Hagedorn States in Relativistic Heavy Ion Collisions

Size: px
Start display at page:

Download "Hagedorn States in Relativistic Heavy Ion Collisions"

Transcription

1 Hagedorn States in Relativistic Heavy Ion Collisions Jacquelyn Noronha-Hostler Frankfurt Institute for Advanced Studies, Frankfurt am Main Excited Hadrons : February 25 th, 211 : Jefferson Lab Newport News, VA USA

2 Outline 1 Introduction:Hagedorn States 2 Transport Coefficients 3 Chem. Eq. Time 4 Thermal Fits 5 Conclusions

3 Hagedorn s Original Idea Hagedorn States "fireballs consist of fireballs, which consist of fireballs..." Proposed an exponentially increasing mass to explain spectra in p p and π p scattering Original model included hadronic states up to (1232) Broniowski,Florkowski,Glozman,PRD7,11753(24) Exponential mass spectrum Constant : energy of system, new particles, NOT Lead to Statistical Bootstrap Model: M ρ(m) = M A [ m 2 +(m ) 2] 5 4 e m dm

4 Comparison to Lattice Results = 196 MeV, M = 15 GeV, M = 2 GeV, A =.5 GeV 3 2, B = 25 GeV 4, and m = 5 MeV ΘT 4 Bielefeld-BNL-Columbia Collaboration (BBC) Lattice HS st Lattice HS TMeV BNL et al,prd77(28)14511; PRD8(29) TMeV

5 Comparison to Lattice Results Budapest-Marseille-Wuppertal Collaboration (BMW) 15GeV ρ(m) = 2GeV εt 4 st GeV 3 2 m [ m 2 + (.5GeV) 2] 5 e 176MeV dm 4 Lattice HS TMeV 14 Lattice 12 1 HS TMeV et 4 Fodor et al, JHEP 61, 89 (26); JNH et al, PLB 643, 46 (26) Lattice HS HS TMeV 2 2.5GeV.715 ρ(m) = 1.7GeV 252MeV em/252mev dm -no volume corrections Majumder and Muller,PRL15(21) Lattice HS st pt HS TGeV Lattice HS HS TMeV JNH, Jorge Noronha, Carsten Greiner

6 Volume Corrections p xv = ε xv = p pt (T ) 1 p pt(t ) 4B ε pt (T ) 1+ ε pt(t ) 4B T = s xv = n xv = T 1 p pt(t ) 4B s pt (T ) 1+ ε pt(t ) 4B n pt (T ) 1+ ε pt(t ) 4B

7 η/s in a Hadronic gas near T c JNH, Jorge Noronha, and Carsten Greiner, PRL13(29)17232 η/s can be rewritten: ( η = s) η HG +η HS tot s HG + s HS [ s (η ) = HG s HG + s HS s From kinetic theory arguments: η NR = 1 3 p i = m i v i = 3T m i λ i = τ i v i v i = 3T m i τ i = 1 Γ i most conservative estimate! ( η s) HS = HG + η ] HS s HG i n i p i λ i i T n iτ i s HS. (1)

8 Result: η/s Ηs BBC Η s BMW HRG HS 176 MeV HS M&M KSS TGeV JNH, Jorge Noronha, and Carsten Greiner, PRL13(29) TMeV JNH, Jorge Noronha, Carsten Greiner Because HS allow for η/s to drop to the KSS limit, it provides a smooth transition for hydro Sufficiently near T c, η/s can be close to the viscosity bound already in the hadronic phase!!!!

9 Theory: c 2 s c 2 s = dp/dε.3 BBC.4.3 BMW HS 176 MeV HS M&M cs 2.2 c s Ε 14 GeVfm 3 14 Note that c 2 s does not go to zero Ε 14 GeVfm 3 14

10 Strangeness Enhancement SPS SPS observed enhancement of anti-hyperons, multi-strange baryons, and kaons compared to pp-data Used binary collisions Binary strangeness production reactions π + p K + Λ (2) Binary strangeness exchange reactions K + p π + Λ (3) Gave small cross-sections QGP! Because strange quarks produced more efficiently by gluon fusion. P. Koch, B. Muller, and J. Rafelski Strangeness enhancement was considered a signal for QGP!

11 Strangeness Enhancement SPS Used multi-mesonic reactions For anti-protons p + N nπ (4) R. Rapp and E. Shuryak For anti-hyperons Σ, Λ+N nπ + K Ξ+N nπ + 2K Ω+N nπ + 3K Ȳ + N nπ + n K Ȳ (5) Giving the time scale τȳ := 1 1 = ΓȲ σ N Ȳ nπ+nȳ K vȳ N ρ B (6) assuming σ ρ Ȳ σ ρ p 5 mb, ρ B fm, and 3 v.5.6 c (typical for SPS) Time Scale τȳ 1 3 fm c (7) Fits within typical lifetime of fireball of 5-1 fm c! C. Greiner and S. Leupold.

12 Strangeness Enhancement RHIC At T = 17 MeV ρ eq B = ρeq B σv 3 mb c Time Scale.4 fm 3 τ B 1 fm c. (8) Too large!!! In fireball τ 4 fm c. Suggestions Born in Equilibrium? Near T c, extra large particle density overpopulated with pions and kaons? Overpopulation of (anti-)baryons, which cannot be killed off Hagedorn resonances?

13 Contribution of HS to Chemical Equilibrium Values Effective X = p, K, or Λ Ñ X = N X + i Effective π s Ñ π = N π + i N i X i N i n i X i and n i are calculated within a microcanonical model Liu, et.al. PRC68(23)2495, JPG3(24)S589, PRC69(24)542 N eq N Π eq N HS N eq Π, N eq Π,p p N eq Π,K K a N TMeV eq N p p eq N K K eq N a TMeV.5 shsstot T c 176 MeV T c 196 MeV eq N Π eq N HS N eq Π, N eq Π,p p N eq Π,K K b TMeV eq N p p TMeV eq N K K eq N b TMeV

14 Rate Equations for the Chem. Eq. Time of Hadrons nπ HS n π + X X dλ i dt dλ π dt dλ X X dt ( ( = Γ i,π B i,n λ n π λ i )+Γ i,x X n = ( ) N eq i Γ i,π N eq λ i n i B i,n nλ n π i π n + Γ i,x X n i,x Neq ( i N eq λ i λ n i,x π λ 2 X i π X = N eq ( ) i Γ i,x X N eq λ i λ n i,x π λ 2 X X i X X λ n i,x π ), λ 2 X X λ i ), λ = N N eq, N is the total number of each particle, its equilibrium value is N eq.

15 Time Scale Estimates Naively, we would assume N π N eq π and N i N eq i, then dλ X X dt = i Γ i,x X N eq ( i N eq X X = N eq i Γ i,x X N eq i X X ( ) ( φ+1 exp 2t φ 1 λ X X = ( φ+1 φ 1 where φ := λ X X() and τ X X := ) exp λ i λ n i,x π ( ) 1 λ 2 X X τ ( X X 2t τ X X ) + 1 ) 1 N eq X i X Γ < 1 fm i,x X Neq c i λ 2 X X Only true when the pions and the resonances are held in equilibrium! ) Time Scalefmc Time Scalefmc a Τ p p Τ K K Τ Τ TMeV 1 8 b Τ p p Τ K K Τ Τ TMeV

16 Fireball Expansion Use an isentropic expansion... Find T(t) for the 5% most central collisions S π N π dnπ dy = s(t)v(t) = const. dy Volume V eff (t t ) = π ct (r + v (t t )+.5a (t t ) 2) 2 Time [fm/c] v =.3, a =.35 v =.5, a =.25 v =.7, a = Temperature [MeV] 12

17 Particle Ratios = 176 MeV p Π K Π a eq IC 2.4 IC IC IC TMeV a eq IC 2 IC.5 IC 3 1 IC Π Π a eq IC 2 IC IC 3 1 IC TMeV eq IC 2 IC 4 a.12 IC 1 IC

18 Particle Ratios = 196 MeV p Π K Π b eq IC 2 IC IC 3 1 IC TMeV b.2 eq IC 2 IC IC 3 1 IC Π Π b eq IC 2 IC IC 3 1 IC TMeV b eq IC 2 IC IC 3 1 IC

19 Summary Graph: Dynamic Chem. Eq. with HS Dividing Γ i by IC 1 =176 MeV IC 2 =176 MeV IC 3 =176 MeV IC 4 =176 MeV IC 1 =196 MeV IC 2 =196 MeV IC 3 =196 MeV IC 4 =196 MeV IC 1 =176 MeV IC 2 =176 MeV IC 3 =176 MeV IC 4 =176 MeV IC 1 =196 MeV IC 2 =196 MeV IC 3 =196 MeV IC 4 =196 MeV.1 Dividing Γ i by 4 p/π K/π Λ/π Ω/π.1 p/π K/π Λ/π Ω/π IC 1 =176 MeV IC 2 =176 MeV IC 3 =176 MeV IC 4 =176 MeV IC 1 =196 MeV IC 2 =196 MeV IC 3 =196 MeV IC 4 =196 MeV.1.1 p/π K/π Λ/π Ω/π

20 Comparison of Thermal Fit with Hagedorn States JNH, et al.,prc82(21)24913 No Hagedorn States Hagedorn States RHIC 2 GeV Au+Au RHIC 2 GeV Au+Au with HS T=16.4 MeV µ=22.9 MeV χ 2 =21.2 STAR PHENIX 1-2 T=165.9 MeV µ=25.3 MeV χ 2 =2.9 (T c =196 MeV) T=172.6 MeV µ=39.7 MeV χ 2 =17.8 (T c =176 MeV) 1-3 π - /π + p/p Κ /Κ + Κ + /π + p/π + (Λ+Λ)/π 1-3 π - /π + p/p Κ /Κ + Κ + /π + p/π + (Λ+Λ)/π χ 2 = 21.6 Fit without Hagedorn States Matches other thermal fit models well: T ch = MeV and µ b = 2 3 MeV (PLB518,41(21);PRC65,6495(22); arxiv:nucl-th/4568; Nucl.Phys.A757,12(25); Nucl. Phys. A 772, 167 (26) PRC78,5491(28)) χ 2 = 17.8 Fit with = 176 MeV χ 2 = 2.9 Fit with = 196 MeV

21 Quest for Branching Ratios BSQ-Canonical Model: M. Beitel, JNH, C. Greiner Up until now we have been limited by the branching ratios of the Hagedorn states Using a canonical model that conserves baryon number (B), strangeness (S), and charge (Q), we are able to calculate the average number of X that a large resonance can decay into. Mesonic, non-strange cluster at T=16 MeV B=2, S=, Q=2 cluster at T=16 MeV <N> Λ Σ + Ξ - Ω M HS [GeV] <N> Λ Σ + Ξ - Ω M HS [GeV]

22 Conclusions Conclusions We showed that the exponentially increasing Hagedorn spectrum (a property of QCD) may already account for the near perfect fluid behavior of hadronic matter close to T c Hagedorn states are catalysts for quick dynamical reactions that can explain short chemical equilibrium times at RHIC, consistent with thermal fits. Thus, the hadrons do not need to be "born in equilibrium." As of yet they have shown little effects on the thermal fits.

23 Outlook Outlook Include Hagedorn States in transport models (such as UrQMD) Consider effects of Hagedorn states at larger baryonic chemical potential (QCD critical point???) Consider strange and/or baryonic Hagedorn states (either for chemical equilibrium times or at large µ b ) Is strangeness enhancement really a signature of QGP or can it be described entirely by dynamical reactions within the hadronic phase?

24 Decay Width Linear fit (PDG) Γ i =.15m i 58 = 25 1 MeV multiplicity 4 2 HS π E (GeV) 1 HS K MeV exp fit lo high MMeV X X (microcanonical) HS p HS n HS Λ Notation.6 ε=.75gev/fm 3.4 ε=.5gev/fm 3.2 ε=.25gev/fm Γ i,x X = X Γ i Γ i,π = Γ i Γ i,x X C. Greiner et al., J.Phys.G31:S725-S732,25. B.6 to.4 K.4 to.5 Λ.1 to.2

25 Branching Ratios Branching ratios for nπ HS are described by a Gaussian distribution B i,n 1 e (n n i ) 2 2σ i 2 σ i 2π Average pion number (Liu, Werner, Aichelin, Phys. Rev. C 68, 2495 (23).) Standard deviation n i = m i m p σ 2 i = (.5 m i m p ) 2 After cutoff n 2, n i 3 to 9 and σ 2 i.8 to 11 For HS n π + X X, n i,x = 2 4

HOT HADRONIC MATTER. Hampton University and Jefferson Lab

HOT HADRONIC MATTER. Hampton University and Jefferson Lab 200 Cr oss sect ion (m b) 0 K ptotal 20 5 K pelastic 2 1 K N 1 1.6 2 3 4 2 5 6 7 8 9 20 30 3 40 THE ROLE OF BARYON RESONANCES IN Relativistic Heavy Ion Collider (RHIC) HOT HADRONIC MATTER Au+Au K d 2.5

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Pasi Huovinen J. W. Goethe Universität, Frankfurt Quantifying the properties of Hot QCD matter June 11, 1, Institute

More information

The History and Lessons of the Hagedorn Model

The History and Lessons of the Hagedorn Model The History and Lessons of the Hagedorn Model K.A.Bugaev Bogolyubov ITP, Kiev, Ukraine in collaboration with J.B.Ellio", L.W. Phair and L.G.More"o 1 Outline: What T do we see in A+A and elementary particle

More information

arxiv: v1 [nucl-ex] 10 Feb 2012

arxiv: v1 [nucl-ex] 10 Feb 2012 Cent. Eur. J. Phys. 1-5 Author version Central European Journal of Physics Highlights of the Beam Energy Scan from STAR Review Article arxiv:10.389v1 [nucl-ex] 10 Feb 01 A. Schmah for the STAR Collaboration

More information

The Study of the Critical Point of QCD using Fluctuations. Gary Westfall Terry Tarnowsky Hui Wang Michigan State University

The Study of the Critical Point of QCD using Fluctuations. Gary Westfall Terry Tarnowsky Hui Wang Michigan State University The Study of the Critical Point of QCD using Fluctuations Gary Westfall Terry Tarnowsky Hui Wang Michigan State University 1 Search for QCD Transitions If we pass through a QCD phase transition, we expect

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS

Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS P.Seyboth, MPI für Physik, München for the NA49 Collaboration Introduction Search for structure in the energy dependence of Inclusive

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Justus-Liebig Universität Gießen October 13, 29 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Heavy-Quark

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Quantifying the Properties of Hot and Dense QCD Matter, Seattle, 04.06.10 Hannah Petersen Thanks to: Jan Steinheimer,

More information

Dynamical equilibration of stronglyinteracting

Dynamical equilibration of stronglyinteracting Dynamical equilibration of stronglyinteracting infinite parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein, W.Cassing CPOD, Wuhan, China 11 November 2011 1 Motivation

More information

The QGP phase in relativistic heavy-ion collisions

The QGP phase in relativistic heavy-ion collisions The QGP phase in relativistic heavy-ion collisions Elena Bratkovskaya Institut für Theoretische Physik & FIAS, Uni. Frankfurt Conference on Exciting Physics Makutsi-Range Range, South Africa,, 13-20 November,

More information

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s Quark matter probed by dileptons Olena Linnyk July 02, 2010 Information from photons and dileptons 14 12 10 ε/t 4 8 6 4 2 Lattice QCD: µ B =0 µ B =530 MeV 0 0.5 1.0 1.5 2.0 2.5 3.0 T/T c But what are the

More information

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Freeze-out parameters Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Claudia Ratti University of Houston, Texas (USA) S. Borsanyi, Z. Fodor, S. Katz, S. Krieg, C. R.,

More information

Chemical Nonequilibrium in QGP and The Phase Boundary to Hadron Matter

Chemical Nonequilibrium in QGP and The Phase Boundary to Hadron Matter Chemical Nonequilibrium in QGP and The Phase Boundary to Hadron Matter Vienna Equilibration Workshop, August 12, 2005 Jean Letessier and JR, nucl-th/0504028, other works Is there a chemical nonequilibrium

More information

Understanding hadronization on the basis of fluctuations of conserved charges

Understanding hadronization on the basis of fluctuations of conserved charges Understanding hadronization on the basis of fluctuations of conserved charges R. Bellwied (University of Houston) in collaboration with S. Jena, D. McDonald (University of Houston) C. Ratti, P. Alba, V.

More information

Lattice QCD based equation of state at finite baryon density

Lattice QCD based equation of state at finite baryon density Lattice QCD based equation of state at finite baryon density Pasi Huovinen J. W. Goethe Universität & Frankfurt Institute for Advanced Studies Hydrodynamics for Strongly Coupled Fluids May 12, 214, ECT*,

More information

J/Ψ-suppression in the hadron resonance gas

J/Ψ-suppression in the hadron resonance gas J/Ψ-suppression in the hadron resonance gas Dariusz Prorok Institute of Theoretical Physics University of Wroc law Wroc law, 17 February 2014 HECOLS workshop and XXXII Max-Born Symposium Dariusz Prorok

More information

Constraining the bulk viscosity of QCD

Constraining the bulk viscosity of QCD Constraining the bulk viscosity of QCD (with heavy ion collisions) Bwidth Bnorm Jean-François Paquet Tpeak July 21, 2017 Triangle Nuclear Theory Colloquium In collaboration with... Charles Gale Sangyong

More information

The Beam Energy Scan at RHIC

The Beam Energy Scan at RHIC 2013 ICNT Program @ FRIB, MSU July 31, 2013 The Beam Energy Scan at RHIC Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center 1 Outline Brief Intro: High Energy Heavy Ion Collisions

More information

The evidences of missing resonances from THERMINATOR. Viktor Begun

The evidences of missing resonances from THERMINATOR. Viktor Begun he evidences of missing resonances from HERMINAOR Viktor Begun Faculty of Physics, Warsaw University of echnology, Poland in collaboration with W. Florkowski, M.I. Gorenstein, M. Rybczynski, V. Vovchenko

More information

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon Melting and freeze-out conditions of hadrons in a thermal medium Juan M. Torres-Rincon Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany in collaboration with J. Aichelin, H. Petersen,

More information

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Bjørn Bäuchle, Marcus Bleicher The UrQMD-Group Palaver November 24 th, 2008 Collaborators The UrQMD-Group Marcus

More information

Equilibration and decoupling of a relativistic gas in a Friedmann-Robertson-Walker spacetime

Equilibration and decoupling of a relativistic gas in a Friedmann-Robertson-Walker spacetime Equilibration and decoupling of a relativistic gas in a Friedmann-Robertson-Walker spacetime Juan M. Torres-Rincon (Frankfurt Institute for Advanced Studies) in collaboration with J. Tindall, J.-B. Rosé,

More information

Overview* of experimental results in heavy ion collisions

Overview* of experimental results in heavy ion collisions Overview* of experimental results in heavy ion collisions Dipartimento di Fisica Sperimentale dell Universita di Torino and INFN Torino * The selection criteria of the results presented here are (to some

More information

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Benjamin Dönigus 03.12.2009 Seminar WS 2009/2010 Relativistische Schwerionenphysik Interface of Quark-Gluon Plasma and

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

Fluctuations of Conserved Charges

Fluctuations of Conserved Charges Fluctuations of Conserved Charges Theory, Experiment, and Lattice Masakiyo Kitazawa (Osaka U.) KEK, 2014/Jan./20 QCD @ nonzero T Theory (Motivation) QCD @ nonzero T Lattice Heavy Ion Collisions QCD @ nonzero

More information

Beam energy scan using a viscous hydro+cascade model

Beam energy scan using a viscous hydro+cascade model Beam energy scan using a viscous hydro+cascade model Iurii KARPENKO INFN sezione Firenze In collaboration with Marcus Bleicher, Pasi Huovinen and Hannah Petersen Iurii Karpenko (INFN) BES in a viscous

More information

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Bjørn Bäuchle, Marcus Bleicher The UrQMD-Group Based on [arxiv:0810.0488 (nucl-th)] DPG Spring Meeting March

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

Baryon Number Fluctuations in Energy Scan Program at RHIC

Baryon Number Fluctuations in Energy Scan Program at RHIC Baryon Number Fluctuations in Energy Scan Program at RHIC Masakiyo Kitazawa (Osaka U.) MK, Asakawa, arxiv:1107.2755 (to appear in PRC) HIRSCHEGG2012, 18, Jan, 2012, Hirschegg Energy Scan Program @ RHIC

More information

Small systems Resonances hadronic phase partonic phase?

Small systems Resonances hadronic phase partonic phase? Christina Markert University of Texas at Austin Small systems Resonances hadronic phase partonic phase? NeD-216, Phuket, Thailand, 31 Oct - 5 Nov 216 1 Phase diagram of nuclear matter (QCD) NeD-216, Phuket,

More information

Did we create the QGP at RHIC and the LHC? Scott Pratt Michigan State University. SP, W.P. McCormack and Claudia Ratti, arxiv 1409.

Did we create the QGP at RHIC and the LHC? Scott Pratt Michigan State University. SP, W.P. McCormack and Claudia Ratti, arxiv 1409. Did we create the QGP at RHIC and the LHC? Scott Pratt Michigan State University SP, W.P. McCormack and Claudia Ratti, arxiv 149.2164 (214) QGP Chemistry Basics 52 ~massless degrees of freedom Strongly

More information

Shingo Sakai Univ. of California, Los Angeles

Shingo Sakai Univ. of California, Los Angeles Shingo Sakai Univ. of California, Los Angeles Non-photonic e result in AuAu b/c separation in non-photonic electron by electron-hadron correlations @ pp Bottom production Discuss heavy flavor energy loss

More information

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics HGS-HIRe Helmholtz Graduate School for Hadron and Ion Research Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Bjørn Bäuchle, Marcus Bleicher The UrQMD-Group

More information

Strangeness Production in in Low Energy Heavy Ion Collisions via Hagedorn Resonances

Strangeness Production in in Low Energy Heavy Ion Collisions via Hagedorn Resonances Strangeness Production in in Low Energy Heavy Ion Collisions via Hagedorn Resonances K. Gallmeister, M.Beitel, C. Greiner Goethe-Universität, Frankfurt Hagedorn States Motivation, Motivation, Bootstrap,

More information

Thermal dileptons as fireball probes at SIS energies

Thermal dileptons as fireball probes at SIS energies Thermal dileptons as fireball probes at SIS energies Critical Point and Onset of Deconfinement 2016, Wrocław. Florian Seck TU Darmstadt in collaboration with T. Galatyuk, P. M. Hohler, R. Rapp & J. Stroth

More information

Direct Photon Production from Heavy Ion Collisions

Direct Photon Production from Heavy Ion Collisions Direct Photon Production from Heavy Ion Collisions Bjørn Bäuchle The UrQMD Group (http://urqmd.org) based on PRC 81 (2010) 044904 and ongoing work FIAS Frankfurt Institutt for fysikk og teknologi, Universitetet

More information

Light flavour hadron production in the ALICE experiment at LHC

Light flavour hadron production in the ALICE experiment at LHC Light flavour hadron production in the ALICE experiment at LHC Angela Badalà INFN Sezione di Catania for the ALICE Collaboration ALICE heavy-ion runs Dataset s NN (TeV) Integrated luminosity 2010 Pb-Pb

More information

Resonances in Hadronic Transport

Resonances in Hadronic Transport Resonances in Hadronic Transport Steffen A. Bass Duke University The UrQMD Transport Model Infinite Matter Resonances out of Equilibrium Transport Coefficients: η/s work supported through grants by 1 The

More information

Hadronization by coalescence plus fragmentation from RHIC to LHC

Hadronization by coalescence plus fragmentation from RHIC to LHC Vincenzo Minissale University of Catania INFN LNS Hadronization by coalescence lus fragmentation from RHIC to LHC Nucleus Nucleus 015, June 015 Vincenzo Greco Francesco Scardina arxiv:150.0613 Outline

More information

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond Lawrence Berkeley National Laboratory Berkeley, US 1 Introduction: Heavy Ion Physics Today t = 5 10 17 sec T=1

More information

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape Outline: Non-central collision of spherical nuclei or central collision of deformed nuclei Overlapping zone is of almond shape Co ordinate space anisotropy is converted into momentum space anisotropy via

More information

EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE Claudia Ratti University of Houston (USA)

EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE Claudia Ratti University of Houston (USA) EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE Claudia Ratti University of Houston (USA) Collaborators: Paolo Alba, Rene Bellwied, Szabolcs Borsanyi, Zoltan Fodor, Jana Guenther, Sandor Katz, Stefan

More information

Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering. Hannah Petersen May 11, 2018, ECT*, Trento, Italy

Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering. Hannah Petersen May 11, 2018, ECT*, Trento, Italy Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering Hannah Petersen May 11, 2018, ECT*, Trento, Italy Motivation and Outline Hybrid transport+hydrodynamics approaches are successfully

More information

Strangeness production in heavy ion collisions

Strangeness production in heavy ion collisions 1 Strangeness production in heavy ion collisions Krzysztof Redlich a a Gesellschaft für Schwerionenforschung, D-64291 Darmstadt, Germany Strangeness production in heavy ion collisions is discussed in a

More information

Strangeness production in relativistic heavy ion collisions

Strangeness production in relativistic heavy ion collisions F. Becattini, University of Florence Strangeness production in relativistic heavy ion collisions OUTLINE Strangeness enhancement in heavy ion collisions Statistical model and strangeness undersaturation

More information

Parton dynamics in heavy-ion collisions from FAIR to LHC

Parton dynamics in heavy-ion collisions from FAIR to LHC Parton dynamics in heavy-ion collisions from FAIR to LHC Wolfgang Cassing Erice, 21.09.2012 The holy grail: Search for the critical point The phase diagram of QCD Study of the phase transition from hadronic

More information

A fresh look at the radiation from the QGP

A fresh look at the radiation from the QGP A fresh look at the radiation from the QGP Wolfgang Cassing (Uni. Giessen) In collaboration with Taesoo Song, Elena Bratkovskaya, Pierre Moreau The Erice School on Nuclear Physics 2018 The Strong Interaction:

More information

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model Oliver Fochler Z. Xu C. Greiner Institut für Theoretische Physik Goethe Universität Frankfurt Strongly Interacting

More information

Thermodynamics. Quark-Gluon Plasma

Thermodynamics. Quark-Gluon Plasma Thermodynamics of the Quark-Gluon Plasma Claudia Ratti Torino University and INFN, Italy Claudia Ratti 1 Quick review of thermodynamics In lectures I and II we saw... QCD and its symmetries Polyakov loop

More information

Thermal model fits: an overview

Thermal model fits: an overview Thermal model fits: an overview Volodymyr Vovchenko Goethe University Frankfurt & Frankfurt Institute for Advanced Studies Light up 2018 An ALICE and theory workshop, CERN June 14, 2018 The conventional

More information

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Juhee Hong Yonsei University New Frontiers in QCD 2018, YITP, Kyoto University arxiv: 1804.05336, JH, Sungtae Cho, Taesoo Song, and Su Houng

More information

A Theoretical View on Dilepton Production

A Theoretical View on Dilepton Production A Theoretical View on Dilepton Production Transport Calculations vs. Coarse-grained Dynamics Stephan Endres (in collab. with M. Bleicher, H. van Hees, J. Weil) Frankfurt Institute for Advanced Studies

More information

A Senior Honors Thesis

A Senior Honors Thesis A Study Using Relativistic Hydrodynamics for Ultrarelativistic Heavy-Ion Collisions: The Quark-Gluon-Plasma to Hadron Phase Transition and LHC Predictions A Senior Honors Thesis Presented in Partial Fulfillment

More information

Uncertainties in the underlying e-by-e viscous fluid simulation

Uncertainties in the underlying e-by-e viscous fluid simulation Uncertainties in the underlying e-by-e viscous fluid simulation Ulrich Heinz (The Ohio State University) Jet Workfest, Wayne State University, 24-25 August 213 Supported by the U.S. Department of Energy

More information

Some aspects of dilepton production in HIC

Some aspects of dilepton production in HIC Some aspects of dilepton production in HIC Qun Wang University of Science and Technology of China (USTC) In collaboration with H.J.Xu, J.Deng, X.Dong, L.J.Ruan, Z.B.Xu, N.Xu, P.F.Zhuang, Y.F. Zhang Electromagnetic

More information

Dilepton Production from Coarse-grained Transport Dynamics

Dilepton Production from Coarse-grained Transport Dynamics Dilepton Production from Coarse-grained Transport Dynamics Stephan Endres (in collab. with M. Bleicher, H. van Hees, J. Weil) Frankfurt Institute for Advanced Studies ITP Uni Frankfurt ECT* Trento Workshop

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR CBM Meeting VECC Kolkata July 31, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken

More information

Off-shell dynamical approach for relativistic heavy-ion collisions

Off-shell dynamical approach for relativistic heavy-ion collisions Off-shell dynamical approach for relativistic heavy-ion collisions Elena Bratkovskaya Institut für Theoretische Physik & FIAS, Uni. Frankfurt Relaxation, Turbulence, and Non-Equilibrium Dynamics of Matter

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

Space-time Evolution of A+A collision

Space-time Evolution of A+A collision Time Space-time Evolution of A+A collision Jets Fluctuations p p K K0* f g e m Hadronization (Freeze-out) + Expansion Mixed phase? QGP phase Thermalization Space (z) A Pre-equilibrium A Hadrons reflect

More information

Strangeness in Heavy-Ion Collisions

Strangeness in Heavy-Ion Collisions Strangeness in Heavy-Ion Collisions ad nauseam Christoph Blume Goethe-University of Frankfurt 4 th International Symposium on Non-equilibrium Dynamics Giardini Naxos, Sicily, September 2015 Outline Starting

More information

Bulk matter formed in Pb Pb collisions at the LHC

Bulk matter formed in Pb Pb collisions at the LHC Bulk matter formed in Pb Pb collisions at the LHC Introductory remarks is quark matter at LHC in equilibrium? Energy dependence of hadron production and the quark hadron phase boundary The fireball expands

More information

Hadron Resonance Gas Model

Hadron Resonance Gas Model Hadron Resonance Gas Model Valentina Mantovani Sarti QGP lectures-torino 2016 6 April 2016 V.Mantovani Sarti Hadron Resonance Gas Model 6 April 2016 1 / 6 References Particle production in heavy ion collisions,

More information

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN SEZIONE DI CATANIA

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN SEZIONE DI CATANIA UNIVERSITÀ DEGLI STUDI DI CATANIA INFN SEZIONE DI CATANIA MOMENTUM ANISOTROPIES IN A TRANSPORT APPROACH V. BARAN, M. DI TORO, V. GRECO, S. PLUMARI Transport Theory with a Mean Field at fixed η/s. Effective

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 3: Approaching Perfection Columbia University Reminder- From Lecture 2 2 A new state of matter (QGP?) is formed in Au+Au collisions at RHIC Densities

More information

Outline: Introduction and Motivation

Outline: Introduction and Motivation Heavy ion collisions at lower energies: challenges and opportunities Beam Energy Scan (BES I and II) from RHIC Lijuan Ruan (Brookhaven National Laboratory) Outline: Introduction and Motivation Results

More information

1 Introduction. 2 Charge Fluctuations

1 Introduction. 2 Charge Fluctuations Net Charge and Isospin Fluctuations in the World of Elementary Particles Vesna Mikuta-Martinis Rudjer Boskovic Institute 10001 Zagreb, Bijenicka c. 54, P.O.Box 1016, Croatia vmikuta@rudjer.irb.hr arxiv:nucl-th/0412007v2

More information

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Single Au+Au Collision seen by STAR@RHIC Gunther Roland Gunther Roland/MIT July 15 2003 MPI Munich 15/7/2003 Gunther Roland/MIT www.spiegel.de

More information

Fluctuations, Correlations and bound states in the QGP

Fluctuations, Correlations and bound states in the QGP Fluctuations, Correlations and bound states in the QGP Introduction BS correlations Some speculations Work in collaboration with: A. Majumder and J. Randrup Phase diagram Z. Fodor et al., PLB Susceptibilities

More information

Review of Signals of Deconfinement

Review of Signals of Deconfinement Review of Signals of Deconfinement Critical Point and Onset of Deconfinement Florence March 9 2006 Thanks to Burak Alver, Ed Wenger, Siarhei Vaurynovich, Wei LI Gunther Roland Review of Signals of Deconfinement

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

Lambda-Lambda correlation from an integrated dynamical model

Lambda-Lambda correlation from an integrated dynamical model ExHIC, March 28, 2016 Lambda-Lambda correlation from an integrated dynamical model Tetsufumi Hirano (Sophia Univ.) Collaborators: Asumi Taniguchi Hiromi Hinohara Koichi Murase References for the model:

More information

Strange Hadron Production from STAR Fixed-Target Program

Strange Hadron Production from STAR Fixed-Target Program Strange Hadron Production from STAR Fixed-Target Program (for the STAR Collaboration) Department of Engineering Physics, Tsinghua University, Beijing 84, China E-mail: musman_mughal@yahoo.com We report

More information

arxiv:hep-ph/ v2 8 Aug 2002

arxiv:hep-ph/ v2 8 Aug 2002 Ω, J/ψ and ψ ransverse Mass Spectra at RHIC K.A. Bugaev a,b, M. Gaździcki c and M.I. Gorenstein a,d a Bogolyubov Institute for heoretical Physics, Kiev, Ukraine b Gesellschaft für Schwerionenforschung

More information

DAE-HEP, IIT Guwahati Dec,2014

DAE-HEP, IIT Guwahati Dec,2014 DAE-HEP, IIT Guwahati Dec,014 8-1 Strange Hyperon Productions at LHC energy Purabi Ghosh Fakir Mohan University, Balasore PLAN OF TALK: Introduction Strange particles and Relativistic Heavy Ion Collisions

More information

arxiv: v1 [nucl-ex] 25 Jan 2012

arxiv: v1 [nucl-ex] 25 Jan 2012 Cent. Eur. J. Phys. 1-5 Author version Central European Journal of Physics New results from fluctuation analysis in NA49 at the CERN SPS Research Article arxiv:1201.5237v1 [nucl-ex] 25 Jan 2012 Maja Maćkowiak-Paw

More information

Heavy quark production and elliptic flow at RHIC and LHC

Heavy quark production and elliptic flow at RHIC and LHC Heavy quark production and elliptic flow at RHIC and LHC Jan Uphoff with O. Fochler, Z. Xu and C. Greiner Institute for Theoretical Physics Hirschegg January 20, 2010 Outline Motivation Charm processes

More information

medium Airton Deppman Compsyst - Rio de Janeiro, October, 2013 Nonextensive thermodynamics of hadronic medium Airton Deppman

medium Airton Deppman Compsyst - Rio de Janeiro, October, 2013 Nonextensive thermodynamics of hadronic medium Airton Deppman of ic ic matter: of ic Compsyst - Rio de Janeiro, October, 2013 of ic ic matter: Hagedorn s A ic system is considered as an ideal gas of s a a T. The partition function is ln[1 + Z(V 0, T )] = V 0T 2π

More information

Mini-Workshop Bled 2016 QUARKS, HADRONS, MATTER

Mini-Workshop Bled 2016 QUARKS, HADRONS, MATTER Limits on hadron spectrum from bulk medium properties Wojciech Broniowski Inst. of Nuclear Physics PAN, Cracow, and Jan Kochanowski U., Kielce Mini-Workshop Bled 2016 QUARKS, HADRONS, MATTER Bled (Slovenia),

More information

Ultra-Relativistic Heavy Ion Collision Results

Ultra-Relativistic Heavy Ion Collision Results Ultra-Relativistic Heavy Ion Collision Results I. Overview of Effects Observed in Large Nucleus-Nucleus Collision Systems (Au+Au, Pb+Pb) High p T Hadrons Are Suppressed at LHC & RHIC Central Pb-Pb and

More information

Prospects with Heavy Ions at the LHC

Prospects with Heavy Ions at the LHC Prospects with Heavy Ions at the LHC The Quark-Gluon Plasma at RHIC & LHC So far at RHIC: Elliptic Flow Near-perfect Fluid High p T Suppression Strongly-coupled QGP R AA! d 2 N AA dydp T d 2 N pp!!! AA

More information

(Small System) Strangeness Enhancement and Canonical Hadronization Phase Space

(Small System) Strangeness Enhancement and Canonical Hadronization Phase Space (Small System) Strangeness Enhancement and Canonical Hadronization Phase Space 1 / 19 For many details I recommend reading the 20 year old text Jan Rafelski, CERN-TH-ALICE, June 15, 2018 2 / 19 At CERN:

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

Hagedorn Legacy 50 y of Hagedorn Temperature Introductory Remarks, Friday November 13, Hagedorn at CERN 1978

Hagedorn Legacy 50 y of Hagedorn Temperature Introductory Remarks, Friday November 13, Hagedorn at CERN 1978 Hagedorn at CERN 1978 Why are we here: Hagedorn Temperature is the pivotal idea that opened to study high energy density matter defining our Universe in primordial times. It was put forwards at CERN 50

More information

SMASH A new Hadronic Transport Approach

SMASH A new Hadronic Transport Approach SMASH A new Hadronic Transport Approach Hannah Petersen, Quark Matter 2018, Venice, Italy Why a new Approach? Hadronic transport approaches are successfully applied for the dynamical evolution of heavy

More information

Selected highlights from the STAR experiment at RHIC

Selected highlights from the STAR experiment at RHIC Selected highlights from the STAR experiment at RHIC Sonia Kabana for the STAR Collaboration Laboratoire de Physique Subatomique et des technologies associees (SUBATECH) and University of Nantes, France

More information

Recent Result on Pentaquark Searches from

Recent Result on Pentaquark Searches from Recent Result on Pentaquark Searches from STAR @RHIC Huan Z. Huang Department of Physics and Astronomy University of California, Los Angeles The STAR Collaboration Pentaquark Workshop @JLab, Oct. 2005

More information

The Core Corona Model

The Core Corona Model The Core Corona Model or Is the Centrality Dependence of Observables more than a Core-Corona Effect? inspired by the first multiplicity results in CuCu then used to extract the physics of EPOS simulations

More information

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk Beijing Charmed hadron signals of partonic medium Olena Linnyk Our goal properties of partonic matter Hadron-string models Experiment QGP models Observables Hadron abundances J/Ψ anomalous suppression

More information

Lectures on hydrodynamics - Part I: Ideal (Euler) hydrodynamics

Lectures on hydrodynamics - Part I: Ideal (Euler) hydrodynamics Lectures on hydrodynamics - Part I: Ideal (Euler) hydrodynamics Denes Molnar RIKEN/BNL Research Center & Purdue University Goa Summer School September 8-12, 28, International Centre, Dona Paula, Goa, India

More information

Energy scan programs in HIC

Energy scan programs in HIC Energy scan programs in HIC Anar Rustamov a.rustamov@cern.ch Onset of Deconfinement Signals Particle spectra Azimuthal modulations Event-by-Event Fluctuations Critical point Phase Boundaries Confronting

More information

Thermodynamic Signatures of Additional Strange and Charm Baryons

Thermodynamic Signatures of Additional Strange and Charm Baryons Thermodynamic Signatures of Additional Strange and Charm Baryons Swagato Mukherjee April 2015, GHP, Baltimore, MD Heavy-ion collisions: a sketch Time initial state QGP, hydro. expansion Tc, μ c freeze-out

More information

Medium Modifications of Hadrons and Electromagnetic Probe

Medium Modifications of Hadrons and Electromagnetic Probe Medium Modifications of Hadrons and Texas A&M University March 17, 26 Outline QCD and Chiral Symmetry QCD and ( accidental ) Symmetries Theory for strong interactions: QCD L QCD = 1 4 F a µν Fµν a + ψ(i

More information

ECT*, Trento December 3, Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina

ECT*, Trento December 3, Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina ECT*, Trento December 3, 2015 Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina initial stage pre-equilibrium hydrodynamical evolution hadronization freeze-out

More information