Perfect-fluid hydrodynamics for RHIC successes and problems

Size: px
Start display at page:

Download "Perfect-fluid hydrodynamics for RHIC successes and problems"

Transcription

1 Title Perfect-fluid hydrodynamics for RHIC successes and problems Wojciech Florkowski with W. Broniowski, M. Chojnacki, A. Kisiel, Institute of Nuclear Physics, Kraków & Jan Kochanowski University, Kielce, Poland HIRSCHEGG 1: Strongly Interacting Matter under Extreme Conditions Jan. 17-3, 1 Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 1 / 3

2 RHIC at BNL RHIC at BNL Relativistic Heavy Ion Collider at Brookhaven National Laboratory Google Maps: Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 / 3

3 RHIC at BNL Four experiments RHIC at BNL Four experiments STAR PHENIX BRAHMS PHOBOS Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 3 / 3

4 Experimental data 1) transverse-momentum spectra Experimental data (soft hadronic sector) 1) transverse-momentum spectra, p T distributions ] / GeV N / dp dy [c T p T ) d (1/π π 1 + K p Positive ( - 5% central) Negative ( - 5% central) π - - K p ] / GeV N / dp T dy [c p T ) d (1/π Positive (6-9% peripheral) Negative (6-9% peripheral) p T [GeV/c] p T [GeV/c] PHENIX, Phys. Rev. C69, 399 () Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 / 3

5 Experimental data ) elliptic flow coefficient v Experimental data ) elliptic flow coefficient v v.3 -% pbar π K. ch -% -6% % p π + K + ch + -% -6%.1 ellipticflow/ellipticsmall1-1.mpg Animation by Jeffery Mitchell (Brookhaven National Laboratory) p T (GeV/c) PHENIX, Phys.Rev.Lett.91,1831(3) Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 5 / 3

6 Experimental data 3) correlations of identical particles (HBT) Experimental data 3) correlations of identical particles (Hanbury-Brown, Twiss) three projections of the correlation source emitting particles functions SOURCE C qo; q s,q l < 3 MeV/c Raw C Standard CC C Standard fit Bowler-Sinyukov fit 1 1 two identical pions, π + π +, π π C 1. < 3 MeV/c q s; q o,q l q l ; q o,q s < 3 MeV/c 1. C p Μ 1 k Μ Π 1 x Μ 1 t x q Μ x Μ p Μ Π q (GeV/c) q (GeV/c) STAR, Phys.Rev.C71,96(5) 1 Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 6 / 3

7 Experimental data 3) source sizes (HBT radii) Experimental data 3) source sizes (HBT radii) HBT radii depend on k T "Fourier transform" HBT radii R side - spatial transverse extension R out - spatial transverse extension + emission time R long - longitudinal extension (fm) R o (fm) R s 6 6-5% 5-1% 1-% -3% 3-5% 5-8% m T (GeV/c) m T (GeV/c) STAR, Phys.Rev.C71,96(5) 6 R l (fm) Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 7 / 3

8 Standard Model/Scheme of heavy-ion collisions Standard Model/Scheme of heavy-ion collisions main ingredients of the +1 models: initial conditions, short thermalization time, τ i 1 fm Glauber model, e.g., initial entropy/energy density is proportional to the linear combination of the wounded-nucleon density and binary-collision density, σ i(x ) or ε i(x ) ρ sr(x ) = 1 κ Color Glass Condensate w (x ) + κ n (x ) initial transverse flow, usually set equal to zero (?) HYDRODYNAMIC STAGE v data suggest that matter behaves like a perfect fluid main tool: perfect-fluid hydrodynamics (Shuryak, Heinz,... ) hadronization included in the equation of state freeze-out, Cooper-Frye formula freeze-out hypersurface, thermal description of hadron production transition hypersurface, change to a hadronic cascade Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 8 / 3

9 Motivation Motivation for our research an attempt to obtain a uniform description of soft observables (resolution of the HBT puzzle) 1/ π dn/dyp T dp T (GeV ) π ± PHENIX 1 p PHENIX p STAR π ± hydro 1 p hydro 1 most central p T (GeV) v (%) 15 1 h +/ ewn swn 5 ebc sbc STAR p T (GeV) R out (fm) R side (fm) 8 8 hydro w/o FS hydro with FS hydro, τ equ = τ form STAR π, π K (GeV) U.Heinz and P.Kolb, Nucl. Phys. A7, 69 () R long (fm) 1 8 hydro w/o FS hydro with FS hydro, τ equ = τ form STAR π, π K (GeV) at Y= [arb. units] dn dmtdy 1 πmt π PHENIX π K (.6) PHENIX K p ( 3.5) 1e mt [GeV/c ] PHENIX p MT [GeV/c ] Rout [fm] Rlong [fm] Hydro STAR Hydro STAR MT [GeV/c ] Rside [fm] Rout/Rside 8 6 Hydro STAR MT [GeV/c ] 1 Hydro STAR MT [GeV/c ] T.Hirano, K.Morita, S.Muroya, and C.Nonaka, Phys. Rev. C65, 619 () Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 9 / 3

10 +1 Cracow hydrodynamic model +1 Cracow hydrodynamic model initial conditions, short thermalization time, τ i 1 fm Glauber and Gaussian initial conditions (including fluctuations) option: initial transverse flow obtained from free-streaming (Yu. Sinyukov) HYDRODYNAMIC STAGE perfect-fluid hydrodynamics implemented in the code LHYQUID (M. Chojnacki) hadronization included in the modern equation of state freeze-out, Cooper-Frye formula freeze-out hypersurface, thermal description of hadron production THERMINATOR (A. Kisiel et al.), complete set of resonances, single-freeze-out scenario assumed, two-particle method, with or without Coulomb, used to calculate the HBT radii: R side, R out, R long, R out/r side Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 1 / 3

11 Initial conditions Nuclear matter profiles Initial conditions Nuclear matter profiles play an important role, Phys. Rev. Lett. 11 (8) 31 most of the approaches use the Glauber model or Color Glass Condensate, we assume the Gaussian profile (Gaussian approximation to Glauber) dn dxdy exp x a y «b the widths a and b determined from GLISSANDO 1 Ρ Φ gaussian fit to GLISSANDO optical Glauber Φ Π centrality class r fm 1 W. Broniowski, M. Rybczyński, P. Bożek arxiv: [nucl-th] Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 11 / 3

12 Initial conditions Free-streaming Initial conditions Free-streaming thermalization requires some time (τ.5 1. fm) two scenarios early thermalization free-streaming Τ fm Τ fm hydrodynamics thermalization 1..5 Τ HYD.5 fm model for early stage dynamics r fm - free streaming of particles, no interactions - sudden hermalization Landau s matching conditions. our results indicate that the two scenarios are equivalent 1. hydrodynamics Τ HYD 1. fm thermalization.5 free streaming Τ FS.5 fm r fm Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 1 / 3

13 Thermodynamics phase diagrams Thermodynamics phase diagrams phase diagram for water Wojciech Florkowski (IFJ PAN & UJK Kielce) phase diagram for QCD Hydro description of heavy-ion collisions Jan. 19, 1 13 / 3

14 Thermodynamics modeling of the QCD EOS Thermodynamics modeling of the QCD EOS hadron gas model for low temparatures pliki inputowe z SHARE: Statistical hadronization with resonances G. Torrieri, S. Steinke, W. Broniowski, W. Florkowski, J. Letessier, J. Rafelski, Comput. Phys. Commun. 167, 9 (5) lattice QCD simulations for large temperatures based on: Y. Aoki, Z. Fodor, S. Katz, K. Szabo, JHEP 61, 89 (6) simple parameterization of pressure: T. Biro, J. Zimanyi, Phys.Lett.B65, 193 (7) cross-over phase transition thermodynamic variables change suddenly at T c but smoothly, the sound velocity does not drop to zero..3 Hadron Gas lattice QCD c S T T C Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 1 / 3

15 Hydrodynamics conservation laws Hydrodynamics energy-momentum conservation law µ T µν = energy-momentum of the perfect fluid T µν = (ɛ + P) u µ u ν Pg µν ɛ - energy density, P - pressure, u µ - fluid four-velocity mid-rapidity ( y 1) for RHIC µ B, temperature is the only independent parameter boost-invariance equations solved at z =, solutions for z obtained by Lorentz boosts EOS encoded in c s Baym, Friman, Blaizot, Soyeur, Czyz, Hydrodynamics of Ultrarelativistic Heavy Ion Collisions, Nucl. Phys. A7 (1983) 51 Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 15 / 3

16 Hydrodynamics results from LHYQUID results from LHYQUID relativistic HYdrodynamics of QUark-gluon fluid Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 16 / 3

17 Hydrodynamics freeze-out hypersurfaces Hydrodynamics freeze-out hypersurfaces freeze-out temperature T f = 15 MeV central collisions peripheral collisions t fm in plane.3 out of plane.3. c 5.1 T i 5 MeV.. Τ Τ r fm t fm in plane out of plane.3.3 c 3. T i 6 MeV.1. Τ Τ r fm because of the strong transverse flow, hadron do not reenter the medium space-like and time-like emission is similar. Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 17 / 3

18 THERMINATOR THERMal heavy-ion generator THERMINATOR THERMal heavy-ion generator primordial particles are emitted according to the Cooper-Frye formula Z dn = dσ µ p µf dy d eq (p u), p T dσ µ - element of the freeze-out hypersurface obtained from hydro u µ - four-velocity of the fluid all resonances included elliptic flow coefficient v dn dn = (1 + v dy d (p T ) cos(φ p) +...) p T dy πp T dp T A. Kisiel, T. Tałuć, W. Broniowski and W. Florkowski Comput. Phys. Commun. 17, 669 (6) Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 18 / 3

19 THERMINATOR results for the spectra and v THERMINATOR results for the spectra and v dn Π p T dp T dy PHENIX s NN GeV c 5 1 Π Π K K p p.1 c 5 c 5 T i 33 MeV T i 5 MeV Τ 1. fm Τ Τ p T GeV.5 Π K Π K..15 p c T i 35 MeV Τ 1. fm p c T i 6 MeV Τ Τ dn Π p T dp T dy PHENIX s NN GeV c 3 1 Π Π K K p p.1 c 3 c 3 T i 35 MeV T i 6 MeV Τ 1. fm Τ Τ p T GeV v.1.5 PHENIX s NN GeV c p T GeV Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 19 / 3

20 THERMINATOR femtoscopy THERMINATOR femtoscopy 3 two-particle method used to calculate the correlation functions (procedure mimics closely the experimental situation), the wave function calculated in the pair rest frame (PRF) includes Coulomb (option) correlation function fitted in the Bertsch-Pratt coordinates (k T, q out, q side, q long ) with Bowler-Sinyukov correction (option) C( q, h i k) = (1 λ)+λk coul (q inv) 1 + exp Rout qout Rsideq side Rlongq long, HBT radii (R out, R side, R long ) obtained from the fit and compared with data 3 A. Kisiel, W. Florkowski and W. Broniowski Phys. Rev. C73, 69 (6) Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 / 3

21 THERMINATOR HBT results THERMINATOR HBT results Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 1 / 3

22 THERMINATOR oscillations of the HBT radii THERMINATOR oscillations of the HBT radii, PRC 79 (9) 19 R out, R side, R long, N part N part 1 3 N part /R side, R out, N part /R side, R side, N part R out side, /R side, N part Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 / 3

23 Conclusions Conclusions +1 Cracow hydrodynamical model correctly describes the soft-hadronic data, in our opinion, this is the first successful attempt to solve the RHIC HBT puzzle. the things which matter - realistic equation of state (no soft point!) - initial profile Gaussian approximation to Glauber, fluctuations of the eccentricity - all resonances included - two-particle algorithm for femtoscopy Wojciech Florkowski (IFJ PAN & UJK Kielce) Hydro description of heavy-ion collisions Jan. 19, 1 3 / 3

arxiv:nucl-th/ v1 12 Dec 2002

arxiv:nucl-th/ v1 12 Dec 2002 Thermal model for RHIC, part I: particle ratios and spectra 1 Wojciech Florkowski and Wojciech Broniowski arxiv:nucl-th/0212052v1 12 Dec 2002 The H. Niewodniczański Institute of Nuclear Physics ul. Radzikowskiego

More information

Collective Dynamics of the p+pb Collisions

Collective Dynamics of the p+pb Collisions Collective Dynamics of the p+pb Collisions Wojciech Broniowski CEA Saclay & UJK Kielce & IFJ PAN Cracow th Workshop on Non-Perturbative QCD Paris, - June [Piotr Bo»ek & WB, PLB 78 () 557, 7 () 5, arxiv:.]

More information

Pion Transverse Momentum Spectrum, Elliptic Flow and Interferometry in the Granular Source Model in Ultra-Relativistic Heavy Ion Collisions

Pion Transverse Momentum Spectrum, Elliptic Flow and Interferometry in the Granular Source Model in Ultra-Relativistic Heavy Ion Collisions Pion Transverse Momentum Spectrum, Elliptic Flow and Interferometry in the Granular Source Model in Ultra-Relativistic Heavy Ion Collisions Jing Yang 1, Yan-Yu Ren and Wei-Ning Zhang 1, 1 School of Physics

More information

Quark-Gluon Plasma Physics

Quark-Gluon Plasma Physics Quark-Gluon Plasma Physics 7. Hanbury Brown Twiss correlations Prof. Dr. Klaus Reygers Heidelberg University SS 017 Momentum correlation of identical bosons emitted from two point sources ~xi : Single-particle

More information

arxiv: v1 [nucl-th] 11 Aug 2013

arxiv: v1 [nucl-th] 11 Aug 2013 Flow in p-pb collisions at the LHC arxiv:8.7v [nucl-th] Aug Wojciech Broniowski he H. Niewodniczański Institute of Nuclear Physics PAN, - Cracow, Poland and Institute of Physics, Jan Kochanowski University,

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

The balance function in azimuthal angle is a measure of the transverse flow

The balance function in azimuthal angle is a measure of the transverse flow Physics Letters B 609 (2005) 247 251 www.elsevier.com/locate/physletb The balance function in azimuthal angle is a measure of the transverse flow Piotr Bożek The H. Niewodniczański Institute of Nuclear

More information

Global and Collective Dynamics at PHENIX

Global and Collective Dynamics at PHENIX Global and Collective Dynamics at PHENIX Takafumi Niida for the PHENIX Collaboration University of Tsukuba Heavy Ion collisions in the LHC era in Quy Nhon outline n Introduction of v n n Higher harmonic

More information

Further development of the hydrokinetic model and description of the RHIC and LHC A+A femtoscopic data

Further development of the hydrokinetic model and description of the RHIC and LHC A+A femtoscopic data and description of the RHIC and LHC A+A femtoscopic data Iu.A. Karpenko Bogolyubov Institute for heoretical Physics, 1-b, Metrolohichna str., Kiev, 080, Ukraine E-mail: karpenko@bitp.kiev.ua Bogolyubov

More information

Indications for a critical end point in the phase diagram for hot and dense nuclear matter

Indications for a critical end point in the phase diagram for hot and dense nuclear matter Indications for a critical end point in the phase diagram for hot and dense nuclear matter Roy A. Lacey Stony Brook University Outline Introduction Phase Diagram Search strategy Theoretical guidance Femtoscopic

More information

Particle correlations in such collision?! N=n(n-1)/2. azimuthal, back-to back, multiplicity... close velocity,

Particle correlations in such collision?! N=n(n-1)/2. azimuthal, back-to back, multiplicity... close velocity, Future of Nuclear Collisions at High Energies Kielce, Poland, October 14-17 2004 Particle correlations in heavy ion collisions Jan Pluta Warsaw University of Technology Faculty of Physics, Heavy Ion Reactions

More information

Predictions for hadronic observables from. from a simple kinematic model

Predictions for hadronic observables from. from a simple kinematic model Predictions for hadronic observables from Pb + Pb collisions at sqrt(s NN ) = 2.76 TeV from a simple kinematic model Tom Humanic Ohio State University WPCF-Kiev September 14, 2010 Outline Motivation &

More information

Lambda-Lambda correlation from an integrated dynamical model

Lambda-Lambda correlation from an integrated dynamical model ExHIC, March 28, 2016 Lambda-Lambda correlation from an integrated dynamical model Tetsufumi Hirano (Sophia Univ.) Collaborators: Asumi Taniguchi Hiromi Hinohara Koichi Murase References for the model:

More information

Ultra-Relativistic Heavy Ion Collision Results

Ultra-Relativistic Heavy Ion Collision Results Ultra-Relativistic Heavy Ion Collision Results I. Overview of Effects Observed in Large Nucleus-Nucleus Collision Systems (Au+Au, Pb+Pb) High p T Hadrons Are Suppressed at LHC & RHIC Central Pb-Pb and

More information

arxiv: v2 [nucl-th] 11 Feb 2013

arxiv: v2 [nucl-th] 11 Feb 2013 Size of the emission source and collectivity in ultra-relativistic p-pb collisions Piotr Bożek a,b, Wojciech Broniowski c,b a AGH University of Science and Technology, Faculty of Physics and Applied Computer

More information

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Particle spectral shapes in thermal model ( static medium) are exponential in m T with common slope for all particles.

More information

Quantifying the Sensitivity of Experimental Data to Variations in the QGP Equation of State

Quantifying the Sensitivity of Experimental Data to Variations in the QGP Equation of State Quantifying the Sensitivity of Experimental Data to Variations in the QGP Equation of State Lawrence Livermore National Laboratory E-mail: soltz@llnl.gov We have developed a framework, the Comprehensive

More information

Beam energy scan using a viscous hydro+cascade model: an update

Beam energy scan using a viscous hydro+cascade model: an update Beam energy scan using a viscous hydro+cascade model: an update Iurii KARPENKO Frankfurt Institute for Advanced Studies/ Bogolyubov Institute for heoretical Physics ransport group meeting, December 17,

More information

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Single Au+Au Collision seen by STAR@RHIC Gunther Roland Gunther Roland/MIT July 15 2003 MPI Munich 15/7/2003 Gunther Roland/MIT www.spiegel.de

More information

Hints of incomplete thermalization in RHIC data

Hints of incomplete thermalization in RHIC data Hints of incomplete thermalization in RHIC data Nicolas BORGHINI CERN in collaboration with R.S. BHALERAO Mumbai J.-P. BLAIZOT ECT J.-Y. OLLITRAULT Saclay N. BORGHINI p.1/30 RHIC Au Au results: the fashionable

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

The evidences of missing resonances from THERMINATOR. Viktor Begun

The evidences of missing resonances from THERMINATOR. Viktor Begun he evidences of missing resonances from HERMINAOR Viktor Begun Faculty of Physics, Warsaw University of echnology, Poland in collaboration with W. Florkowski, M.I. Gorenstein, M. Rybczynski, V. Vovchenko

More information

Soft physics results from the PHENIX experiment

Soft physics results from the PHENIX experiment Prog. Theor. Exp. Phys. 2015, 03A104 (15 pages) DOI: 10.1093/ptep/ptu069 PHYSICS at PHENIX, 15 years of discoveries Soft physics results from the PHENIX experiment ShinIchi Esumi, Institute of Physics,

More information

Throwing triangles against a wall

Throwing triangles against a wall Throwing triangles against a wall Wojciech Broniowski Institute of Nuclear Physics PAN, Cracow, and Jan Kochanowski U., Kielce Rencontres QGP-France 2014, 15-17 September 2014, Etrétat 12 C He [research

More information

arxiv: v2 [nucl-th] 24 Sep 2012

arxiv: v2 [nucl-th] 24 Sep 2012 Event-by-event viscous hydrodynamics for Cu-Au collisions at s NN = GeV Piotr Bożek The H. Niewodniczański Institute of Nuclear Physics, PL-313 Kraków, Poland Institute of Physics, Rzeszów University,

More information

MATTER EVOLUTION AND SOFT PHYSICS IN A + A COLLISIONS

MATTER EVOLUTION AND SOFT PHYSICS IN A + A COLLISIONS Vol. 37 (2006) ACTA PHYSICA POLONICA B No 12 MATTER EVOLUTION AND SOFT PHYSICS IN A + A COLLISIONS Yu.M. Sinyukov Bogolyubov Institute for Theoretical Physics Metrologichna 14b, Kiev 03143, Ukraine (Received

More information

Space-time evolution of the Quark Gluon Plasma. Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg

Space-time evolution of the Quark Gluon Plasma. Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg Space-time evolution of the Quark Gluon Plasma Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg High-energy nucleus-nucleus Collisions High-Energy Nuclear Collisions Time à

More information

Ultra-relativistic heavy-ion collisions: Lecture I

Ultra-relativistic heavy-ion collisions: Lecture I Ultra-relativistic heavy-ion collisions: Lecture I Wojciech Florkowski 1,2 1 Jan Kochanowski University, Kielce, Poland 2 Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland 48th Karpacz

More information

Bulk and shear viscosities for the Gribov-Zwanziger plasma

Bulk and shear viscosities for the Gribov-Zwanziger plasma EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 215 Bulk and shear viscosities for the Gribov-Zwanziger plasma Wojciech

More information

Space-time Evolution of A+A collision

Space-time Evolution of A+A collision Time Space-time Evolution of A+A collision Jets Fluctuations p p K K0* f g e m Hadronization (Freeze-out) + Expansion Mixed phase? QGP phase Thermalization Space (z) A Pre-equilibrium A Hadrons reflect

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

Anisotropic Flow: from RHIC to the LHC

Anisotropic Flow: from RHIC to the LHC Anisotropic Flow: from RHIC to the LHC Raimond Snellings The 2 nd Asian Triangle Heavy Ion Conference 13 th - 15 th October, 28 University of Tsukuba, Tsukuba, Japan arxiv:89.2949 [nucl-ex] 2 Elliptic

More information

Modeling Quark Gluon Plasma Using CHIMERA

Modeling Quark Gluon Plasma Using CHIMERA Journal of Physics: Conference Series Modeling Quark Gluon Plasma Using CHIMERA o cite this article: Betty Abelev J. Phys.: Conf. Ser. 6 View the article online for updates and enhancements. Related content

More information

Event geometrical anisotropy and fluctuation viewed by HBT interferometry

Event geometrical anisotropy and fluctuation viewed by HBT interferometry Event geometrical anisotropy and fluctuation viewed by HB interferometry akafumi Niida University of sukuba -- ennoudai, sukuba, Ibaraki 35-857, Japan Abstract Azimuthal angle dependence of the pion source

More information

Thermal model for Pb+Pb collisions at s NN = 2.76 TeV with explicit treatment of hadronic ground states

Thermal model for Pb+Pb collisions at s NN = 2.76 TeV with explicit treatment of hadronic ground states EPJ Web of Conferences 97, 00003 ( 2015) DOI: 10.1051/ epjconf/ 20159700003 C Owned by the authors, published by EDP Sciences, 2015 hermal model for Pb+Pb collisions at s NN = 2.76 ev with explicit treatment

More information

Current Status of QGP hydro + hadron cascade approach

Current Status of QGP hydro + hadron cascade approach Current Status of QGP hydro + hadron cascade approach Tetsufumi Hirano the Univ. of Tokyo/LBNL 6/14/2010 @ INT Introduction Outline Motivation A short history of hybrid approaches Importance of hadronic

More information

Lectures on hydrodynamics - Part I: Ideal (Euler) hydrodynamics

Lectures on hydrodynamics - Part I: Ideal (Euler) hydrodynamics Lectures on hydrodynamics - Part I: Ideal (Euler) hydrodynamics Denes Molnar RIKEN/BNL Research Center & Purdue University Goa Summer School September 8-12, 28, International Centre, Dona Paula, Goa, India

More information

Studies of QCD Matter From E178 at NAL to CMS at LHC

Studies of QCD Matter From E178 at NAL to CMS at LHC Studies of QCD Matter From E178 at NAL to CMS at LHC Wit Busza MIT Wit Busza Fermilab Colloquium, May 2012 1 The Study of the Condensed Matter of QCD, more commonly known as Relativistic Heavy Ion Physics

More information

Uncertainties in the underlying e-by-e viscous fluid simulation

Uncertainties in the underlying e-by-e viscous fluid simulation Uncertainties in the underlying e-by-e viscous fluid simulation Ulrich Heinz (The Ohio State University) Jet Workfest, Wayne State University, 24-25 August 213 Supported by the U.S. Department of Energy

More information

Alpha clustering from relativistic collisions

Alpha clustering from relativistic collisions Alpha clustering from relativistic collisions Wojciech Broniowski UJK Kielce & IFJ PAN Cracow STAR Regional Meeting: Heavy Quark Production, Jets and Correlations 1-4 January 14, WUT [based on WB& E. Ruiz

More information

Global variables and identified hadrons in the PHENIX experiment

Global variables and identified hadrons in the PHENIX experiment PRAMANA cfl Indian Academy of Sciences Vol. 60, No. 5 journal of May 003 physics pp. 953 963 in the PHENIX experiment JOHN P SULLIVAN, for the PHENIX Collaboration P-5 MS-H846, Los Alamos National Laboratory,

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

The Freeze-out Problem in Relativistic Hydrodynamics

The Freeze-out Problem in Relativistic Hydrodynamics The Freeze-out Problem in Relativistic Hydrodynamics Ky!ll A. Bugaev Bogolyubov ITP, Kiev, Ukraine April 2007 1 Outline What is Relativistic Hydrodynamics? Landau & Bjorken initial conditions Two major

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

Beam energy scan using a viscous hydro+cascade model

Beam energy scan using a viscous hydro+cascade model Beam energy scan using a viscous hydro+cascade model Iurii KARPENKO INFN sezione Firenze In collaboration with Marcus Bleicher, Pasi Huovinen and Hannah Petersen Iurii Karpenko (INFN) BES in a viscous

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 3: Approaching Perfection Columbia University Reminder- From Lecture 2 2 A new state of matter (QGP?) is formed in Au+Au collisions at RHIC Densities

More information

Collective and non-flow correlations in event-by-event hydrodynamics

Collective and non-flow correlations in event-by-event hydrodynamics Collective and non-flow correlations in event-by-event hydrodynamics Institute of Nuclear Physics Kraków WPCF 22-2.9.22 3 -D viscous hydrodynamics T T h /- v 3 [%] 25 2 5 5 2 5 5 2 5 5 ideal, e-b-e η/s=.8,

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

arxiv: v1 [nucl-ex] 10 Feb 2012

arxiv: v1 [nucl-ex] 10 Feb 2012 Cent. Eur. J. Phys. 1-5 Author version Central European Journal of Physics Highlights of the Beam Energy Scan from STAR Review Article arxiv:10.389v1 [nucl-ex] 10 Feb 01 A. Schmah for the STAR Collaboration

More information

arxiv: v1 [nucl-th] 9 Jun 2008

arxiv: v1 [nucl-th] 9 Jun 2008 Dissipative effects from transport and viscous hydrodynamics arxiv:0806.1367v1 [nucl-th] 9 Jun 2008 1. Introduction Denes Molnar 1,2 and Pasi Huovinen 1 1 Purdue University, Physics Department, 525 Northwestern

More information

Resonance production in a thermal model

Resonance production in a thermal model Resonance production in a thermal model W. Broniowski and W. Florkowski The H. Niewodniczański Institute of Nuclear Physics ISMD 2003, Cracow π π π π ρ N ω π π π N π π e (E µ)/t This is not the Cracow

More information

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Oliver Fochler Z. Xu C. Greiner Institut für Theoretische Physik Goethe Universität Frankfurt Strongly Interacting

More information

arxiv: v1 [hep-ph] 11 Jun 2008

arxiv: v1 [hep-ph] 11 Jun 2008 Proc. 4th Winter Workshop on Nuclear Dynamics (008) 000 000 4th Winter Workshop on Nuclear Dynamics South Padre, Texas, USA April 1, 008 arxiv:0806.180v1 [hep-ph] 11 Jun 008 A fully integrated Boltzmann+hydrodynamics

More information

Hydrodynamic response to initial state fluctuations

Hydrodynamic response to initial state fluctuations University of Jyväskylä, Department of Physics POETIC Jyväskylä 3.9.203 AA-collisions Initial particle/energy production, followed by Hydrodynamic evolution, followed by Freeze-out/Hadron cascade Goal

More information

J/Ψ-suppression in the hadron resonance gas

J/Ψ-suppression in the hadron resonance gas J/Ψ-suppression in the hadron resonance gas Dariusz Prorok Institute of Theoretical Physics University of Wroc law Wroc law, 17 February 2014 HECOLS workshop and XXXII Max-Born Symposium Dariusz Prorok

More information

Final source eccentricity measured by HBT interferometry with the event shape selection

Final source eccentricity measured by HBT interferometry with the event shape selection Journal of Physics: Conference Series PAPER OPEN ACCESS Final source eccentricity measured by HB interferometry with the event shape o cite this article: akafumi Niida and PHENIX Collaboration J. Phys.:

More information

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Quantifying the Properties of Hot and Dense QCD Matter, Seattle, 04.06.10 Hannah Petersen Thanks to: Jan Steinheimer,

More information

In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T

In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T Chapter 3 Shear viscous evolution In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T spectra, and elliptic flow (v ) of pions using a +1D relativistic viscous hydrodynamics

More information

Model for the spacetime evolution of 200A GeV Au-Au collisions

Model for the spacetime evolution of 200A GeV Au-Au collisions PHYSICAL REVIEW C 70, 021903(R) (2004) Model or the spacetime evolution o 200A GeV Au-Au collisions Thorsten Renk Department o Physics, Duke University, P.O. Box 90305, Durham, North Carolina 27708, USA

More information

Ideal Hydrodynamics. Pasi Huovinen. JET Summer School. J. W. Goethe Universität. June 16, 2012, McGill University, Montreal, Canada

Ideal Hydrodynamics. Pasi Huovinen. JET Summer School. J. W. Goethe Universität. June 16, 2012, McGill University, Montreal, Canada Ideal Hydrodynamics Pasi Huovinen J. W. Goethe Universität JET Summer School June 16, 2012, McGill University, Montreal, Canada Transient matter lifetime t 10fm/c 10 23 seconds small size r 10fm 10 14

More information

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Lawrence Berkeley National Laboratory Berkeley, US 1 Introduction: Heavy Ion Physics Today t = 5 10 17 sec T=1

More information

CHEMICAL POTENTIAL DEPENDENCE OF PARTICLE RATIOS WITHIN A UNIFIED THERMAL APPROACH

CHEMICAL POTENTIAL DEPENDENCE OF PARTICLE RATIOS WITHIN A UNIFIED THERMAL APPROACH ЖЭТФ, 216, том 149, вып. 6, стр. 1192 1197 c 216 CHEMICAL POENIAL DEPENDENCE OF PARICLE RAIOS WIHIN A UNIFIED HERMAL APPROACH I. Bashir *,H.Nanda,S.Uddin Department of Physics, Jamia Millia Islamia Central

More information

arxiv: v1 [nucl-th] 6 Apr 2011

arxiv: v1 [nucl-th] 6 Apr 2011 Oscillating HBT radii and the time evolution of the source snn = 00 GeV Au+Au data analyzed with azimuthally sensitive Buda-Lund hydro model 1 A. Ster 1,, M. Csanád, T. Csörgő 1,, B. Lörstad and B. Tomásik,

More information

Azimuthal angle dependence of HBT radii with respect to the Event Plane in Au+Au collisions at PHENIX

Azimuthal angle dependence of HBT radii with respect to the Event Plane in Au+Au collisions at PHENIX Azimuthal angle dependence of HBT radii with respect to the Event Plane in Au+Au collisions at PHENIX TTaakkaaffuummii NNiiiiddaa ffoorr tthhee PPHHEENNIIXX CCoollllaabboorraattiioonn UUnniivveerrssiittyy

More information

Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV

Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV Samantha G Brovko June 14, 2011 1 INTRODUCTION In ultra-relativistic heavy ion collisions a partonic state of

More information

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC?

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Non-Peturb QCD, IAP Paris, Klaus WERNER, Subatech, Nantes - Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Klaus Werner in collaboration with Iu. Karpenko, T. Pierog,

More information

arxiv: v2 [hep-ph] 2 Jul 2018

arxiv: v2 [hep-ph] 2 Jul 2018 Particle production at energies available at the CERN Large Hadron Collider within evolutionary model Yu. M. Sinyukov 1 and V. M. Shapoval 1 1 Bogolyubov Institute for Theoretical Physics, Metrolohichna

More information

arxiv:hep-ph/ v2 8 Aug 2002

arxiv:hep-ph/ v2 8 Aug 2002 Ω, J/ψ and ψ ransverse Mass Spectra at RHIC K.A. Bugaev a,b, M. Gaździcki c and M.I. Gorenstein a,d a Bogolyubov Institute for heoretical Physics, Kiev, Ukraine b Gesellschaft für Schwerionenforschung

More information

Hydrokinetic predictions for femtoscopy scales in A+A collisions in the light of recent ALICE LHC results 1

Hydrokinetic predictions for femtoscopy scales in A+A collisions in the light of recent ALICE LHC results 1 Hydrokinetic predictions for femtoscopy scales in A+A collisions in the light of recent ALICE LHC results Yu.M. Sinyukov, and Iu.A. Karpenko Bogolyubov Institute for Theoretical Physics, Kiev, 0680, Ukraine

More information

Jet and bulk observables within a partonic transport approach

Jet and bulk observables within a partonic transport approach Jet and bulk observables within a partonic transport approach Florian Senzel with J. Uphoff, O. Fochler, C. Wesp, Z. Xu and C. Greiner based on Phys.Rev.Lett. 4 (25) 23 Transport meeting, 29.4.25 Outline

More information

Measurement of Quantum Interference of Two Identical Particles with respect to the Event Plane in Relativistic Heavy Ion Collisions at RHIC-PHENIX

Measurement of Quantum Interference of Two Identical Particles with respect to the Event Plane in Relativistic Heavy Ion Collisions at RHIC-PHENIX Measurement of Quantum Interference of Two Identical Particles with respect to the Event Plane in Relativistic Heavy Ion Collisions at RHIC-PHENIX Takafumi Niida High Energy Nuclear Physics Group TAC seminar,

More information

Hagedorn States in Relativistic Heavy Ion Collisions

Hagedorn States in Relativistic Heavy Ion Collisions Hagedorn States in Relativistic Heavy Ion Collisions Jacquelyn Noronha-Hostler Frankfurt Institute for Advanced Studies, Frankfurt am Main Excited Hadrons : February 25 th, 211 : Jefferson Lab Newport

More information

On m T dependence of femtoscopy scales for meson and baryon pairs. Abstract

On m T dependence of femtoscopy scales for meson and baryon pairs. Abstract On m T dependence of femtoscopy scales for meson and baryon pairs Yu.M. Sinyukov a, V.M. Shapoval a, V.Yu. Naboka a (a) Bogolyubov Institute for Theoretical Physics, Metrolohichna str. 14b, 03680 Kiev,

More information

STRANGENESS PRODUCTION IN HEAVY ION COLLISIONS AT RELATIVISTIC ENERGIES *

STRANGENESS PRODUCTION IN HEAVY ION COLLISIONS AT RELATIVISTIC ENERGIES * Romanian Reports in Physics, Vol. 64, No. 3, P. 722 727, 2012 STRANGENESS PRODUCTION IN HEAVY ION COLLISIONS AT RELATIVISTIC ENERGIES * OANA RISTEA, A. JIPA, C. RISTEA, C. BEŞLIU, ŞTEFANIA VELICA University

More information

Event-by-event hydrodynamical description of QCD matter

Event-by-event hydrodynamical description of QCD matter Event-by-event hydrodynamical description of QCD matter Máté Csanád, Sándor Lökös Eötvös University, Budapest 53rd International School of Subnuclear Physics, Erice, Sicily, 2015 1 / 15 Outline 1 sqgp

More information

Can hadronic rescattering explain the jet quenching at relativistic energies?

Can hadronic rescattering explain the jet quenching at relativistic energies? PHYSICAL REVIEW C 71, 3496 (25) Can hadronic rescattering explain the jet quenching at relativistic energies? David Hardtke Department of Physics, University of California, Berkeley, California 9472 USA

More information

Throwing triangles against the wall:

Throwing triangles against the wall: Throwing triangles against the wall: ultrarelativistic heavy-ion collisions detecting shape of light nuclei Wojciech Broniowski Institute of Nuclear Physics PAN, Cracow, and Jan Kochanowski U., Kielce

More information

Studying collective phenomena in pp and A-A collisions with the ALICE experiment at the LHC

Studying collective phenomena in pp and A-A collisions with the ALICE experiment at the LHC Studying collective phenomena in pp and A-A collisions with the ALICE experiment at the LHC Ivan Ravasenga Politecnico di Torino and I.N.F.N. 56 th course, Erice (Sicily, Italy) 14-23.06.2018 Ivan Ravasenga

More information

The effect of the spectator charge on the charged pion spectra in peripheral ultrarelativistic heavy-ion collisions

The effect of the spectator charge on the charged pion spectra in peripheral ultrarelativistic heavy-ion collisions The effect of the spectator charge on the charged pion spectra in peripheral ultrarelativistic heavy-ion collisions Antoni Szczurek and Andrzej Rybicki INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES

More information

Thermal dileptons as fireball probes at SIS energies

Thermal dileptons as fireball probes at SIS energies Thermal dileptons as fireball probes at SIS energies Critical Point and Onset of Deconfinement 2016, Wrocław. Florian Seck TU Darmstadt in collaboration with T. Galatyuk, P. M. Hohler, R. Rapp & J. Stroth

More information

Fluctuations of Conserved Charges

Fluctuations of Conserved Charges Fluctuations of Conserved Charges Theory, Experiment, and Lattice Masakiyo Kitazawa (Osaka U.) KEK, 2014/Jan./20 QCD @ nonzero T Theory (Motivation) QCD @ nonzero T Lattice Heavy Ion Collisions QCD @ nonzero

More information

Outline: Introduction and Motivation

Outline: Introduction and Motivation Heavy ion collisions at lower energies: challenges and opportunities Beam Energy Scan (BES I and II) from RHIC Lijuan Ruan (Brookhaven National Laboratory) Outline: Introduction and Motivation Results

More information

PoS(WPCF2011)012. New results on event-by-event fluctuations in A+A collisions at the CERN SPS. Grzegorz Stefanek for the NA49 Collaboration

PoS(WPCF2011)012. New results on event-by-event fluctuations in A+A collisions at the CERN SPS. Grzegorz Stefanek for the NA49 Collaboration New results on eventbyevent fluctuations in AA collisions at the CERN SPS for the NA9 Collaboration Jan Kochanowski University, Kielce, Poland Email: grzegorz.stefanek@pu.kielce.pl The study of central

More information

First results with heavy-ion collisions at the LHC with ALICE

First results with heavy-ion collisions at the LHC with ALICE First results with heavy-ion collisions at the LHC with ALICE Domenico Elia INFN, Bari (Italy) on behalf of the ALICE Collaboration D. Elia (INFN Bari, Italy) PANIC 011 / Boston, MA (USA) July 4-9, 011

More information

Creating a Quark Gluon Plasma With Heavy Ion Collisions

Creating a Quark Gluon Plasma With Heavy Ion Collisions Creating a Quark Gluon Plasma With Heavy Ion Collisions David Hofman UIC Special thanks to my Collaborators in PHOBOS, STAR, & CMS and B. Back, M. Baker, R. Hollis, K. Rajagopal, R. Seto, and P. Steinberg

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

Heavy quark production and elliptic flow at RHIC and LHC

Heavy quark production and elliptic flow at RHIC and LHC Heavy quark production and elliptic flow at RHIC and LHC Jan Uphoff with O. Fochler, Z. Xu and C. Greiner Institute for Theoretical Physics Hirschegg January 20, 2010 Outline Motivation Charm processes

More information

What is a heavy ion? Accelerator terminology: Any ion with A>4, Anything heavier than α-particle

What is a heavy ion? Accelerator terminology: Any ion with A>4, Anything heavier than α-particle Outline Introduction to Relativistic Heavy Ion Collisions and Heavy Ion Colliders. Production of particles with high transverse momentum. Collective Elliptic Flow Global Observables Particle Physics with

More information

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Oliver Fochler Z. Xu C. Greiner Institut für Theoretische Physik Goethe Universität Frankfurt Winter Workshop

More information

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape Outline: Non-central collision of spherical nuclei or central collision of deformed nuclei Overlapping zone is of almond shape Co ordinate space anisotropy is converted into momentum space anisotropy via

More information

arxiv:nucl-ex/ v1 18 Jan 2007

arxiv:nucl-ex/ v1 18 Jan 2007 Roy A. Lacey Recent results of source function imaging from AGS through CERN SPS to RHIC Roy A. Lacey Dept of Chemistry, SUNY Stony Brook, Stony Brook, NY 794, USA arxiv:nucl-ex/76v 8 Jan 7 Recent femtoscopic

More information

HEAVY-ION SESSION: A (quick) INTRODUCTION

HEAVY-ION SESSION: A (quick) INTRODUCTION HEAVY-ION SESSION: A (quick) INTRODUCTION B. HIPPOLYTE Institut Pluridisciplinaire Hubert Curien, Département de Recherches Subatomiques, 3 rue du Loess, F-6737 Strasbourg, France These proceedings summarise

More information

Soft Physics in Relativistic Heavy Ion Collisions

Soft Physics in Relativistic Heavy Ion Collisions Soft Physics in Relativistic Heavy Ion Collisions Huichao Song 宋慧超 Peking University Hadron and Nuclear Physics in 2017 KEK, Tsukuba, Japan, Jan.7-10, 2017 Jan. 09, 2017 QGP QGP Hadrons nuclei atom 3

More information

arxiv:hep-ph/ v1 3 Oct 2001

arxiv:hep-ph/ v1 3 Oct 2001 Balance Functions, Correlations, Charge Fluctuations and Interferometry Sangyong Jeon Department of Physics, McGill University, 3600 University St., Montréal, QC H3A-2T8 CANADA RIKEN-BNL Research Center,

More information

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Bjørn Bäuchle, Marcus Bleicher The UrQMD-Group Based on [arxiv:0810.0488 (nucl-th)] DPG Spring Meeting March

More information

Event-by-event distribution of azimuthal asymmetries in ultrarelativistic heavy-ion collisions

Event-by-event distribution of azimuthal asymmetries in ultrarelativistic heavy-ion collisions Event-by-event distribution of azimuthal asymmetries in ultrarelativistic heavy-ion collisions Hannu Holopainen Frankfurt Institute for Advanced Studies in collaboration with G. S. Denicol, P. Huovinen,

More information

Event anisotropy at RHIC

Event anisotropy at RHIC Event anisotropy at RHIC Nu Xu - LBNL 1) Introduction 2) Experimental details and 200 GeV results v 2 (m 0, p T, y, b, A) 3) Summary and outlook PHENIX: N. Ajitanand, S. Esumi, R. Lacey, J. Rak PHOBOS:

More information

Duke University Chiho NONAKA. in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/ to appear in PRL

Duke University Chiho NONAKA. in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/ to appear in PRL Duke University Chiho NONAKA in Collaboration with R. J. Fries (Duke), S. A. Bass (Duke & RIKEN), B. Muller (Duke) nucl-th/00108 to appear in PRL May 1, 00@INT, University of Washington, Seattle Introduction

More information

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks Thomas Schaefer, North Carolina State University RHIC serves the perfect fluid Experiments at RHIC are consistent with the idea that a thermalized

More information

Mini-Workshop Bled 2016 QUARKS, HADRONS, MATTER

Mini-Workshop Bled 2016 QUARKS, HADRONS, MATTER Limits on hadron spectrum from bulk medium properties Wojciech Broniowski Inst. of Nuclear Physics PAN, Cracow, and Jan Kochanowski U., Kielce Mini-Workshop Bled 2016 QUARKS, HADRONS, MATTER Bled (Slovenia),

More information