl-th] 3 Oct 2018

arxiv: v1 [nucl-th] 3 Oct 2018 Fluid dynamics for relativistic spin-polarized media Wojciech Florkowski arxiv:1810.01709v1 [nucl-th] 3 Oct 2018 Institute of Nuclear Physics, PL-31342 Kraków, Poland Jan Kochanowski University, PL-25406

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

TRACES OF NONEXTENSIVITY IN PARTICLE PHYSICS DUE TO FLUCTUATIONS. 1 Introduction: connection of fluctuations and nonextensivity

TRACES OF NONEXTENSIVITY IN PARTICLE PHYSICS DUE TO FLUCTUATIONS. 1 Introduction: connection of fluctuations and nonextensivity TRACES OF NONEXTENSIVITY IN PARTICLE PHYSICS DUE TO FLUCTUATIONS G.WILK The Andrzej So ltan Institute for Nuclear Studies; Hoża 69; 00-689 Warsaw, Poland E-mail: wilk@fuw.edu.pl Z.W LODARCZYK Institute

More information

Factorization in high energy nucleus-nucleus collisions

Factorization in high energy nucleus-nucleus collisions Factorization in high energy nucleus-nucleus collisions ISMD, Kielce, September 2012 François Gelis IPhT, Saclay 1 / 30 Outline 1 Color Glass Condensate 2 Factorization in Deep Inelastic Scattering 3 Factorization

More information

Can hadronic rescattering explain the jet quenching at relativistic energies?

Can hadronic rescattering explain the jet quenching at relativistic energies? PHYSICAL REVIEW C 71, 3496 (25) Can hadronic rescattering explain the jet quenching at relativistic energies? David Hardtke Department of Physics, University of California, Berkeley, California 9472 USA

More information

arxiv: v1 [nucl-th] 9 Jun 2008

arxiv: v1 [nucl-th] 9 Jun 2008 Dissipative effects from transport and viscous hydrodynamics arxiv:0806.1367v1 [nucl-th] 9 Jun 2008 1. Introduction Denes Molnar 1,2 and Pasi Huovinen 1 1 Purdue University, Physics Department, 525 Northwestern

More information

Based on work in progress in collaboration with: F. Scardina, S. Plumari and V. Greco

Based on work in progress in collaboration with: F. Scardina, S. Plumari and V. Greco Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy) Based on work in progress in collaboration with: F. Scardina, S. Plumari and V. Greco Bari, 2012 December

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 3: Approaching Perfection Columbia University Reminder- From Lecture 2 2 A new state of matter (QGP?) is formed in Au+Au collisions at RHIC Densities

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 5, 007 1 Infrared

More information

Fourier transforms, Generalised functions and Greens functions

Fourier transforms, Generalised functions and Greens functions Fourier transforms, Generalised functions and Greens functions T. Johnson 2015-01-23 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 1 Motivation A big part of this course concerns

More information

arxiv: v1 [hep-ph] 13 Sep 2016

arxiv: v1 [hep-ph] 13 Sep 2016 Energy loss as the origin of an universal scaling law of the elliptic flow Carlota Andrés, 1, Mikhail Braun, 2, and Carlos Pajares 1, 1 Instituto Galego de Física de Altas Enerxías IGFAE, arxiv:1609.03927v1

More information

Polyakov Loop in a Magnetic Field

Polyakov Loop in a Magnetic Field Polyakov Loop in a Magnetic Field Kenji Fukushima (Department of Physics, Keio University) March 17, 11 @ St.Goar 1 Talk Contents Relativistic Heavy-Ion Collision and Strong Magnetic Fields eb ~m ~118

More information

Weibel instability and filamentary structures of a relativistic electron beam in plasma

Weibel instability and filamentary structures of a relativistic electron beam in plasma Mitglied der Helmholtz-Gemeinschaft 7 th Direct Drive and Fast Ignition Workshop Prague, 3-6 May, 009 Weibel instability and filamentary structures of a relativistic electron beam in plasma Anupam Karmakar

More information

Recent flow results at RHIC

Recent flow results at RHIC Recent flow results at RHIC Hiroshi Masui / University of sukuba Flow and heavy flavour worksho in high energy heavy ion collisions: GRN worksho, Inchon, Feb./24-26, 215 H. Masui / Univ. of sukuba 1 /3

More information

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS Dr. Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy) ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS Based on collaboration with: V. Greco, S.

More information

Exploring quark-gluon plasma in relativistic heavy-ion collisions

Exploring quark-gluon plasma in relativistic heavy-ion collisions Exploring quark-gluon plasma in relativistic heavy-ion collisions Guang-You Qin 秦广友 Duke University @ University of Science and Technology of China July 12 th, 2011 Outline Introduction Collective flow

More information

QCD and Rescattering in Nuclear Targets Lecture 2

QCD and Rescattering in Nuclear Targets Lecture 2 QCD and Rescattering in Nuclear Targets Lecture Jianwei Qiu Iowa State University The 1 st Annual Hampton University Graduate Studies Program (HUGS 006) June 5-3, 006 Jefferson Lab, Newport News, Virginia

More information

arxiv: v1 [nucl-th] 28 Nov 2017

arxiv: v1 [nucl-th] 28 Nov 2017 Initial state and hydrodynamic modeling of heavy-ion collisions at RHIC BES energies arxiv:1711.1544v1 [nucl-th] 28 Nov 217 Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail:

More information

Fluid dynamic propagation of initial baryon number perturbations

Fluid dynamic propagation of initial baryon number perturbations Fluid dynamic propagation of initial baryon number perturbations Stefan Flörchinger (Heidelberg U.) Initial Stages 2016, Lisbon, mainly based on S. Floerchinger & M. Martinez: Fluid dynamic propagation

More information

The Weibel Instability in Collisionless Relativistic Shocks

The Weibel Instability in Collisionless Relativistic Shocks The Weibel Instability in Collisionless Relativistic Shocks Tanim Islam University of Virginia The Weibel instability[1], purely electromagnetic in nature, has been used to explain the strong magnetic

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Fluid dynamics with a critical point

Fluid dynamics with a critical point Fluid dynamics with a critical point Marlene Nahrgang PhD student of Institut für Theoretische Physik, Goethe- Universität Frankfurt am Main. Scientific interests include QCD, quark-gluon plasma, and particle

More information

Entropy production in relativistic heavy ion collisions with use of quantum distribution functions

Entropy production in relativistic heavy ion collisions with use of quantum distribution functions Entropy production in relativistic heavy ion collisions with use of quantum distribution functions Hidekazu Tsukiji Yukawa Institute for Theoretical Physics Kyoto University (Japan) Collaborators Hideaki

More information

arxiv: v1 [nucl-ex] 11 Jul 2011

arxiv: v1 [nucl-ex] 11 Jul 2011 Bulk Properties of Pb-Pb collisions at snn = 2.76 TeV measured by ALICE arxiv:17.1973v1 [nucl-ex] 11 Jul 2011 Alberica Toia for the ALICE Collaboration CERN Div. PH, 1211 Geneva 23 E-mail: alberica.toia@cern.ch

More information

Hydrodynamics of the superfluid CFL phase and r-mode instabilities

Hydrodynamics of the superfluid CFL phase and r-mode instabilities Hydrodynamics of the superfluid CFL phase and r-mode instabilities Cristina Manuel Instituto de Ciencias del Espacio (IEEC-CSIC) Barcelona Hirschegg 2009 Outline Introduction Superfluid hydrodynamics Hydrodynamics

More information

Multiple Scattering with fully coherent scattering in pa and AA collisions

Multiple Scattering with fully coherent scattering in pa and AA collisions Journal of Physics: Conference Series PAPER OPEN ACCESS Multiple Scattering with fully coherent scattering in pa and AA collisions To cite this article: Haitham Zaraket 217 J. Phys.: Conf. Ser. 85 126

More information

Heavy flavor with

Heavy flavor with Heavy flavor with CBM@FAIR Hendrik van Hees Goethe University Frankfurt and FIAS April 21, 2015 Hendrik van Hees (GU Frankfurt/FIAS) Heavy flavor with CBM@FAIR April 21, 2015 1 / 22 Outline 1 Motivation:

More information

Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV

Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV Samantha G Brovko June 14, 2011 1 INTRODUCTION In ultra-relativistic heavy ion collisions a partonic state of

More information

A Senior Honors Thesis

A Senior Honors Thesis A Study Using Relativistic Hydrodynamics for Ultrarelativistic Heavy-Ion Collisions: The Quark-Gluon-Plasma to Hadron Phase Transition and LHC Predictions A Senior Honors Thesis Presented in Partial Fulfillment

More information

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from To Topological charge flucutations, D. Leinweber Tracks in TPC of STAR And back! Harmen Warringa,

More information

Quark chemical equilibrabon for thermal photon ellipbc flow

Quark chemical equilibrabon for thermal photon ellipbc flow AM, Phys. Rev. C 90, 021901(R) (2014) AM, arxiv:1408.1410 [nucl- th] Quark chemical equilibrabon for thermal photon ellipbc flow Akihiko Monnai RIKEN BNL Research Center Nishina Center for Accelerator-

More information

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically)

More information

arxiv: v1 [nucl-ex] 28 Sep 2009

arxiv: v1 [nucl-ex] 28 Sep 2009 Raidity losses in heavy-ion collisions from AGS to RHIC energies arxiv:99.546v1 [nucl-ex] 28 Se 29 1. Introduction F. C. Zhou 1,2, Z. B. Yin 1,2 and D. C. Zhou 1,2 1 Institute of Particle Physics, Huazhong

More information

The Quark-Parton Model

The Quark-Parton Model The Quark-Parton Model Before uarks and gluons were generally acceted Feynman roosed that the roton was made u of oint-like constituents artons Both Bjorken Scaling and the Callan-Gross relationshi can

More information

Stefano Carignano 12/2010. Phenomenology of particle production in pp collisions

Stefano Carignano 12/2010. Phenomenology of particle production in pp collisions Phenomenology of particle production in pp collisions Stefano Carignano 12/2010 Outline Some very basic stuff Modeling interactions in pp collisions Strings and hadronization Motivation pp collisions provide

More information

From spectral functions to viscosity in the QuarkGluon Plasma

From spectral functions to viscosity in the QuarkGluon Plasma From spectral functions to viscosity in the QuarkGluon Plasma N.C., Haas, Pawlowski, Strodthoff: Phys. Rev. Lett. 115.112002, 2015 Hirschegg 21.1.2016 Outline Introduction Framework for transport coefficients

More information

QCD in Heavy-ion collisions

QCD in Heavy-ion collisions QCD in Heavy-ion collisions RPP 2012, Montpellier transition t p z q IPhT, Saclay 1 Outline 1 2 3 4 5 6 7 transition 2 1 transition 2 3 4 5 6 transition 7 2 Asymptotic freedom Running coupling : α s =

More information

Monte Carlo Non-Linear Flow modes studies with AMPT

Monte Carlo Non-Linear Flow modes studies with AMPT Monte Carlo Non-Linear Flow modes studies with AMP Daniel Noel Supervised by: Naghmeh Mohammadi 2 July - 31 August 218 1 Introduction Heavy-ion collisions at the Large Hadron Collider (LHC) generate such

More information

arxiv: v1 [nucl-th] 11 Aug 2013

arxiv: v1 [nucl-th] 11 Aug 2013 Flow in p-pb collisions at the LHC arxiv:8.7v [nucl-th] Aug Wojciech Broniowski he H. Niewodniczański Institute of Nuclear Physics PAN, - Cracow, Poland and Institute of Physics, Jan Kochanowski University,

More information

arxiv:hep-ph/ v1 25 Aug 2001

arxiv:hep-ph/ v1 25 Aug 2001 Application of nonextensive statistics to particle and nuclear physics arxiv:hep-ph/010815v1 5 Aug 001 G. Wilk a, Z.W lodarczyk b a The Andrzej So ltan Institute for Nuclear Studies Hoża 69; 00-689 Warsaw,

More information

Studies of QCD Matter From E178 at NAL to CMS at LHC

Studies of QCD Matter From E178 at NAL to CMS at LHC Studies of QCD Matter From E178 at NAL to CMS at LHC Wit Busza MIT Wit Busza Fermilab Colloquium, May 2012 1 The Study of the Condensed Matter of QCD, more commonly known as Relativistic Heavy Ion Physics

More information

Intense laser-matter interaction: Probing the QED vacuum

Intense laser-matter interaction: Probing the QED vacuum Intense laser-matter interaction: Probing the QED vacuum Hartmut Ruhl Physics Department, LMU Munich, Germany ELI-NP, Bucharest March 11, 2011 Experimental configuration Two laser pulses (red) collide

More information

arxiv:hep-ph/ v1 29 May 2000

arxiv:hep-ph/ v1 29 May 2000 Photon-Photon Interaction in a Photon Gas Markus H. Thoma Theory Division, CERN, CH-1211 Geneva, Switzerland and Institut für Theoretische Physik, Universität Giessen, 35392 Giessen, Germany arxiv:hep-ph/0005282v1

More information

CHAPMAN-ENSKOG EXPANSION OF THE BOLTZMANN EQUATION AND ITS DIAGRAMMATIC INTERPRETATION

CHAPMAN-ENSKOG EXPANSION OF THE BOLTZMANN EQUATION AND ITS DIAGRAMMATIC INTERPRETATION CHAPMAN-ENSKOG EXPANSION OF THE BOLTZMANN EQUATION AND ITS DIAGRAMMATIC INTERPRETATION M.E. CARRINGTON A,B,HOUDEFU A,B,C AND R. KOBES B,D a Department of Physics, Brandon University, Brandon, MB,R7A 6A9

More information